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Forces on dislocations due to strain gradients: Theories and two-dimensional simulations
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Dislocations are topological defects known to be crucial in the onset of plasticity and in many properties of
crystals. Classical elasticity fails to fully explain their dynamics under extreme conditions of high gradients of
strain and small scales, which can nowadays be scrutinized. Previous works have proposed a type of force acting
on dislocations when they are in the presence of strain gradients, the so-called core force. Here we designed a
two-dimensional atomistic simulation through which we confirm the existence of this force, probe its properties,
and measure its coefficients. The results of our simulations agree with the assumption that the core energy is
the origin for the core force, but the coefficients of this force cannot be predicted by the approaches previously
proposed. We show that the measured coefficients can be used to obtain the core energy in some systems such as
ours. This way of evaluating the core energy can be compared to other existing approaches. Moreover, we show
that the core force implies the existence of nonreciprocal interactions between dislocations. We believe that a
correct consideration of the core force can be considered in mechanical modeling and in some theories trying to
explain strange phenomena in plasticity.

DOI: 10.1103/PhysRevB.106.224105

I. INTRODUCTION

The idea of dislocation defects was first conceived math-
ematically [1] and later applied in the context of plasticity
[2], by considering the movement of defects in a periodic
lattice. It soon became a vital feature of investigation in real
three-dimensional (3D) crystals [3–5]. Since the bubble-raft
model [6], two-dimensional (2D) crystals have also been used
as simple models to study dislocation dynamics (e.g., using
colloids [7], complex plasmas [8], and vortices in supercon-
ductors [9]).

The individual dislocation movement is generally assumed
to be governed by some well-known mechanisms: The Peach-
Koehler (PK) driving force [10] and the Peierls-Nabarro
barrier [11,12] aside from other possible motion’s resistance,
climb, and diffusion mechanisms [4,5,13,14]. These forces
have been widely used to model plastic deformations in dis-
crete dislocation dynamics (DDD) simulations [5,14], where
the exact locations of all atoms can be ignored and one only
needs to consider the dynamics of dislocation lines, in 3D, or
points, in 2D. The validity of such mesoscale approach relies
on the forces and mobility law that it considers.

The mechanisms cited above cannot fully explain the
full range of new plastic phenomena with technological im-
pact observed, e.g., in micron and submicron scales [15–19]
(with a “smaller is stronger” trend) and during shock load-
ings [20–25]. These are situations where high gradients of
strain and strain rates appear. As a consequence, several phe-
nomenological and mechanism-based models have been de-
veloped, including corrections to the mobility law [26], non-
local elasticity [27,28], and strain gradient plasticity [29–33].
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Clouet [34] observed that the usual mathematical repre-
sentation for the origin of the so-called core field leads to a
fundamentally different type of driving force on a dislocation.
It is a force proportional to the derivatives of the background
strains, which are the ones generated by all sources of strain
but the dislocation itself. Such type of force has been called
the core force and can contribute, in a fundamental manner,
for the emergence of strange phenomena when high gradients
of strain are present. Clouet’s theoretical framework predicted
a relation between the coefficients of the core force and the
ones of the core field.

Another approach for the core force was made by Iyer et al.
[35], considering that the core force can be viewed as orig-
inated from the interaction of the core with the background
strains. They developed an electronic-structure evaluation of
the core energy, in its standard definition, for different back-
ground strains. They used this to predict the coefficients of
the core force that can act on the dislocation. But they do not
discuss about the ambiguity due to the arbitrariness of the core
radius present in the standard core-energy definition.

The aim of our work is to broaden current knowledge about
the core force. In spite of the previous theoretical works, such
type of force has not been directly observed and identified,
neither through simulations nor through experiments. It is
usually much smaller than PK and to identify it one needs
the precise knowledge of both the strains and the resulting
force on a dislocation. To meet this requirement, we design, in
this work, a 2D system where these variables are completely
known. We simulate it, demonstrating the existence, probing
the properties, and measuring the coefficients of the core force
on edge dislocations.

By analyzing simulations and theories, we found that the
current theoretical proposals for the core force are insufficient
to explain or predict the results of our 2D simulations. This
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is summarized in Sec. V C and shown in table. We observed
that, e.g., Clouet’s approach has quantitative problems and the
one used by Iyer et al. is ill defined.

As another discovery, we observe that, in systems with
scale invariance such as the one in our simulations, the core
energy can be obtained directly from the core-force coeffi-
cients. A definite value for this quantity is obtained although
the core energy is usually defined in an ambiguous manner.
This unambiguous evaluation can be compared with other
studies which need or predict the existence of a specific core
energy with physical meaning, such as the Kosterlitz, Thou-
less, Halperin, Nelson, and Young (KTHNY) theory for 2D
melting [36] and the Kanzaki force approach to represent
crystalline defects [37].

