
PHYSICAL REVIEW B 106, 224111 (2022)

Electron and spin transport in an ultrathin Al film
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The effects of surface and bulk scattering on electronic and spin transport in aluminum-based ultrathin films
are predicted using the Landauer-Büttiker formalism and a recursive Green’s function technique. The effects of
surface roughness, grain boundaries, vacancies, and surface reconstruction on resistivity, spin diffusion length,
and Elliott-Yafet constant β are investigated for a 3.6-nm-thickness Al film. It is demonstrated that for a thin
sputtered film, point vacancies are the dominant contribution to the momentum relaxation, and spin relaxation is
dominated by the combined effect of surface reconstruction and point vacancies, which yields a reasonable spin
diffusion length and the Elliot-Yafet constant. Calculations reveal that the presence of surface corrugations results
in a clear departure from Matthiessen’s rule and the Elliott-Yafet prediction of β, as shown by introducing random
surface corrugations. It is also found that spin diffusion length induced by surface roughness is proportional to
the inverse square root of the ratio between root mean square height δh and lateral correlation length ξ of a
given rough surface, i.e., (δ/ξ )−1/2 as opposed to (δ/ξ )−1 as is the mean free path; this can be attributed to the
interference of extended surface features.
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I. INTRODUCTION

In recent years, increasing attention has been focused on
the dependence of spin transport properties on sample dimen-
sion. Decreasing spin diffusion lengths with thickness have
been experimentally demonstrated, even in light metals with
high conductivity and weak spin-orbit interaction (SOI), such
as copper and aluminum [1–6]. This slows the advance of
spintronics which potentially offers a combination of desir-
able feature: low power consumption, fast data processing
speed, and large integration densities.

Downsizing spintronic devices capable of transporting in-
formation over long distances has become crucial from both
scientific and technological perspectives. In particular, non
local spin valves (NLSV) are of great interest for their separa-
tion of pure spin currents from charge currents, which allows
studying both spin injection and spin relaxation. In practice, it
may also serve as read heads for magnetic recording [7–9] by
utilizing its output originating from giant magnetoresistance
(GMR) effects [10,11]. Many have been motivated to improve
the head resolution and writing density by reducing the thick-
ness of nonmagnetic materials used as transport channels, e.g.,
2D materials [12–14] and light metals [15,16]. However, the
output signal of NLSVs is experimentally measured to vanish
quickly even with light metals as spin channels. In particular,
for the thickness of a channel smaller than 10nm, the metallic
spin valve performance declines substantially [17].

Many sources inducing spin relaxation have been inten-
sively discussed in the literature. It has been suggested that
extrinsic effects acting through SOI such as charged impuri-

*Corresponding author: victora@umn.edu

ties and surface roughness, grain boundary (GB) scattering,
and phonon scattering can be responsible for the fast spin
relaxation rates in metals. Furthermore, it is expected that
temperature-independent contributions, including surface and
grain boundary, dominate the spin relaxation at low tempera-
ture regime. Dictated by Matthiessen’s rule [18], when several
different mechanisms are involved in a material, the total
scattering rate 1/τ is the sum of each individual one 1/τi,
i.e., 1/τ = ∑

i 1/τi, provided that the scattering events are
independent [19].

Elliott-Yafet (EY) theory [20–22] is generally used to ex-
plain metallic spin relaxation with weak SOI. Based on the
theory, the presence of inversion symmetry and time-reversal
symmetry gives rise to a general spin state |↑̃〉, which is
the admixture of the two degenerate spin up (|↑〉) and spin
down (|↓〉) states. As a result, a new pair of degenerate
eigenstates are given as follows: �k,↑̃ = (ak |↑〉 + bk |↓〉)eikr

and �k,↓̃ = (a∗
−k |↑〉 − b∗

−k |↓〉)eikr , where ak and bk are the
coefficients that preserve the periodicity of the lattice. When
extrinsic sources break momentum conservation, coupled
with SOI, a transition between the two degenerate spin states
occurs which indicates that spin relaxation can be driven
by ordinary momentum relaxation with spin-independent
scattering sources, such as impurities and phonons. Fur-
thermore, a linear relation is predicted between the spin
relaxation rate τ−1

s and and momentum relaxation rate τ−1
p ,

i.e., τ−1
s = β−1

defτ
−1
def + β−1

ph τ−1
ph , where τ−1

def and β−1
def are the

momentum relaxation rates and the corresponding constant
associated with defect scattering respectively and τ−1

ph and

β−1
ph are the momentum relaxation rates and the corresponding

constant due to phonon scattering respectively. β−1 reflects
the probability of spin flips and can be used to determine the
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strength of sources inducing the spin relaxations. This relation
states that defect scattering is a temperature-independent con-
tribution to spin relaxation that can be separated from phonon
scattering: their contributions to the spin relaxation can be
described by β−1

def and β−1
ph , respectively. Using first order time-

dependent perturbation theory, β ≈ (ak/bk )2 ≈ (�E/λSOI)2,
where �E is the average interband splitting due to SOI and
λSOI is the spin orbit coupling constant. For the light metals
with weak SOI, β can vary from ∼103 to ∼105 [4,17].

