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Impurity effects on Dirac modes in graphene armchair nanoribbons
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We consider finite ribbons of graphene with armchair orientation of their edges to study in detail impurity
effects on specific Dirac-like modes. In the framework of the Anderson hybrid model of impurity perturbation, a
possibility for Mott localization and for opening of a mobility gap under local impurity perturbations is found and
analyzed as a function of the model parameters: the impurity energy level, its hybridization with the host Dirac
modes, and the impurity concentration. Special attention is payed to the interplay between impurity disorder and
spin-orbit splitting of the host spectrum for the purpose of tunable metal-insulator phase transitions.
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I. INTRODUCTION

Between electronic properties of a two-dimensional (2D)
graphene layer, the presence of linear gapless quasiparticle
modes, or 2D Dirac modes, is especially notable by defin-
ing unusual physical effects in graphene [1–3]. These modes
are also a source for even finer, one-dimensional (1D) Dirac
modes in graphene nanoribbons [4–6] with special orientation
of their edges and special adjustment of their atomic width
[7].

A broad family of Dirac semimetals is of great interest
for modern electronics, in particular, their behavior under
doping by different impurities and the resulting restructuring
of the quasiparticle spectrum. Comparing with the known im-
purity effects in common semiconductors and in 2D graphene,
the doped graphene nanoribbons can be expected to per-
mit even higher sensitivity to various external controls, and
their study may deepen our general knowledge of disorder
physics.

This work continues our recent study of impurity effects in
graphene nanoribbons [8] which has demonstrated different
sensibility to the impurity disorder: almost absent in zigzag
graphene nanoribbons (ZGNRs), known also as topological
protection, but already found in some armchair graphene
nanoribbons (AGNRs), namely, in those presenting Dirac-like
modes in the electronic spectra. However, their study was
restricted to the simplest Lifshitz isotopic model of impurity
perturbation (more adequate for substitutional centers), per-
mitting only quasiparticle localization near Dirac zero points.
Therefore, looking for other impurity resonances of physical
interest, we focus below on the more flexible Anderson hy-
brid s-d model, better describing impurity adatoms. In this
course, we find various regimes of spectrum restructuring
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as a function of perturbation parameters and compare the
obtained results with known such effects in other electronic
materials.

The following consideration begins from the description of
AGNR and its spectral structure in terms of the second quan-
tization Hamiltonian (Sec. II) and the related Green functions
(GFs, Sec. III). The perturbation of Hamiltonian by impurity
adatoms within the Anderson hybrid model is introduced in
Sec. IV, giving the solutions for perturbed GFs in the T-
matrix form and the checks for Mott localization of perturbed
quasiparticles. The analysis of possible electronic phase states
and transitions between them in a doped AGNR as a func-
tion of perturbation parameters is developed in Sec. V and
compared with the known behaviors of analogous electronic
materials. A special consideration of such transitions under
an interplay of impurity perturbations and different types of
spin-orbit coupling, including its tuning by external fields, is
given in Sec. VI. The final discussion of the obtained results
with suggestions for their possible practical use is presented
in Sec. VII. A more detailed analysis of the solutions for
1D modes, beyond the T-matrix framework, is done in the
Appendix.

II. HAMILTONIAN, EIGENSTATES, AND
ENERGY SPECTRUM

The graphene armchair nanoribbon can be seen as a se-
quence of N segments where each segment is a slant stack of
M layers (collinear between the segments) and each layer con-
sists of two atomic sites (of graphene a and b types, see Fig. 1).
The respective local electronic states in the mth layer of the
nth segment are generated by the local operators a†

n,m and b†
n,m.

Longitudinal translational invariance is imposed through the
Born–von Karman closure of the N th to the first segment. For
an AGNR with M layers (M-AGNR) and the nearest-neighbor
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FIG. 1. Graphene nanoribbon with armchair orientation of its
edges. Blue dashed lines delimit slant segments n = 1, . . . , N . Each
segment extends along the graphene elementary translation vector
a1 and includes m = 1, . . . , M layers (red dashed lines) with a-type
(white) and b-type (black) atomic sites. The sequence of segments
has its longitudinal period a = |a1 + a2|. The carbon dangling bonds
at the edges are passivated by hydrogens (small circles).

hopping t , the related tight-binding Hamiltonian reads

Htb = t

{
N∑

n=1

[
M∑

m=2

a†
n,m(bn,m + bn−1,m+1 + bn,m−1)

+ a†
n,1(bn,1 + bn−1,2)

]
+

M−1∑
m=1

a†
1,mbN,m+1 + H.c.

}
.