The next section introduces some basic assumptions about
the core force and lists its properties. Interesting remarks are
made regarding interactions between dislocations, where size
effects and nonreciprocal interactions that appear in the sys-
tem. In Secs. III and IV, we present the setup and the results
of our 2D simulations, respectively. Finally, in Sec. V, we
compare the simulation results with the theoretical proposals.

II. SOME ASSUMPTIONS ABOUT THE CORE FORCE

Our work investigates the core force through simulation
and theory. By “core force” we mean the phenomenon of
background strain or stress gradients being responsible for a
driving force on dislocations. Before going further, we make
some initial assumptions about this force and discuss some
of their consequences. They are intuitive guesses that will be
probed in the following sections, via simulations.

A. Effective existence of the core force

Although previous works [34,35,38] have predicted the
core force, a direct observation (i.e., via simulation or exper-
iment) is needed in order to confirm its effective action. This
is because such works did not investigate how the background
strain gradients can affect barriers to movement (such as the
Peierls-Nabarro or a possibly new one) which could, in prin-
ciple, strengthen when in the presence of them.

In fact, it is known that the PN barrier is affected by the
background strain [39,40]. Thus, if this barrier is also pro-
portional to the background strain gradients, it can cancel out
or just weaken the effective intensity of the core force. In our
work, we performed simulations that can probe if the observed
core force is effectively a driving one, i.e., capable of driving
a dislocation.

B. Driving-force definition and the separation
between PK and core forces

The driving force on a dislocation fdisl is defined through

δEdisl = −fdisl · δrd , (1)

where δEdisl is the variation of the total dislocation energy
when this defect moves by δrd . Classical elasticity evaluation
of Eq. (1) leads to the so-called Peach-Koehler force fPK [10].
We consider that the core force fcore is not a modification of
the PK force, but another type of driving force to be added,

such that the total driving force on the dislocation is

fdisl = fPK + fcore. (2)

Moreover, while fPK depends only on the background strains
ε

bg
i j , we consider that fcore depends only on the derivatives (i.e.,

first gradients and possibly higher-order ones) of ε
bg
i j .

C. Possible properties of the core force

Our simulations are done in the regime of small strains and
small strain gradients. This allows us to probe some properties
of the core force. We expect that, in this regime, it has the
linearity property, i.e.,

fcore = fcore
(∇ε

bg
i j ,∇∂kε

bg
i j , . . .

)
= Mi j∇ε

bg
i j + Mki j∇∂kε

bg
i j + · · ·, (3)

where we use the Einstein summation convention. Equa-
tion (3) is an intuitive guess about the core-force behavior. In
this section, we list the main properties expected for the core
force within this guess.

Within the regime of small deformations, the linearity
property is a priori expected for the elasticity and plasticity
phenomena. The core force would then be a linear response
to the background strain gradients, i.e., linearly dependent on
them. In fact, we expect that the core force is perturbatively
well behaved.

We assume that the tensor coefficients (Mi j , Mki j , ...) are
constants of the crystal, depending only on the glide direction.
Thus, this force obeys the uniqueness property. In other words,
the uniqueness means that fcore depends only on the present
crystal configuration and not on its history. It does not depend
on where the dislocation was before, for example.

The given core force is also symmetric under Burgers
vector inversion. This is not the case for the PK force, which
has an explicit dependence on the Burgers vector b, given by
[4,13]

fPK = fPK
(
ε

bg
i j

)
= σbg · b × ẑ, (4)

where σ
bg
i j = σ

bg
i j (εbg

i j ) is the background stress.
Finally, note that the derivatives in Eq. (3) are evaluated

at the dislocation position. Thus, fcore satisfies the locality
property. In other words, the force depends only on the crystal
configuration very near the dislocation. This is expected if
such force is indeed originated from the interaction between
the background and the dislocation core structure.

D. Summary of the properties to be probed by simulations

The previous assumptions are yet to be confirmed. In
summary, atomistic simulations or experiments are needed in
order to probe the following properties of the force: (i) effec-
tive driving action, i.e., the capability to move a dislocation
through this force; (ii) linear dependence on the background
strain derivatives; (iii) uniqueness; (iv) symmetry under Burg-
ers vector inversion; (v) locality. The item (i) seems to be the
most obvious one, but it still needs to be verified. In Sec. II A
we comment about the importance of verifying it.
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FIG. 1. Sequence of equilibrium configurations inside the same
part of the system where we can see a dislocation that glided due
to the action of the core force induced by ∂xε

bg
xx . On the right side

of the figure, the neighborhood of the particle marked by a green
cross is evidenced. In (a), the dislocation, represented by the particles
with 5 (red) and 7 (blue) neighbors in the Voronoi tessellation, is in
equilibrium. Here, a small PK force pointing to the left is counterbal-
anced by a core force pointing to the right. The light blue shown in
the background illustrates the variation in εbg

xx , increasing in the right
direction. (b) As we increase the strain gradient in the background
of the dislocation position, the defect moves to the right, reaching a
new position where the strain gradient is smaller and the core force
equals PK again, and then it equilibrates. As we can see from the
change in the region around the particle marked by a green cross, the
dislocation glide induced a negative resolved shear deformation (i.e.,
−εbg

xy).