It has been proposed that when the mean free path is com-
parable to the dimension of metals, surface scattering should
dominate over spin relaxation [15]. However, studies ad-
dressing size effects on spin relaxation mechanism in metals
suggested that the dominant contribution to spin relaxation is
GB scattering [4,16,23]. So far no consensus has been reached
yet because GB scattering and surface scattering are generally
coupled and both surface roughness and GB are strongly
dependent on the growth and deposition conditions, which
varies among experimental groups. Therefore the dominant
contribution at low temperature to spin relaxation remains
puzzling. In addition, the Fuchs [24] and Sondheimer (FS)
model [25] and the Mayadas and Shatzkes (MS) [26] model,
used to quantify momentum relaxations induced by surface
roughness and GB scatterings respectively, are incomplete.
Phenomenological parameters, such as surface specularity and
the grain boundary reflection coefficient, which are fitted as
free parameters or usually assigned to indicate the extreme
cases, generally cannot be directly related to measured sur-
face parameters or grain boundary structures, thus imposing
challenges to determining realistic values for the parameters
in the fitting.

Among metals, aluminum is an outstanding candidate for
spintronic devices due to its low resistance, inherently long
spin relaxation time, low cost and manufacturability. How-
ever, the study of spin relaxation induced by defects in Al is
not as intensive as that in other light metals and 2D materials.
It may be attributed to growth problems and existence of spin
hot spots in Al. Al possesses a challenging growth problem
characterized by “Hillocks.” When deposited on a substrate
with a low coefficient of thermal expansion (Si or SiO2),
the formation of hillocks can cause an increase in surface
roughness and vacancy formation in the bulk. Hillocks appear
in the surface of the metal layer due to the residual stress
and strain developed during the deposition. Consequently, an
increase in surface roughness is expected, which can cause
an increase in strain and compressive stress [27,28]. A large
compressive strain can lead to vacancy formation in metallic
thin films [29]. Therefore a surprisingly large vacancy con-
centration can be expected at low temperature. In addition,
aluminum, as a polyvalent metal, has outliers whose spin
relaxation rate is at least two order of magnitude larger than k
points away from the Brillouin zone boundaries [30,31]. Such
outliers, called “spin hot spots,” occur when the Fermi surface
crosses the Brillouin zone boundaries. However, the presence
of spin hot spots and vacancies in a thin film of Al with defects
has not been addressed. It is thus important to exam the spin
relaxation rate induced by vacancies in a thin film of Al at low
temperatures and to survey the existence of spin hot spots in
a defective-Al system, which otherwise produce a long spin
diffusion length.

In this work, an ultrathin Al film is used to investigate the
effect on the spin relaxation induced by surface roughness, GB
scatterings, vacancy scatterings and surface reconstruction re-
spectively, employing the Green’s function method. Based on
the Landauer-Büttiker formalism [32,33], a 3.6-nm-thick Al
system is connected to two semi-infinite and translationally
invariant Al leads; resistivity, mean free path, spin diffusion
length and EY constant β are determined at zero temperature
using the transmission function T (E ) which is obtained from
the Green’s function at the Fermi energy. Explicit contribu-
tions from grain boundaries, surface roughness and vacancies
in the thin film regime are determined and compared with vari-
ous experimental results. Our results can potentially widen the
application of nonlocal spin valves for spintronics and mag-
netic recording read heads with smaller shield-shield spacing.

The article is presented by first introducing the
Hamiltonian of Al as described by a tight-binding model
in the presence of defects. A recursive Green’s function
method is presented in Sec. II, followed by discussion of the
results for momentum relaxation and spin relaxation induced
by surface roughness, GB scattering, vacancy scatterings,
surface reconstruction and anisotropy in spin relaxation in
Sec. III and a summary of the conclusions in Sec. IV.

II. METHODS

It is convenient to study the disordered systems
with Green’s function described by the tight-binding
model [34]. The Hamiltonian of the system is described
as H = HTB + HSOC, where HTB is the Hamiltonian in the
tight-binding structure with first and second nearest-neighbor
hopping and HSOC is the intrinsic spin-orbit interaction. HTB is
determined by the Slater-Koster (SK) parameters in s, p, and
d orbitals [35]. A principal layer consists of two atomic layers
to accommodate second-nearest-neighbor hopping given in
the SK parameters. For a system with N principal layers, the
general structure of HTB for a given a spin state is in the block
tridiagonal form as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HL tL 0 0 0 . . . 0
tL† H1 t 0 0 . . . 0

0 t† H2 t 0
... 0

...
...

. . .
. . .

. . . . . .
...

0 . . . t† Hi t
...

0 t† HN tR
0 . . . t†

R HR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

In Eq. (1), HL/HR denotes the Hamiltonian of the left/right
semi-infinite leads, respectively; tR and tL represent the inter-
action between the leads and layers in the scattering regions.
The on-site Hamiltonian for the ith principal layer is denoted
by Hi for 1 � i � N . t is the hopping matrix between two
adjacent principal layers which is identical for any two adja-
cent principal layers as the scattering potential only alters the
on-site Hamiltonian Hi in the simulation. Each entry in Eq. (1)
is a submatrix, whose dimension is determined by the number
of orbitals for each Al atom and the number of atoms in one
atomic layer. HSOC is the spin-orbit coupling term that can be
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written as

HSOC = λL̂ · Ŝ, (2)

where λ is the spin-orbit coupling constant and λ =
0.0018 Ry for aluminum. L̂ and Ŝ are angular momentum and
spin operators of the system, respectively.