(1)

The last sum in Eq. (1) just generates the longitudinal transla-
tion invariance and suggests the Fourier-transform to 1D-wave
operators. The longitudinal coordinates of a and b sites in
units of the longitudinal period a = |a1 + a2| define this trans-
form as

αk,m = 1√
N

N∑
n=1

ei(2πk/N )(ξn,m−1/6)an,m,

βk,m = 1√
N

N∑
n=1

ei(2πk/N )(ξn,m+1/6)bn,m, (2)

where ξn,m = n + (m + 1)/2 is the longitudinal coordinate of
the center of the mth layer from nth segment (see an example
in Fig. 1). This readily diagonalizes the Hamiltonian, Eq. (1),
in the k numbers. If the AGNR is macroscopically long, N →
∞, one can pass to a quasicontinuous momentum variable:
2πk/N → k (measured in a−1 units). Also, for simplicity, the
energy ε will be measured in units of t .

Then the system dynamics in the transversal m index can
be considered at a fixed longitudinal k momentum, and the
overall spectrum structure results are qualitatively defined
by the AGNR width M. In the known analytic approach by
Wakabayashi et al. [7,9,10], 2M eigenstates at given k are
taken as running k waves superposed by standing waves in the
transversal q momentum, subject to the open-edge condition
(reaching a node when continued by a half-period beyond an
AGNR edge). Namely, they are pairs of standing waves with
discrete momentum values:

q j = π j

M + 1
, j = 1, . . . , M, (3)

being just the combinations (symmetric and antisymmetric in
a and b sites) of 1D-projected graphene states.

The related eigenenergies are simple uniform 1D projec-
tions of the 2D graphene spectrum for transversal momentum
values q j by Eq. (3):

ε j,k =
√

1 + 4 cos k
2 cos q j + 4 cos2 q j, (4)

for conduction subbands (and −ε j,k for valence subbands).
The 1D Brillouin zone (BZ) for all the 2M subbands is de-
fined within the 0 � k � 2π range, and the respective secular
determinant reads

det(ε − Ĥ ) =
M∏

j=1

(
ε2 − ε j,k

2). (5)

The eigenstate associated to the ( j, k) mode is a combina-
tion of the running k wave and the standing q j wave [10] with
its amplitudes on a and b sites in the m layer:

A( j,k)
m = − e−iϕ j,k

√
M + 1

sin mqj,

B( j,k)
m = eiϕ j,k

√
M + 1

sin mqj, (6)

where the phase is defined by the relation

ϕ j,k = 1

2
arctan

sin k
2

cos k
2 + 2 cos q j

+ k

6
. (7)

The standing waves are orthonormalized through the relations

M∑
j=1

sin mqj sin m′q j = M + 1

2
δm,m′ ,

M∑
m=1

sin mqj sin mqj′ = M + 1

2
δ j, j′ . (8)

Then we construct the eigenmode operators ψ± j,k from the
wave operators αm,k and βm,k by Eq. (2) in order to reproduce
the mode amplitudes by Eq. (6):

ψ± j,k = 1√
M + 1

M∑
m=1

sin mqj (e
iϕ j,k βm,ke−iϕ j,k αm,k ). (9)

In their basis, the Hamiltonian, Eq. (1), turns fully diagonal:

Htb =
∑

j,k

ε j,k (ψ†
j,kψ j,k − ψ

†
− j,kψ− j,k ). (10)

By inversion of Eqs. (2) and (9), the local operators can be
expanded in the eigenmode operators:

an,m = 1√
(M + 1)N

∑
j,k

ei(kξn,m−ϕ j,k ) sin mqj (ψ− j,k − ψ j,k ),

bn,m = 1√
(M + 1)N

∑
j,k

ei(kξn,m+ϕ j,k ) sin mqj (ψ− j,k + ψ j,k ),

(11)

which is helpful for the next treatment of AGNR perturbations
by local impurity centers.
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FIG. 2. Energy-band dispersion in 5-AGNR [ν = 2 by Eq. (12)],
showing the Dirac-like modes with j = 2, 4.

The notable feature of the spectrum by Eq. (4) is that it
contains gapless modes if the AGNR width satisfies a special
condition [7]:

M + 1 = 3ν, ν = 1, 2, . . . . (12)

For such M = 3ν − 1, the mode with j = 2ν reaches zero
energy at the BZ edge k = 0 as

ε2ν,k = 2

∣∣∣∣ sin
k

4

∣∣∣∣ ≈ |k|
2

(13)

(see Fig. 2), and the mode with j = ν reaches zero energy at
the opposite BZ edge k = 2π as

εν,k = 2

∣∣∣∣ cos
k

4

∣∣∣∣ ≈ |k − 2π |
2

. (14)

The dispersion laws by Eqs. (13) and (14) formally coincide
with the standard linear dispersion near the Dirac points of 2D
graphene; hence they can be seen as definitions of effective
1D Dirac points in (3ν − 1)-AGNR spectra. All other modes
there (with j �= ν, 2ν) have finite energy gaps.

III. GREEN FUNCTIONS AND OBSERVABLES

The following consideration goes in the framework of two-
time GFs [11,12], defined by their Fourier transforms:

〈〈A|B〉〉ε = i

π

∫ ∞

0
dteit (ε+i0)〈{A(t ), B(0)}〉, (15)

where A(t ) = eiHt Ae−iHt is a Heisenberg picture operator for
the system Hamiltonian H , {., .} is the anticommutator, and
〈. . . 〉 is the quantum-statistical average. In what follows, the
GF’s energy subindex is mostly omitted.