Our simulations presented in this paper have observed dis-
locations gliding due to strain gradient forces, as shown in
Fig. 1, where all the properties (i)–(v) are satisfied. In Sec. V,
we show how the confirmation of each of these properties
can be used to discard some theoretical proposals for the core
force.

E. Consequences for dislocation interactions:
Size effects and nonreciprocity

The force between dislocations can be obtained from the
background strains that they induce on one another. For the
classical linear elasticity theory, the leading contributions to
the deformation fields induced by a dislocation are exactly
solvable and are called the Volterra solutions [4,13]. Within
such theory, the PK and core forces on a dislocation at rα due
to another one at rβ behave as

fPK
β→α ∝ 1/|rα − rβ | and fcore

β→α ∝ 1/|rα − rβ |2, (5)

respectively, where we considered the core force only up to
first gradients. If we consider the PK force alone, the resulting
power-law dynamics has no intrinsic length scale and obeys
the so-called similitude principle, leading to a dislocation
dynamics that is qualitatively independent of size.

With the additional consideration of fcore, the total inter-
action loses the single power-law character and an intrinsic
length scale appears, leading to a fundamental origin of size
effects. Another type of correction to the classical PK inter-
action which behaves similarly to the core force (i.e., with
∝1/|rα − rβ |2), but with a different angular dependence, is
the PK force due to the core-field strain and has been investi-
gated as a possible origin of size effects [41,42].

For the dislocation interactions in Eq. (5), an interesting
analysis can be made for the case of a system with identical
dislocations. In this case, we have

fPK
β→α = −fPK

α→β and fcore
β→α = fcore

α→β, (6)

which are consequences of the Volterra strain prop-
erty εV

i j (�r) = −εV
i j (−�r) ⇒ ∇εV

i j (�r) = ∇εV
i j (−�r). This

means that the core force provides nonreciprocal interactions
between the dislocations. It can be shown that the PK force
due to the core-field strain also has this nonreciprocity. Such
type of interaction violates Newton’s third law and has been
extensively studied recently [43–46]. When two “particles”
interact like this, they can, e.g., drive each other indefinitely
through the system, under some conditions.

III. SIMULATION OF THE CORE FORCE

In this section, we discuss the theoretical motivations for
the choice of our simulation model. In Sec. III A, the basic
theoretical equations that we use are shown. These are the
classical elasticity equations, which give well approximate
predictions for the background strains in the regime of small
deformations, and the proposed equation for the core force. In
Sec. III B, we comment some precautions that, if taken, allow
us to obtain good numerical precision in our investigations.
Finally, in Sec. III C, we detail the simulation setup that we
chose to use and comment its advantages. The results of the
simulations are shown in the next section.

A. Basic equations

When the particle positions in a crystal are displaced,
i.e., r → r + u(r), there is an energetic change due to
the interparticles’ interactions. In the 2D classical elasticity
approximation, the elastic potential energy due to the dis-
placement field u(r) in the presence of a body force density
field f (r) is given by [13]

Eel [u(r)] =
∫ [

1

2
Ci jklεi j (r)εkl (r) − fi(r)ui(r)

]
d2r, (7)

where εi j = (∂iu j + ∂ jui )/2 are the strains. For the triangular
lattice, the elastic constants are Ci jkl = Bδi jδkl + μ(δikδ jl +
δilδ jk − δi jδkl ), where B and μ are the bulk and shear moduli,
respectively. The equilibrium condition δEel/δui = 0 gives

Ci jkl∂ j∂l uk + fi = 0 (8)

and the stress-strain relation is σi j = Ci jklεkl .
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The Burgers vector b of a dislocation at rd is defined as
b = ∮

du, for small counterclockwise closed curves enclosing
rd . For a dislocation with b = b x̂ in a triangular crystal, the
glide component (i.e., the x component) of the driving force
(2) on it is given by

f disl
x = 2μbεbg

xy + Mi j∂xε
bg
i j + Mki j∂x∂kε

bg
i j + · · ·, (9)

where f PK
x = 2μbεbg

xy is the PK force, as obtained from Eq. (4)
for this case, and the other terms of the right-hand side repre-
sent the core force f core

x of Eq. (3). In Eq. (9), the strains and
their derivatives are evaluated at the dislocation position.