The general form of the retarded (advanced) Green’s func-
tion Gr

d (Ga
d ) for a device at a given energy E can be expressed

as

Gr/a
d (E ) = [E ± iδ − H − 	L − 	R]−1. (3)

Here 	R/L is the self-energy function of the left or right
lead and δ is an infinitesimal convergence parameter. Define
ε = E ± iδ. Note that all the relevant quantities are evaluated
at the Fermi energy with 0.002 Ry as an imaginary part for
numerical convergence. The value of the imaginary conver-
gence parameter is chosen for numerical stability with fast
convergence speed. Including spin-orbit coupling, the Green’s
function can be written as

G(ε) =
[

G↑↑(ε) G↑↓(ε)

G↓↑(ε) G↓↓(ε)

]
. (4)

The self-energy function of the left or right lead 	R/L,σ with a
spin state σ is defined as

	L/R,σ = t†
L/R,σ gL/R,σ tL/R,σ , (5)

where gL/R is the interface Green’s function of the semi-
infinite left or right lead. Assuming that the spin-flip process
only occurs in the scattering channels, the transmission func-
tion that can be related to the Green’s function by the Caroli
formula [36] given by

T↑↑ = Tr[�L↑Gr
↑↑�R↑Ga

↑↑] (6)

T↑↓ = Tr[�L↑Gr
↑↓�R↓Ga

↓↑], (7)

where T↑↑ represents the transmission function with both spin
up states in the left and right lead and T↑↓ represents the trans-
mission function with opposite spin states in the left/right
lead. �ασ is the level width function with a spin state σ that
broadens the width of energy level and is defined as

�L/R,σ = i(	L/R,σ (ε) − 	
†
L/R,σ (ε)). (8)

Notice that direct inversion of the Hamiltonian in (1) requires
the number of steps to be on the order of O(M3N3), where
M is the number of degree of freedoms within one principal
layer and N is the number of principal layers in the system.
However, with Dyson’s equation, one can obtain the Green’s
function of the system by recursively coupling one principal
layer to another, which only requires one inversion of the
matrix for a principal layer each time. Therefore the total
number of steps required is on the order of O(M3N ). In the
transport calculations, the typical number of N is on the order
of 102. Thus the recursive method is at least four orders of
magnitude faster than the direct inversion.

The interface Green’s function can be obtained with an im-
proved method of the recursive Green’s function [37] by using
the translational invariance of the attached leads. For each
iteration, the Hamiltonian of principal layers and hopping
terms are updated to couple the adjacent even layers. For the

kth iteration, the layers that are the multiple of 2k is included
into the recursive relations, resulting in an exponentially fast
convergent speed. The simulation is conducted under the as-
sumption that the system is in a surrounding vacuum. Both
leads and the scattering region as shown in Fig. 1, are made
of a thin film of Al with 3.6nm thickness. Periodic boundary
conditions are applied with wave vectors sampled along the
transverse direction (in the y direction as shown in Fig. 1),
which achieves convergence within 6%. The other transverse
direction (in the z direction as shown in Fig. 1) is treated in
real space. As a result, surface roughness can be achieved
with one-dimensional surface height. For simplicity, the 1D
surface height is generated by a Gaussian distribution func-
tion modulated by a Gaussian autocorrelation function with
specified RMS height δh and correlation length ξ . Depending
on the roughness of a surface, extra atomic layers equivalent
to twice δh are preserved for atomic protrusions. A 5-Ry
offset potential is added to simulate the vacuum environment
and missing atoms on the surface as indicated in the yellow
region of Fig. 1. To ensure the 5 Ry offset potential effectively
simulates the vacuum, without introducing a repulsive effect
on the surface scattering, a modulation of the onsite-energy
is provided at top and bottom surface layers, maintaining
the electron occupancy of these two surface layers. Grain
boundary scattering is achieved by introducing grains whose
size follows a log normal distribution [38]. Vacancies are
introduced by adding a 1.5 Ry potential offset at the vacancy
sites that is larger than the difference between the bottom of
the band and the Fermi level. It is assumed that vacancies
are randomly and uniformly distributed with a probability
Cvac, which denotes the vacancy concentration. Lastly, surface
reconstruction is investigated with surface corrugations with
varying periods and random period, where a repeated pattern
or random patterns of missing atoms are placed at the surface.
All the quantities are computed by averaging over the number
of defect configurations and the associated errors are deter-
mined from the standard deviation of the relevant quantities.
Note that depending on the distributions followed by different
types of defects, the number of defect configurations used in
the simulations is deliberately chosen such that doubling the
number kept the error within 5%.

III. RESULTS AND DISCUSSION

A. Surface roughness

From the transmission function predicted by the
Green’s function, resistivity can be obtained through
G(E ) = 2e2T (E )/h, where G is conductance. Assuming
that the size effect on the density of states and Fermi
velocity can be neglected and the Drude model for the
free-electron is valid in the system with defects, then the
momentum relaxation rate τ−1

p ∝ ρ and the mean free

path is given by λmfp = √
3/ρge2vF , where the density

of states at the Fermi level g = 2.4×1028 eV−1 m−3 and
Fermi velocity vF = 2.03×106 m/s [39]. The effective
mass of a 3.6-nm-thick system with defects is estimated
to be ∼90% of the predicted values determined by the
SK parameters and hence the free electron assumption
will be accurate to within 10%. Spin diffusion length is
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FIG. 1. Schematic of the transport model in the presence of surface roughness and vacancies. L denotes the left lead and R denotes the
right lead. To simulate the surface roughness, twice of δh is included in both leads and scattering region for surface bumps. The yellow region
indicates the positions with 5 Ry added to simulate the vacuum environment. The white circles represent vacancies, which is achieved with
1.5 Ry onsite-offset potential exerted. Note that the transport model shown here is for visualization and the actual dimensions and scales of
each region may vary.

determined from spin polarization P, which is defined as
P = (T↑↑ − T↑↓)/(T↑↑ + T↑↓) and P ∝ exp (−d/Ls f ) in the
diffusive regime, where Lsd is the spin diffusion length and
d is the channel length. The EY constant β is determined by
β = τs/τp = (Lsd/λmfp)2.