Practical calculation of GFs is done through the general
equation of motion:

ε〈〈A|B〉〉 = 〈{A(0), B(0)}〉 + 〈〈[A, H]|B〉〉, (16)

involving the commutator [., .]. So found GFs generate the
physical observable quantities (the averages of operator prod-
ucts) through the spectral relation

〈AB〉 = 1

π
Im
∫ ∞

0
〈〈B|A〉〉εdε. (17)

FIG. 3. Density of states in 5-AGNR. Almost constant value
≈4/(3π ) within the low-energy range, |ε| �

√
3 − 1, comes from

the Dirac-like ( j = 2, 4) subbands.

In the present case, the system electronic properties can be
obtained from the 2M × 2M GF matrix Ĝ(k, k′) with its
matrix elements Gj, j′ (k, k′) ≡ 〈〈ψ j,k|ψ†

j′,k′ 〉〉 built from the
eigenmode operators by Eq. (9) where the j indices count the
transversal momenta as by Eq. (3) and also their opposites − j
(2M altogether).

For the unperturbed AGNR system with its diagonal
Hamiltonian, Eq. (10), the above-defined GF matrix results
are also diagonal: G(0)

j, j′ (k, k′) = δ j, j′δk,k′G(0)
j,k (ε), with its diag-

onal elements called propagators,

G(0)
j,k (ε) = 1

ε − ε j,k
. (18)

They define an important observable, the density of quasi-
particle states (DOS), as a sum ρ(ε) = ∑M

j=1 ρ j (ε), where a
partial contribution from ( j,− j) subbands is

ρ j (ε) = 2

π

∑
k

Im
[
G(0)

j,k (ε) + G(0)
− j,k (ε)

]
(19)

(including the implicit factor 2 for electron spins). Using
Eq. (18) and passing from the sum in k to the integral,

1

N

∑
k

f (k) = 1

2π

∫ 2π

0
f (k)dk, (20)

gives this contribution as

ρ j (ε) = 8|ε|
π (M + 1)

√
(ε2 − ε2

−, j )(ε
2
+, j − ε2)

, (21)

where ε±, j = 1 ± 2 cos q j are the jth subband energy limits.
In particular, for the most relevant here Dirac-like modes

with ε+,ν = ε−,2ν = 2, ε+,2ν = ε−,ν = 0, we have

ρν (ε) = ρ2ν (ε) = 4

3πν
√

1 − (ε/2)2
, (22)

so the low-energy DOS results are almost constant: ρ(ε) ≈
ρ(0) = 8/(3πν) at |ε| � 1, as seen in the case of 5-AGNR
presented in Fig. 3.
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FIG. 4. Position p of a top impurity adatom over an a site in mp

layer from np segment of 5-AGNR.

IV. IMPURITY PERTURBATIONS

The local impurity perturbations in graphene nanoribbons
of both zigzag and armchair types were recently considered
within two basic impurity models: the one-parameter Lifshitz
model (LM) [13], more adequate for substitutional impurities,
and the two-parameter Anderson hybrid model (AM) [14],
for impurity adatoms [8]. For zigzag structures, the overall
conclusion was about their eigenmode stability (topological
protection) against quasiparticle localization by the impurity
disorder, both in LM and AM models. However, such local-
ization was found in AGNRs with LM impurities, though
reduced in that case to a narrow vicinity of the Dirac point
(zero energy). But this already opens a possibility for Mott’s
metal/insulator phase transitions in a nanosystem and gen-
erates the next interest for studying AGNR behavior under
more diversified AM perturbations. In the latter case, a more
complicated intermittence of conducting and localized states
in other ranges of energy spectrum and a broader variety of
related phase states for this 1D system can be expected. Then
it would be also of interest to compare such effects with
the known analogs for 3D and 2D electronic systems under
impurity disorder.

The following consideration is focused on special (3ν − 1)
AGNRs and restricted to only their Dirac-like modes. Since
these modes with j = ν and 2ν give identical and indepen-
dent contributions to the spectrum, one can next focus on a
single Dirac-like mode, say j = 2ν, then denoting ψ2ν,k ≡
ψ+,k and ψ−2ν,k ≡ ψ−,k . Consequently, the above-introduced
Ĝ(k, k′) matrix gets reduced to the 2 × 2 form in the basis
of ψ±,k operators. In particular, the nonperturbed solution,
Eq. (18), presents here as Ĝ(0)(k, k′) = δk,k′ (ε − εk σ̂3)−1 with
εk ≡ ε2ν,k by Eq. (13) and the Pauli matrix σ̂3 in ± indices.