As shown in Fig. 2(a), the resistivity due to surface rough-
ness ρsurf exhibits an Ohmic behavior as expected for the cases
where the root mean squared height δh is below 1.0 nm and the
lateral correlation length ξ = 10 or 20 nm. A minor tunneling
effect occurs when δh is increased to 1.0 nm. The fact that an
increase in resistivity and a decrease in spin diffusion length
correlate to the rougher surfaces demonstrates that the surface
roughness enhances the momentum and spin relaxation.

As shown in Table I, the values of resistivity scale linearly
with δh/ξ , i.e., ρ ∝ δh/ξ . Note that an ∼10% difference in ρ

is observed in Table I between the case where δh = 0.4 nm
and ξ = 10 nm and that where δh = 0.8 nm and ξ = 10 nm,
which have the identical ratio of δh/ξ . But this difference
is within the uncertainty, which increases with the surface
roughness.

δh/ξ can be understood as the average slope of the surface
protrusions. An increase in δh/ξ leads to a steeper slope of the
surface bumps, which will increase the backscattered proba-
bility for electrons and hence a higher resistivity is expected.
This result is consistent with the model for surface roughness
scattering dependent on resistivity proposed in Ref. [40] (by
Zhang et al.) at the sub-10nm regime of thickness. In contrast,
it has been shown that treating surface roughness perturba-
tively in the Kubo linear response theory [23,41] brings about
δh2 dependence in resistivity, i.e., ρ ∝ δh2. This discrepancy

TABLE I. Summary of the effect of surface roughness on electric
and spin transport in a 3.6-nm-thick Al film at T = 0 K.

δ h (nm) ξ (nm) ρ (µ � cm) L sd (nm) β surf

0.4 20 0.42 820 248
0.4 10 0.75 731 630
0.6 20 0.67 693 452
0.8 20 0.83 645 600
1.0 20 1–1.2 583 861a

aDetermined with ρ = 1.1 µ� cm, which is the average value.

arises because the first order perturbation treatment on surface
roughness is not well justified. In particular, at the sub-10-nm
regime of film thickness where surface scattering dominates,
the electron coherence length is comparable to the lateral
correlation length such that the resulting wave function for
the electron scattering is associated with multiple scattering
events and cannot be described independently.

In order to extract the spin diffusion length, the range of
the channel lengths is chosen to consistently correspond to
the values of ln(P) between 0.6 and 1.0, which effectively
avoids a slight curvature at a small channel length in the spin
diffusion plot. The slight curvature is attributed to the contact
resistivity between the leads and the scattering channels and
the transition between the ballistic and diffusive transport. As
shown in Fig. 2(b), the linearity is restored in the chosen range
of the channel lengths. It is observed that βsurf ranges from
∼300 to ∼1000 with the imposed surface roughness contrary
to a relative constant value based on Elliott-Yafet theory.
More specifically, βsurf shows a roughly linear dependence
on δh/ξ as well. The wide range of βsurf arises from the fact
that the spin-flip scattering is more resilient to the variation
of surface roughness compared to the momentum relaxation.
It is found that the spin diffusion length is proportional to
(δh/ξ )−1/2 in contrast to the linear dependence on δh/ξ of
both βsurf and ρsurf as illustrated in Fig. 3. Consequently, the
corresponding spin relaxation rate is invariant with respect
to δh/ξ , and the (δh/ξ )−1/2 dependence of spin diffusion
length is completely attributed to momentum relaxation based
on Lsd = √

Dτ s where the diffusion constant D = 1/ge2ρ

according to the Einstein relation. Considering that the spin
coherence length is appreciably larger than the characteristic
size of surface bumps or dents, it is apparent that within the
channel length of interest, the effective scattering potentials
are the collective outcome of multiple surface features, which
is likely to outweigh the spin flip scatterings induced by each
individual surface feature.

Overall, the values of resistivity are in a reasonable range
compared to the simulated results from Ref. [23] after scaling
with respect to thickness and surface roughness parameters.
Note that the simulations in this article are executed with
one-sided roughness imposed rather than double-sided as in
the actual experiments. Assuming the surface roughness of
top and bottom interfaces are uncorrelated and independent,
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FIG. 2. (a) Resistivity of Al with 3.6 nm thickness vs channel
length under different sets of surface roughness parameters. (b) Spin
diffusion lengths under the same sets of roughness parameters as
above. P is the spin polarization.

the resulting momentum and spin relaxation rates will be ap-
proximately doubled. However, compared to the experimental
results [42–46], in particular, to that from Ref. [4], both resis-
tivity and spin diffusion length are approximately one order
of magnitude removed from the typical values for tN < 25 nm
when accounting for the thickness [47,48] and double-sided
roughness, indicating that the dominant effect on the relax-
ation cannot be attributed to the surface roughness. Typically,
as shown in Table VII, ρ is ∼10 µ� cm, Lsd is between 100
and 1000 nm and β is ∼104 for 10 nm < tN < 20 nm.

B. Grain boundary scattering

Several factors have been investigated for GB scattering.
Grain boundary spacing follows a log-normal distribution and
grain boundaries are treated as potential barriers with heights
and thickness. Two GB thicknesses tGB, 0.4 and 0.8 nm, are
used in our simulations since typical metallic grain boundary

0.02 0.025 0.03 0.035 0.04 0.045 0.05
 h/

0.4

0.6

0.8

1

1.2

 (
cm

)

200

400

600

800

1000
Resistivity

FIG. 3. Resistivity of 3.6-nm-thick film varies with δh/ξ in blue
and the corresponding β in red. The fitting dashed lines are used to
show the linear trend. Note that the larger error bar for δh/ξ = 0.05
is due to the weak tunneling effect.

thickness is ∼0.5 nm [49]. Given that the potential barrier
height of the grain boundary strongly depends on the material
and GB structure, two types of grain boundary barrier VGB

(−0.05 and −0.2 Ry) are being studied, where −0.05 Ry
is a potential drop for a typical GB barrier with impurities
and −0.2 Ry is a potential drop to simulate oxidized grain
boundaries. The relationship between the grain size and ρGB is
also examined with average grain sizes dGB of 50 and 30 nm,
which are realistic values measured in thin films [4]. For
simplicity, only perpendicular grain boundaries are considered
in the simulation.

As shown in Table II and Figs. 4(a) and 4(b), momentum
and spin relaxation rates grow inversely with grain size and
increase with increasing GB barrier and GB thickness, sug-
gesting that momentum and spin relaxation are both enhanced
by the grain boundaries. Note that because the spin diffu-
sion length induced by grain boundaries is approximately two
orders of magnitude larger compared to the surface-induced
relaxation, available computational resources make it impos-
sible to achieve the channel-length range corresponding to the
value of ln(P) that falls between 0.6 to ∼1.0. To be consistent,
a fixed channel-length range is used from 110 to 250 nm. But
compared to the resulting spin diffusion lengths, the chosen
channel-length range is too small to confirm the linear behav-
ior, causing a relatively large uncertainty on the spin diffusion
length.

With the imposed practical GB parameters, the contribu-
tion of GB scattering to the momentum relaxation is generally
at the same order but weaker than that of surface scattering.
In addition, ρGB and LGB are found to be at least one order
of magnitude away from the experimental results as shown in
Table VII. And βGB is almost two orders of magnitude larger
than βsurf in general, indicating that the contribution to spin
relaxation induced by grain boundaries is negligible compared
to that induced by surface roughness with the imposed param-
eters at sub-10-nm thickness. Symmetry can account for the
weak momentum and spin relaxation. With the imposed grain
boundaries, translational symmetry along the traverse and
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TABLE II. Summary of the effect of grain boundaries on electric and spin transport in a 3.6-nm-thick Al film at T = 0 K.

d G (nm) V GB (Ry) t GB (nm) ρ (µ � cm) L sd (nm) β GB

30 −0.05 0.8 0.13 3.6×104 4.5×104

50 −0.2 0.4 0.23 1.6×104 2.8×104

30 −0.2 0.4 0.34 1.4×104 5.5×104

30 −0.2 0.8 0.72 0.9×104 8.6×104

thickness directions are preserved and thus momentum and
spin relaxation are undermined as scatterings can only occur
in the propagation direction. Overall, it is still inconclusive
regarding the exact dependence of the momentum and spin
relaxation on the imposed GB parameters, given a relatively
large uncertainty involved in the spin relaxation and weakly
scattered GB parameters imposed. However, neither surface

(a)

(b)

µ

�

�

�

�

�

�

FIG. 4. (a) Resistivity of 3.6-nm-thick film vs channel length
for different grain boundary parameters. (b) Spin diffusion lengths
for a 3.6-nm-thick channel under the same sets of grain boundary
parameters as above.

scattering nor GB scattering seem strong enough to account
for the experimental results.

C. Vacancies

So far, the effects of both surface roughness and grain
boundary scattering on the properties of electron and spin
transport in an Al thin film are not sufficiently strong to
explain the experimental findings. Thus a new source of scat-
tering from vacancies is studied. 2% vacancies are assumed
to be uniformly distributed throughout the thin film [50]. The
effects of line vacancies and point vacancies with/without sur-
face roughness on electronic and spin transport are simulated.
As shown in Fig. 5(a), a strong tunneling effect occurs in
the presence of line vacancies. However, in the presence of
point vacancies, ρ recovers ohmic behavior, which indicates
that point vacancies are a more realistic assumption, as ex-
pected. Note that the channel length in Fig. 5(a) is extended
to ∼600 nm to demonstrate the strong tunneling effect owing
to the line vacancies and the ohmic character of resistivity for
the point vacancies, i.e, resistivity is independent of channel
length. For readability and accuracy, the resistivity for the case
combining 2% line vacancies and surface roughness is only
plotted to 250 nm. Hence, owing to the ohmic character of
resistivity, the extraction of β with resistivity and spin diffu-
sion length determined at different ranges of channel length is
well-justified for surface roughness and point vacancies used
in the simulation. Yet, one may argue that a weak tunneling
effect presented in the case with surface roughness modulated
by δh = 1.0 nm and ξ = 20 nm [Fig. 2(a)] can result in a
channel-length dependent β. However, this case is only in-
cluded as a marginal case to show the strong scattering effect
of surface roughness considering that twice of δh could reduce
the sample thickness to 1.6 nm.

Based on the combined resistivity from 2% point vacan-
cies and surface roughness, a 3.7-nm mean free path can
be obtained for the 3.6-nm-thick sample in the presence of
a rough surface with δh = 0.8 nm and ξ = 20 nm, which
is comparable to the experimental measurement [4]. Notice
that both spin and momentum relaxation rates are smaller in
the presence of point vacancies than line vacancies, which is
expected as the vacancies along the traverse direction enhance
the electron reflections and spin-flip events. As shown in
Table III, the resistivity with the presences of both surface
roughness and point vacancies is the sum of the resistiv-
ity from each individual source, i.e., ρpt.vac.+surf. ≈ ρpt.vac. +
ρsurf., which is consistent with Matthiessen’s rule within 5%.
Compared to the resistivity induced by surface roughness,
under reasonable assumptions, vacancy scattering is dominant
over surface scattering for momentum relaxation. As shown in
Table IV, a linear vacancy concentration dependence is found
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FIG. 5. (a) Resistivity of 3.6-nm-thick film vs channel length
with 2% line vacancies (with surf.1) in purple (blue) and 2% point
vacancies (with surf.1) in yellow (red); surface 1 is modulated by
δh = 0.8 nm and ξ = 20 nm. Note that the case with the 2% line
vacancies and surface 1 is only plotted to 250 nm because the strong
tunneling effect makes the transmission function too small to acquire
an accurate resistivity. (b) Spin diffusion lengths for a 3.6-nm-thick
channel under the same condition as above.