Then we consider the impurity adatoms location restricted
to the simplest top positions: pa over an a-type host atom
in mp layer from an np segment (see Fig. 4) or pb over a
b-type host atom. In these notations, the AM perturbation
Hamiltonian reads

HAM =
∑

p

{
εresc

†
pcp + ω√

3νN

∑
k

[
sin

πmp

3

×ei(kξp∓φk )c†
p(ψ−,k ∓ ψ+,k ) + H.c.

]}
, (23)

where a local impurity operator cp with its resonance level εres

is coupled to the Dirac-like modes ±εk through the hybridiza-

FIG. 5. Dispersion law for the Dirac-like modes in 5-AGNR hav-
ing AM impurities with their parameters εres = 0.03, ω = 0.3, and
concentration c = 0.02. For comparison, the unperturbed Dirac-like
modes are shown by the red dashed lines.

tion ω with the neighbor host atom at the longitudinal position
ξnp,mp − 1/6 for its a type as in Fig. 4 (or ξnp,mp + 1/6 for its
b type).

Then the complete Hamiltonian Htb + HAM generates a
perturbation of the GF matrix: Ĝ(0) → Ĝ. In its simplest form,
this is given by the T-matrix approximation:

Ĝ = (ε − cT̂ (ε) − εk σ̂3)−1, (24)

where c = (2MN )−1∑
p 1 is the impurity concentration and

the T matrix in this case results diagonal:

T̂ (ε) ≡ T (ε) = ω2

2

(
ε − εres − iω2

4 f
√

1 − (ε/2)2

)−1

. (25)

Then the modified dispersion law ε̃k follows from the stan-
dard GF secular equation Re [det(Ĝ)−1] = 0 [15] as

ε̃k =
√

ε2
k + [c Im T (ε)]2 + c Re T (ε), (26)

and its solution for 5-AGNR at the choice of AM impurity
parameters εres = 0.03 and ω = 0.3, corresponding to Cu
adatoms in the top position [16], is presented in Fig. 5. Here
the characteristic impurity effects are seen as

(1) the shift of the Dirac point from its initial zero energy
position down to

εD ≡ ε̃k=0 ≈ εres −√
ε2

res + 2cω2

2
, (27)

(2) the resonance splitting between the initial linear εk law
and the impurity resonance level εres until its vicinity of width

γres ≈ ω

√
c − c0

2
, (28)

where c0 ∼ ω2/(8ν2) is the critical concentration value for
this splitting to appear.

Also an anomalous negative dispersion formally appears
inside this vicinity, at |ε − εres| � γres, but this range occurs
unphysical when validity of the modified dispersion law is
checked with the Ioffe-Regel-Mott (IRM) criterion for con-
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FIG. 6. Upper panel: Mobility gaps (in meV scale) in function
of impurity concentration c at the choice of AM parameters as in
Fig. 5. Special concentration values respectively refer c0 to opening
of mobility gap near the resonance level εres, c1 to metal/insulator,
and c2 to insulator/metal transitions (see below). Lower panel: Anal-
ogous developments for the same impurities in 2D graphene. Note
here opening of a spectrum quasigap inside the mobility gap at c1,
absent in AGNR.

ducting states [17,18]:

k
∂ε̃k

∂k
� c Im T (ε̃k ). (29)

This simply means that the quasiparticle lifetime (inverse
of the right-hand side) is longer than its oscillation period
(inverse of the left-hand side), and such quasiparticles are
conductive indeed; otherwise they are localized near impurity
sites. The explicit form of the IRM criterion for the dispersion
law by Eq. (26) and the T matrix by Eq. (25) reads

2
∂
∂ε

ln {Re [ε − cT (ε)]2} � c Im T . (30)

All the energy ranges where this inequality does not hold are
attributed to localized states, so the dispersion law by Eq. (26)
for conducting states does not apply there. The mobility edges
between conducting and localized states can be estimated as
the ε values that make the relation of Eq. (30) an equality.
The results of such numerical estimation at the choice of AM
parameters as for Cu top impurities are shown in Fig. 6. They
demonstrate formation of two mobility gaps (ranges of local-
ization), one around εres and another around εD. Their width
grows with the impurity concentration c: the first as ∼2γres(c)
by Eq. (28) and the second as γD ≈ cω4/[8ν(εD − εres)2].

The validity of the above T-matrix description is confirmed
with an additional check beyond the frame of this simplest
approximation (see in Appendix).

An important issue for such disordered AGNRs is how the
positions of mobility edges compare with that of the Fermi
level vs impurity concentration, εF(c). The latter results from
an extra amount of c charge carriers by impurities filled into
the relevant subbands:∫ εF (c)

0
ρ(ε)dε = c. (31)

Notably, the above-indicated low-energy DOS, ρ(ε) ≈
ρ(0) = 8/(3πν), holds its constancy even under impurity
disorder, as seen from stability of Eq. (22) at passing ε →
ε − cT (ε) since |ε − cT (ε)| � 1 for all |ε| � 1, one of the
main specifics of this 1D-like system.