in ρvac when the vacancy concentration is below 1.0%, which
can also be predicted analytically from the Green’s function
method as in Ref. [51]. In the diffusive regime, resistivity is
inversely proportional to the product of the channel number M
across the Fermi level and an ensemble average transmission
function T . For a system with uniformly and independently
distributed vacancies of a concentration Cvac, the correlation
function for the vacancy scattering potential � between any
two sites is

〈�i,n,s�i′,n′,s′ 〉 = δi,i′δn,n′δs,s′
(
Cvac�

2 − C2
vac�

2
) + C2

vac�
2,

where i, n, and s are the indices for the position along the
transverse and longitudinal directions respectively. Applying
Dyson’s equation and collecting the terms linear in the chan-

TABLE III. Summary of the effect of 2% vacancies on spin
transport in an Al film with 3.6 nm thickness at T = 0 K.

Relaxation mechanism ρ (µ � cm) L sd (nm) β vac

line vacancies nonohmic 270 -
line vac. + surf.1a nonohmic 233 -
point vacancies 4.95 353 6400
point vac. + surf.1 5.83 290 6000

aSurface roughness modulated by δh = 0.8 nm and ξ = 20 nm.

nel length L, the reflection amplitude

〈|rk,k′ |2〉 = L
∑
n,s

Cvac(1 − Cvac)�2

×[|φk (n, s)|2|φk′ (n, s)|2/vkvk′],

where k denotes the transverse mode, vk is the velocity associ-
ated with the kth mode and φk (n, s) denotes the wave function
for an electron state |n, k, s〉. Assuming

∑
k,k′ 〈|rk,k′ |2〉 � 1 as

in the system with dilute vacancies,

ρ ∝
∑
n,s

Cvac(1 − Cvac)�2[|φk (n, s)|2|φk′ (n, s)|2/vkvk′ ].

Given that Cvac � 1,the linear dependence on Cvac can be
seen. As the linear dependence on the vacancy concentration
is derived from the independence of the vacancy distribu-
tion, when the vacancy concentration increase above a certain
value, the associated scattering potential starts to overlap and
interact, causing the deviation from linearity. This deviation
from the linear dependence is observed when Cvac is above
1.0% as illustrated in Fig. 6 and the better quadratic fit-
ting suggests that the vacancy overlapping matters as Cvac

increases above 1.0%. Note that the quadratic fitting equa-
tion given in the form of y = 284.2x(1 − 6.56x) rather than in
the form of Cvac(1 − Cvac) as predicted, suggests that the inter-
action between vacancies is stronger than the prediction and a
higher order of expansion in Dyson’s equation is required to
correctly describe it.

Note that the different effects on the momentum relaxation
can be attributed to the nature of isolated defects and clustered
defects. The features of surface roughness can be understood
as the clusters of multiple vacancies, forming an effective
scattering potential locally which is attenuated by the inter-
action of the local scattering potential associated with each
vacancy. Therefore the resulting ρsurf is characterized by δh/ξ .
In contrast, for the system with dilute vacancies, the average
intervacancy separation dvac is of comparable magnitude as ξ

or longer so that it is safe to consider that each scattering event
associated with each isolated vacancy is independent and ad-
ditive, leading to ρvac ∝ Cvac. Hence, momentum relaxation is

TABLE IV. Summary of resistivity induced by vacancies at
tN = 3.6 nm and T = 0 K.

C vac 0.1% 0.2% 0.4% 0.8% 1.0% 2.0%

ρ (µ� cm) 0.32 0.62 1.17 2.13 2.61 4.95
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µ

FIG. 6. Resistivity of 3.6-nm-thick film varies with Cvac in blue;
the linear fitting on Cvac in a red dashed line and the quadratic
fitting on Cvac in a yellow dashed line with the fitting equation
y = 284.2x(1 − 6.56x).

more susceptible to point vacancy than surface roughness in
the thin film regime.

As given in Tables III and I, the spin diffusion length due
to vacancies is generally ∼2 times shorter than that induced
by surface roughness at tN = 3.6 nm, while the corresponding
resistivity is more than 5 times larger. Consequently, βvac is
one order of magnitude larger than βsurf . This reflects the dif-
ference between bulk and surface defects. Generally, a surface
band is narrower than a bulk band within a system which
leads to a smaller electron level spacing or an energy gap �E .
Thus a larger βvac is expected, following β = (�E/λSOI)2

as predicted by Elliott-Yafet theory. This reflects the energy
broadening due to spin flip scattering being suppressed by the
surface energy spacing.