Then from Eq. (31) we come to the relation εF(c) ≈
c/ρ(0). This behavior superposed onto the diagram of mo-
bility gaps in Fig. 6 shows a possibility for εF to cross the
mobility edges near εres, both into and out of this mobility
gap. Then an intermittency of the related metal/insulator tran-
sitions (MIT) can be expected.

It is of interest to compare these AGNR results and their
analogs for the same impurities in 2D graphene (Fig. 6, lower
panel). Besides a general similarity of two pictures, they
also present substantial differences. First of all, the estimated
critical concentration for localization on Cu impurities in 5-
AGNR, c0 ≈ 7 × 10−3, is more than an order of magnitude
higher than its analog for the 2D case, c(2D)

0 ≈ 4 × 10−4 [16].
This can be explained by the higher and almost constant low-
energy DOS for the 1D Dirac-like modes: ρ(ε) ≈ ρ(0) ∼ 1,
compared to its linear in ε smallness for the 2D Dirac modes:
ρ2D(ε) ≈ 4ε/(π

√
3) � 1.

Another difference is in behaviors of εF(c) for each system,
also caused by that of DOS. From Eq. (31), its almost linear
growth in AGNR, εF(c) ≈ c/ρ(0), is much slower than the

extremely fast initial growth of ε
(2D)
F (c) ≈

√
cπ

√
3/2 in 2D

graphene. This defines a much higher threshold in c for occur-
rence of MIT in AGNR, c1 ∼ εresρ(0), than in 2D graphene,
∼c(2D)

0 . But the constancy of AGNR DOS, even in the pres-
ence of impurities, permits the linear εF(c) growth to persist
also for c > c1 and then an inverse MIT to occur at its emer-
gence from the mobility gap at c = c2 ∼ εresρ(0) + (ωρ(0))2.
On the contrary, the presence of a sharp impurity resonance
peak in the 2D graphene DOS near εres fixes the Fermi level
near this peak (see the lower panel in Fig. 6) and so the
insulating phase for all c above the extremely low c(2D)

0 . At
least, the critical concentration c0 by Eq. (28) that defines the
onset of localization near εres indicates it to occur earlier for
weaker impurity-host coupling ω.

V. ELECTRONIC PHASE STATES AND THEIR TUNING

An important physical issue is to determine the system
electronic phase states. For the considered nanoribbons, this
refers first of all to their electric conductivity.

In the limit of zero temperature, it is fully defined by the
Fermi level position with respect to the spectrum mobility
edges: implying the metallic phase state for εF out of the

224202-5



YURIY G. POGORELOV AND VADIM M. LOKTEV PHYSICAL REVIEW B 106, 224202 (2022)

mobility gaps and the insulating phase state for εF inside them.
Thus, from the diagram in Fig. 6, the system of 5-AGNR
with given concentration c of Cu impurities is expected to be
metallic if 0 < c < c1 or c > c2 and insulating if c1 < c < c2.

But a practical interest arises in an effective tuning of pos-
sible MITs at a given impurity composition (in analogy with
the common gate controls in doped semiconductors). First of
all, the initial composition can be chosen to set the Fermi level
close enough to a mobility edge, for instance, εres > εF > εg

and εF − εg � εres. Then, for tuning of the insulator/metal
transition, several factors can be considered: (1) temperature,
T ; (2) magnetic field, h; and (3) electric field, E.

The temperature control will result from the interplay be-
tween the metallic conductivity σmet (T ) due to extended states
and the hopping conductivity σhop(T ) due to localized states.
The first type refers to the Kubo-Greenwood formula, written
here as

σmet (T ) ≈ ρ(0)
∫ εg

0
τ (ε)

[
1 −

(
ε

2

)2]
∂n(ε, T )

∂ε
dε, (32)

where the lifetime τ (ε) is the inverse of the sum of two
inverses, τ−1

imp(ε) = c|Im T (ε)|, from impurities, and τ−1
ph (ε) ∼

T/�D, from 1D phonons (with the Debye temperature �D),
and n(ε, T ) = (e(ε−εF )/T + 1)−1 is the standard Fermi func-
tion.

The second type refers to the Mott formula written for a
1D system:

σhop(T ) ∝ exp

[
−
(

T0

T

)1/2]
, (33)

where T0 ∼ τ−1(εF)/ρ(εF). Addition of this growing σhop(T )
to the decreasing σmet (T ) by Eq. (32) results in an overall
conductivity maximum at T ∼ |εF − εg|, but having a compa-
rable temperature width. So this crossover between the types
of conductivity is not yet a canonical phase transition.

But a true electronic phase transition at T = 0 can be
reached, for instance, by applying a uniform static magnetic
field h to AGNR. This will produce a spin splitting of the
Dirac-like subbands defined in Sec. III and also of the impu-
rity levels, implying respective splitting of IRM critical points
for spin subbands.

At the same time, the position of overall Fermi level for
a given impurity concentration c will stay the same as it
was for h = 0, due to the persisting constancy of the overall
DOS. Then, in the situation of some overlapping subbands, the
overall mobility edges are determined by the Mott principle:
if, at a given energy, there is at least one state extended, all
other states at this energy are also extended. Then the overall
mobility gap is formed by the intersection of partial (formal)
gaps for each spin projection and it gets reduced with growing
splitting μBh. In this way, the overall mobility edges are
tuned by the applied field and MIT is realized at its critical
value hcr ∼ |εF − εg|/μB [see Fig. 7(a)]. But for the relevant
energy scales of several millielectronvolts, this may require
high enough h values of several tens Tesla.

An alternative way may be sought in applying a static
electric field Ey ≡ E across the nanoribbon (along the y axis
in Figs. 1 and 4) to produce linearly growing local potentials
Vm = meE on m layers. This can be shown not to influence

(a)

(b)

FIG. 7. Realization of MIT in AGNR with Cu top impurities by
tuning of the composed mobility edges: (a) with an applied magnetic
field or (b) with an applied electric field (here for M = 5).

the relevant Dirac-like subbands, however, but to produce an
M-fold splitting between the local energy levels for impurities
on different m layers and so between the respective mobility
gaps, with a subsequent decrease of the resulting mobility
gap [as in Fig. 7(b)]. The critical fields to achieve MIT in
this case, Ecr ∼ |εF − εg|/(eM ) of some mV/nm, could be
reached without experimental difficulties.

VI. SPIN-ORBIT EFFECTS ON ELECTRONIC
PHASE STATES

Yet one more tuning mechanism can result from the spin-
orbit (SO) effect, including the Rashba spin-orbit coupling
[19]. The latter is generally known to lift the spin degeneracy
in the systems with broken mirror symmetry, for instance,
under electric field Ez, applied normally to the crystal sur-
face [20] or to the 2D graphene plane (along the z axis in
Fig. 4) [21,22]. A similar effect can be achieved in graphene
nanotubes [23,24] and also in AGNRs [25].

For the AGNR case, we note that the relevant Dirac-
like ψ±,k modes [from Eq. (23)] have their amplitudes
sin m π

3 equal zero at each third m layer, so the inter-
layer couplings through these modes are restricted to the m
pairs: (1, 2), (4, 5), . . . (M − 1, M ), and their overall effect on
AGNR can be represented by a single such pair, for instance,
with m = 1, 2 (see Fig. 8). All the couplings in this pair of
layers are suitably presented in terms of local operators, now
equipped with explicit ↑↓ spin indices and then composed
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FIG. 8. Coupled pair of m = 1, 2 layers in AGNR.

into 4-spinors:

fn,m =

⎛
⎜⎝

an,m,↑
an,m,↓
bn,m,↑
bn,m,↓

⎞
⎟⎠. (34)

In the basis of these local spinors, the SO Hamiltonian reads

HSO =
∑

n

[ f †
n,1ĤSO( fn,1 + fn,2 + fn−1,2)

+ f †
n,2ĤSO( fn,2 + fn,1 + fn+1,1)], (35)

where the 4 × 4 matrix,

ĤSO = �σ̂z + λ(σ̂x τ̂y − σ̂yτ̂x ),

includes the Pauli matrices σ̂ j in spin ↑,↓ indices, τ̂ j in
sublattice a, b indices, and the parameters � for standard SO
and λ for Rashba SO (the latter being Ez dependent). The
estimates for these local SO couplings in 2D graphene (also
plausible for nanoribbons) show the standard � ∼ 10−4 [21],
fixed and much smaller of the relevant energy scales for MIT
crossing. Otherwise, the Rashba λ can be strongly enhanced
[26] and yet tunable [21], so it is taken to be an effective SO
variable below.

Next we move on to the basis of chain-wave 4-spinors:

ψk =

⎛
⎜⎝

ψ+,k,↑
ψ+,k,↓
ψ−,k,↑
ψ−,k↓

⎞
⎟⎠, (36)

which are related to the local spinors by Eq. (34) (with m =
1, 2) through a τ̂ rotation:

fn,m = (−1)m−1

2
√

f N

∑
k

eikξn,mÛkψk . (37)

Here the rotation matrix,

Ûk = cos φk (τ̂x − τ̂z ) + sin φk (τ̂y + iτ̂0), (38)

results from Eq. (11) (restricted to single j = 2ν) for the
components of fn,m. The phase φk ≡ φ2 f ,k approximates for
|k| � 1 as φk ≈ φ0 = −π/4. Then the Dirac-like part of the
SO Hamiltonian reads

HSO =
∑

k

ψ
†
k [−�σ̂z τ̂x + λ(σ̂x τ̂z + σ̂yτ̂y)]ψk, (39)

and, together with the Dirac-like part of Htb by Eq. (10), it
defines the SO-split dispersion laws (in neglect of impurity
disorder):

ε±,k =
√

ε2
k + �2±. (40)

FIG. 9. SO splitting of the Dirac-like mode εk (dashed lines) into
ε±,k at the choice of λ = 5 × 10−3 and � = 2.5 × 10−4.