D. Surface reconstruction

Spin and momentum relaxation induced by surface re-
construction has also been studied. A repetitive indentation
with a given period is repeatedly placed at the top surface
to simulate the surface reconstruction, equivalent to 50%
missing atoms at the surface. To investigate the combined
effect of point vacancies and surface reconstruction, 0.1%,
0.4%, 0.8%, and 1.6% point vacancies are included along
with surface reconstruction. It is observed that the presence of
surface reconstruction and point vacancies enhance both spin
and momentum relaxation and the simulation results become
similar to the experimental measurements. Note that constant
resistivity is observed as shown in Fig. 7(a). Thus it is accurate
to use the resistivity determined at 250 nm as representative
to extract β. As shown in Table V, a nearly zero resistivity
indicates that electron scattering due to the repetitive surface
corrugation is negligible owing to little symmetry breaking
in the propagation and transverse directions. The possibility
of ballistic transport for periodic surface corrugations cannot

(a)

(b)

µ

�

�

�

�

�

�

�

FIG. 7. (a) Resistivity of 3.6-nm-thick film versus channel length
in the presence of periodic surface corrugations/random surface cor-
rugations and 0.1%, 0.4% point vacancies. (b) Spin diffusion lengths
for a 3.6-nm-thick film with varying widths of surface corrugation
and varying vacancy concentration.

be ruled out, although the signature trend as demonstrated in
Fig. 4 in Ref. [52] is not observed. Given the nearly zero resis-
tivity, the associated spin relaxation can be explained by the
Rashba effect [53,54] originating from the symmetry breaking
in the thickness direction due to the surface corrugation such
that the intraband scattering matrix element is nonzero, i.e.,
causing the intraband spin scattering.

To investigate the effect of periodicity of surface recon-
struction, random corrugations are introduced on the surface
to replace the repetitive surface corrugations such that the re-
sulting width of the average surface plateau is 0.8 nm without
periodicity. As shown in Table V, in the presence of 0.1%
vacancies, comparing the case with 0.8 nm-width repetitive
surface corrugation to that with random surface corrugations,
the resulting resistivity is increased ∼300% from 0.68 to
1.95 μ� cm but the associated spin diffusion length merely
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TABLE V. Summary of the effect of surface reconstruction on
electric and spin transport in an Al film with 3.6 nm thickness at
T = 0 K.

δ w (nm) C vac% ρ (µ � cm) L sd (nm) β recon+vac
a

0.4 0 0.06 1020 7.9
0.4 0.1 0.47 377 66
0.8 0.1 0.68 332 107
0.4 0.4 1.69 198 235
0.8 0.4 2.3 202 443
0.4 0.8 3.02 175 585
0.4 1.6 5.3 166 1620

RSCb 0.0 1.39 650 1710
RSC 0.1 1.96 325 850
RSC 0.4 2.96 245 1079
RSC 0.8 3.70 210 1265
RSC 1.6 5.60 190 2371

aThe extraction of β is based on its definition, which does not neces-
sarily imply EY mechanism is responsible for the derived value.
bRSC symbolizes random surface corrugations.

decreases ∼2%. This suggests that the periodicity of surface
corrugation breaks the connection between momentum relax-
ation and spin relaxation as indicated by the change of β

in Table V. Surface periodicity effectively mitigates the mo-
mentum relaxation owing to symmetry such that the electron
momentum corresponding to the width of the surface corruga-
tion is robust against backscattering, leading to a consistently
smaller resistivity induced by periodic surface corrugations
(PSC) compared to that induced by random surface corruga-
tions (RSC).

In addition, a clear departure from Matthiessen’s rule of
resistivity is observed. For example, the sum of ρvac with
0.1% vacancies (from Table IV) and ρ due to random surface
corrugation as in line 8 of Table V mispredicts the combined
resistivitiy by ∼15%. In contrast, increasing the concentration
of vacancies further breaks the symmetry along the propaga-
tion direction, leading to the increase in resistivity and the
effective removal of the deviation from Matthiessen’s rule. For
instance, Matthiessen’s rule accurately predictes the resistivity
within 5% for the case of 0.8% vacancies and RSC.

Furthermore, the introduction of point vacancies results in
further amplification of spin relaxation as shown in Fig. 7(b),
which again is attributed to loss of inversion symmetry along
the thickness direction and propagation direction. The result-
ing spin diffusion lengths for the cases with 0.4% vacancies
or above are approximately 5 times shorter than the case with
periodic surface corrugations alone. Interestingly, 0.1% va-

TABLE VI. Summary of anisotropy of spin transport in an 3.6-
nm-thick Al film with 0.4nm periodicity of surface corrugation and
0.8% vacancies or 2% vacancies alone at T = 0 K.

w = 0.4 nm, C vac = 0.8% C vac = 2.0%

Lsd,x (nm) 490 492
Lsd,y (nm) 207 475
Lsd,z (nm) 175 353

µ

FIG. 8. Lsd vs ρ−1 for all the cases shown in Table V except the
case with PSC alone. The fitting equations are y = 115.2x + 143 for
vacancies and PSC in the blue dash line and y = 841x − 13.3 for
vacancies and RSC in the red dash line. The associated βRSC+vac. is
determined from the slope.

cancies brings about a spin diffusion length 2.5 times shorter
(∼1000 to ∼400 nm), but doubling from 0.4% to 0.8% va-
cancy concentration only decreases the spin diffusion length
by ∼10% as shown in Table V. Similar to the enhancement of
momentum relaxation owing to the induction of random cor-
rugations, this suggests that the inefficacy of periodic surface
corrugations in relaxing spin momentum is easily broken by
any kind of randomness in the system, even 0.1% vacancies.

Following EY theory, Lsd = √
3β/ρg(EF )e2v2

F . As shown
in Fig. 8, a fairly good fitting based on the EY theory in red
with a reasonable βRSC+vac. (1434 ± 138) suggests that EY
prediction is valid for the cases with RSC. However, for the
cases with PSC and vacancies, the presence of the positive
constant term in the blue dash line violates the EY mechanism
which predicts a linear relation between Lsd and ρ−1 with a
constant β and a zero constant term. This can be attributed to
the different responses to the symmetry breaking between mo-
mentum relaxation and spin relaxation, which closely depends
on the scattering length scale and concentration of random
defects. In the presence of PSC, the length scale associated
with symmetry breaking is determined by the average dis-
tance of vacancy separation, which is comparable or longer
than the typical length of momentum relaxation (∼10 nm)
depending on the vacancy concentration. Thus symmetry can
be better preserved at the typical scattering length of mo-
mentum relaxation (∼10 nm) than that at the typical length
of spin relaxation (∼300 nm) such that electron transport
within the typical length of momentum relaxation is nearly
ballistic owing to PSC, while the spin transport between the
spin scatterings is diffusive.