Here the nonzero band gaps are due to both SO types, but
their splitting is only due to the Rashba SO:

�± =
√

�2 + λ2
(
2 ±

√
3
)
, (41)

as shown in Fig. 9 for the choice of SO parameters � = 2.5 ×
10−4 [21] and λ = 5 × 10−3 [26], and they create the low-
energy DOS singularities:

ρso(ε) = ερ(0)

2

⎡
⎣θ (ε − �+)√

ε2 − �2+
+ θ (ε − ε−)√

ε2 − �2−

⎤
⎦, (42)

as shown in Fig. 10.
Such DOS behavior, instead of its almost constancy at

no account of SO [by Eq. (22)], when used in Eq. (31)
leads to the λ dependence of the Fermi level given by the
equation √

ε2
F − ε2+ +

√
ε2

F − �2− ≈ c/ρ(0). (43)

Its numerical solution shown in Fig. 11 defines MIT to occur
when λ reaches a certain critical value λcr .

Noting that for all relevant impurity concentrations c > c0

we have c/ρ(0) � �, the approximate solution of Eq. (43)
for λ � c/ρ(0) reads

εF(λ) ≈ c

2ρ(0)
+ ρ(0)

c
�2 + 2ρ(0)

c
λ2. (44)

FIG. 10. Singularities of the low-energy DOS of 5-AGNR with
split subbands at the same choice of SO parameters as in Fig. 9.
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FIG. 11. Dependence of the Fermi level on Rashba SO coupling
for 5-AGNR with Cu top impurity concentration fixed at c = 0.012.
Its crossing with the mobility edge εg at λ = λcr indicates an SO-
tuned MIT to occur.

This quadratic λ dependence relates to filling of both
ε±,k subbands by c charge carriers. It practically coin-
cides with the lower part of the numerical solution in
Fig. 11 until its break, which occurs when εF(λ) gets in-
tercepted by the faster-growing upper band gap ε+ at the

break value λbr = c/[
√

2
√

3ρ(0)]. The next slower εF(λ)
growth at λ > λbr relates to filling of only the lower
subband as

εF(λ) =
√

c2

ρ(0)2
+ �2 + (2 −

√
3)λ2. (45)

Notably, for the considered case of Cu top impurities, both
the impurity resonance εres and the mobility edge εg lie in
the energy range ε � ε± where ρSO(ε) already reaches its
asymptote ≈ ρ(0), so the mobility gap structure stays practi-
cally insensitive to Rashba SO. Hence a possibility arises here
for MIT to be realized by SO tuning of εF at fixed εg, unlike
the above-considered regimes with tuning of mobility edges
at fixed Fermi level.

Notably, this tuning process can be realized in a com-
bined way: a rough “tuning” of εF closeness to εg by a
proper choice of impurity parameters εres, ω, c and also
by a strong structural contribution to the Rashba parameter
λ, say, from a gold substrate atomic field [26], and then
its fine tuning by an applied external field. Evidently, the
expected MIT at such sub-meV energy scales would re-
quire a range of liquid He temperatures for its sufficient
resolution.

VII. DISCUSSION

The obtained results demonstrate how the difference of
electronic states in graphene nanoribbons defined by their
edge orientations is reflected in their stability against im-
purity disorder. Physically, this opens the possibility for
specific electronic phase transitions and for their con-
trols, e.g., by combining the disorder and external bias
effects.

The present study was limited to the simplest frame-
work of tight-binding model for pure nanoribbons and to

the simplest models for impurity perturbations on them.
But it already reveals a qualitative distinction between the
isotopic-type and hybrid-type perturbations in the aspect of
quasiparticle localization. Moreover, the results obtained here
for the simplest top position of impurity adatoms should
qualitatively hold also for their bridge or hole positions
(by similarity of the respective AM parameters [16]). In
principle, this approach can be extended to account for
many other physical factors, such as electron-electron Hub-
bard correlations, spin-ordering effects, phonon and magnon
quasiparticles, etc.

Also, the effects from passivating hydrogens, known to
be commonly present at the edges of experimental nanorib-
bon samples [27–30], may influence the dynamics of host
nanoribbon carriers. This factor can be naturally included into
the above-developed Hamiltonians and resulting GFs, to be
possibly an object of future study. At least, an experimental
check for the suggested effects, for instance, on carrier mobil-
ity and its collapse under definite external factors, should be
of considerable interest.
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APPENDIX: BEYOND THE T MATRIX

Validity of the above T-matrix solution should be yet ver-
ified in view of the effective 1D character of the relevant
Dirac-like quasiparticles. It is known that generic 1D systems
are unstable against any disorder, producing full localization
of all their eigenstates [31], and the IRM check with use of
the simplest (single-impurity) T matrix does not detect this.
Therefore the IRM results from Sec. III need a support by
some T-matrix extensions known for many other disordered
systems. There are two such possible extensions:

(1) group expansions (GEs) in clusters of correlated impu-
rity centers [32] and

(2) self-consistent T-matrix approximation [33].
For GEs, their basic elements are the correlators, defined

for different GE forms. The simplest form is that of nonrenor-
malized GE, known to better apply for the energy ranges of
localized states. Here the correlator for the considered Dirac-
like quasiparticles is written as

Ar (ε) = 2T (ε)

3νN

∑
k

eikr

(
1

ε − εk
+ 1

ε + εk

)
(A1)

(taking into account equal contributions from j = ν and j =
2ν modes). Then, after integration in k by Eq. (20), the related
integral has its long-distance asymptotics at r � 1 as

Ar (ε) = 2T (ε)ε

3πν

∫ π

−π

eikrdk

ε2 − 4 sin2 k/2
≈ 2T (ε)ε

3 f
sin εr,

(A2)
which is nondecaying. This contrasts with the decaying
correlators in 3D and 2D systems and makes all the
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FIG. 12. Integration contours for calculation of the renormalized
correlator Ãr (ε), Eq. (A3): C+ (blue lines) for r > 0 and C− (red
lines) for r < 0.

GE terms for the 1D-like system formally divergent. To
avoid that problem, some alternative, renormalized GE
forms (more adequate for conductive states) could be
employed.

For instance, the first-order renormalization for GE is
obtained with the simple change, ε → ε − cT (ε) in the
denominators of Eq. (A1). Then the renormalized cor-
relator, Ãr (ε) = 2T (ε)[ε − cT (ε)]Ĩr (ε)/(3ν), involves the
integral

Ĩr (ε) = 1

2π

∫ π

−π

eikrdk

[ε − cT (ε)]2 − 4 sin2 k/2
. (A3)

This can be found analytically, passing to complex momen-
tum k → ζ = k + ik′ and extending integration to one of the
closed contours shown in Fig. 12, depending on the 1D cor-
relator direction. The forward direction, r > 0, relates to C+
(blue lines) with the pole ζε = 2 arcsin[ε − cT (ε)]/2, and the

FIG. 13. Smallness of the relative contribution to GE by impurity
pairs B2(ε) by Eq. (A8) (for Cu impurities with concentration c =
0.05 in 5-AGNR), assuring GE convergence for this system.

backward direction, r < 0, does to C− (red lines) with the pole
−ζε.

The contour integral for the forward case,

1

2π

∮
C+

eiζ r

ε − cT (ε) − 2 sin ζ/2
dξ, (A4)

presents a zero sum of three terms: 0 = Ir (ε) + Rr (ε) +
Vr (ε). Here the residue term, Rr (ε) = eiζεr/ cos(ζε/2), and
the term from the semi-infinite vertical segments, Vr (ε) ≈
(2i sin πr)/[(1 − ε)r], define the sought correlator as

Ãr (ε) = 2T (ε)[ε − cT (ε)]

3 f

[
eiζεr

cos(ζε/2)
+ 2i

sin πr

(1 − ε)r

)
.

(A5)

For the low-energy range, |ε|, c|T (ε)| � 1 and ζε ≈ ε −
cT (ε), Eq. (A5) simplifies to

Ãr (ε) ≈ 2T (ε)[ε − cT (ε)]

3ν

×
[

ei[ε−cRe T (ε)]re−c|Im T (ε)r| + 2i
sin πr

r

]
. (A6)

Here, unlike Eq. (A2), both terms in the brackets are already
decaying with r. For the backward case, integration over C−
gives the same result.

The relevant criterion for GE convergence is smallness of
the dominating contribution by impurity pair clusters into the
quasiparticle self-energy compared to that by single impurities
[32]:

B2(ε) ≈ c

∣∣∣∣
∫ ∞

0
Ã−r (ε)Ãr (ε)2e−i[ε−cRe T (ε)]rdr

∣∣∣∣ � 1. (A7)

Then the residue term in Eq. (A6) with its slower exponential
decay ∝ e−c|Im T (ε)r| dominates in the r integral and converts
the above criterion into

B2(ε) ≈ 8

81ν3

∣∣∣∣T 3(ε)[ε − cT (ε)]3

Im T (ε)

∣∣∣∣ � 1. (A8)

The straightforward numerical check shows this criterion to
surely hold for all the above-considered impurity parameters
(see an example in Fig. 13).

Also, the self-consistent extension of the T-matrix function,

Tsc(ε) = ω2

2

⎧⎨
⎩ε − εres − iω2

4ν

√
1 − [

ε−cTsc (ε)
2

]2
⎫⎬
⎭, (A9)

practically coincides with its nonrenormalized version T (ε)
by Eq. (25), due to the above-noted smallness of |ε −
cT (ε)| � 1, assured for all |ε| � 1.

Hence the discussed T-matrix results for the quasiparti-
cle spectra in disordered AGNRs and the related estimates
for their mobility edges can be considered valid. We con-
clude that the inverse lifetime by the nonrenormalized T
matrix in the right-hand side of Eq. (30) is the main
factor for quasiparticle localization in AGNRs. So the re-
sults of Sec. III correctly determine the system observable
characteristics.
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