In contrast, the introduction of random surface corruga-
tions breaks the translational symmetry at a much smaller
length scale such that symmetry breaking is comparable at
both length scales of momentum relaxation and spin relax-
ation. Note that the positive correlation between βPSC+vac. and
Cvac as shown in Table V could indicate that as the vacancy
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TABLE VII. Summary of the experimental results on spin trans-
port in Al-NLSV at T = 4 K (adapted from Ref. [17]).

tN (nm) ρ (µ � cm) L sd (nm) β Ref.

6 33.3 200 9.0×104 42
8.5 9.5 70 700 4
10 9.1 420 2.95×104 42
12 9.52 455 3.80×104 43
15 2.5 660 0.55×104 44
20 5.2 450 1.11×104 45
20 4 850 2.34×104 46

concentration increases, a non constant β is attributed to
the reduced contribution of surface spin-flip scattering [55],
which has a larger spin-flip probability (1/β) than that of bulk
scattering. This is still inconclusive, however, as separating
surface scattering from bulk scattering cannot be achieved
accurately, limited by the departure from Matthiessen’s rule.
In addition, a clear overlap is observed between PSC and RSC
at a larger vacancy concentration shown in Fig. 8, suggesting
the Elliott-Yafet prediction is expected to recover when the
bulk scattering dominates. This is also indicated by the rela-
tively small difference between β1.6%,PSC (1620) and β1.6%,RSC

(2371).
Compared to the cases with the presence of both surface

roughness and 2% point vacancies, the combined effect of
point vacancies and 0.4nm-width surface corrugations gives
rise to ∼2 times shorter spin diffusion length and therefore
approximately one order of magnitude smaller β when the
associated resistivities are of comparable magnitude.

Although surface corrugation is a special case of surface
reconstructions, it reflects the significance of periodicity in
momentum and spin relaxation, which can be extended to
other surface reconstructions that have localized periodicity.

E. Anisotropy of spin relaxation

So far, spin relaxation has been studied for the spins
along z direction, i.e., thickness direction as shown in Fig. 1.
By rotating the spin basis of Hso to transverse directions,
anisotropic spin relaxation is explored with two representative
cases: A system with surface corrugations with the periodicity
of 0.4 nm and 0.8% point vacancies and a system with 2%
vacancies. As shown in Table VI, clearly the largest differ-
ence in spin diffusion lengths distinguishes the x direction
(direction of surface corrugation periodicity) from the others.
It is traceable to the surface corrugations: it vanishes within
the film plane (x and y directions) when the corrugation is
removed. There is also a second smaller anisotropy between
the direction perpendicular to the plane (z) and parallel to
the plane as one would expect from Rashba arguments as
presented in Ref. [56]. The spin diffusion length for x spins is
always found to be the largest, in qualitative agreement with
the experimental Ref. [56] which, however, has edge effects
not included in the periodically connected thin film used in
this work.

F. Spin hot spots

To check the effect of spin hot spots, the variation of spin
polarization with respect to the k vectors in the presence of
surface roughness is examined. The outliers in spin polar-
ization appear in a ratio of 1/20. The total transmission for
the outliers are about half of that for regular k points. This
implies that even for the 50% mixing of spin when P = 0,
the removal of those outliers will only increase P by ∼5%.
Thus the inclusion of those outliers does not contribute much
to the spin flip scattering that significantly changes an order
of magnitude of spin relaxation time. It makes sense because
the presence of surface roughness breaks the space inversion
symmetry and removes the contribution of spin hot spots as
it effectively lifts the degeneracy of spin states and makes
the band structure around the Fermi level smoother. Similarly,
other defects which serve to break the space inversion sym-
metry can also smear out the spin hot spots, such as grain
boundary, vacancies or surface corrugation.

IV. CONCLUSION

In this paper, the effects of surface roughness, GB scatter-
ing, vacancies and surface reconstruction on the momentum
and spin relaxation are investigated in a Al thin film with
tN = 3.6 nm at T = 0 K. Point vacancies are found to be
the dominant contribution to the momentum relaxation as the
resulting resistivity is similar to experimental measurements,
while the resistivity induced by the other defects are at least
one order of magnitude smaller. Spin relaxation is dominated
by the combined effect of surface reconstruction and point
vacancies, which leads to Lsd =∼ 200 nm and β � 1000 with
a reasonable assumption of vacancy concentration.

It has been observed that the presence of surface corruga-
tion results in a clear departure from Matthiessen’s rule. The
violation of the EY prediction for β is found in the presence of
periodic surface corrugations and vacancies. This is attributed
to the different responses to symmetry breaking between mo-
mentum relaxation and spin relaxation as symmetry breaking
is not comparable at both length scales of momentum and
spin. In addition, a strong anisotropy of spin relaxation for the
spins parallel to the propagation direction is found, relevant to
surface corrugations.

It has been found that the spin diffusion length induced
by surface roughness is proportional to (δh/ξ )−1/2 as op-
posed to (δh/ξ )−1, which can be attributed to the interference
between multiple surface features. A linear vacancy concen-
tration dependence is found for resistivity when the vacancy
concentration is below 1.0% and a departure from linearity
is attributed to the interaction between the vacancy scattering
potentials.
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