B. Numerical precision in the measurings
of the core-force properties

Quantitative investigations about the influence of the back-
ground strain derivatives on dislocation dynamics are not
straightforward to do. They obviously require the precise
knowledge of the background strain fields on each dislocation
and of the core force acting on it.

In this section, we explain how to obtain, in simulations,
precise measures of the dislocation position, the background
strains on it, and the resulting core force.

1. Dislocation position

In order to study the glide movement, we need a correct
way to identify the position of a dislocation along its glide
line. By showing Voronoi diagrams of crystal configurations,
Fig. 2 illustrates how such movement occurs.

In Fig. 2(a), a PK force to the left is counterbalanced
by a core force to the right. Then, by slightly increasing
the background strain gradient at the dislocation position,
we increase a little the core force. As a consequence, the
dislocation “moves” to the right until it reaches a position
where the forces equilibrate again. The resulting configuration
is shown in Fig. 2(b). The “movement” turns out to be a
tilting of the line connecting the disclination particles, which
are the particles that represent the dislocation in a Voronoi
tesselation and have 5 (red) and 7 (blue) neighbors. On the
right side of Fig. 2, the line connecting disclination particles
is compared with a vertical dotted line in order to show the
tilting. By comparing Figs. 2(a) and 2(b), we can hardly say
how much the dislocation “moved” in the glide direction (i.e.,
in the x direction). The unique visible difference is that the
disclination particles are vertically aligned in Fig. 2(a) and
tilted to the right in Fig. 2(b). By repeating the procedure,
increasing the core force and waiting equilibration, we obtain
the configuration in Fig. 2(c). In this case, there occurred
a change in the disclination particles but they continue to
be tilted (this time to the left). Repeating of the procedure
again now tilts the disclinations to the right, as shown in
Fig. 2(d).

From Figs. 2(a) to 2(d), the dislocation moved. If we define
the dislocation position as simply the mean position between
the disclination particles, the dislocation movement would be
discontinuous, having a hop from Fig. 2(b) to 2(c). But the
system configuration changes continuously. There may be a
way to define the dislocation position such that it changes
continuously during the glide. This would be a more ap-

FIG. 2. Steps of an adiabatic dislocation glide in the x direction,
as observed in a simulation. The Voronoi diagrams have the same
coloration as in Fig. 1. In (a), a PK force to the left is counterbalanced
by a core force to the right. In the subsequent steps, we increase the
core force by slightly increasing the background strain gradient at the
dislocation position and wait till the configuration equilibrates.
The resulting configuration of each step is shown in (b), (c), and (d).
The dotted vertical line on the right is a guide to the eye in order to
show the “tilting” of the dislocation at each step of the glide.

propriate definition to be used when comparing simulation
results with a theory (which is continuous). Without knowing
such definition, only in cases as the one in Fig. 2(a) we can
precisely locate the dislocation position along the x direction,
due to the vertical alignment of the disclinations.

In our simulations, we choose to consider only the situ-
ations in which the disclinations are aligned perpendicularly
to the glide line. Therefore, in the glide of Fig. 2, we would
consider the configuration 2(a) and a configuration that is
between Figs. 2(c) and 2(d) and for which the vertical align-
ment happens. The disclinations’ positions then provide the
exact dislocation position along the glide line. When they are
not aligned in this way, we have some uncertainty about the
dislocation position. Our investigations need an uncertainty
much smaller than the lattice constant.
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2. Background strains

A direct observation of the crystal configuration around
a dislocation provides the total strain fields. These are the
resulting deformations generated by all the sources of strains,
such as the dislocation itself, other defects, boundary condi-
tions, external body force fields, etc.

In order to evaluate only the background strain fields on a
given dislocation (i.e., the ones generated by all the sources
except by the dislocation itself), we need to use a theoretical
framework that gives how each source (or group of sources)
of strain acts. This can easily be done if the system is well
described by the classical linear hyperelasticity (or simply
classical elasticity) theory of elastic deformations. This is the
case for our simulations, which occurs in the linear regime.

3. Core-force magnitude

In general, the PK and the core forces act simultaneously
to drive the dislocation. Classical elasticity can be used to
evaluate the PK force with good approximation. Resistances
to movements may also be present. By knowing the PK and
the resistances and by measuring the total force, we can obtain
the core force.

But, without knowing the correct mobility law of disloca-
tion dynamics in the system, we cannot measure the total force
on the dislocation by measuring its movement, unless the sys-
tem is in static equilibrium, and then the total force is certainly
zero. This also avoids the consideration of nonequilibrium
effects in the theory. Also, if the resistances to movement are
negligible, equations simplify even more and, in equilibrium,
we have that the core force is simply the negative of the PK
force.

Our simulations use equilibrium situations of a system with
negligible resistances to movement. In these cases, we use
classical elasticity to evaluate the PK force and then obtain
the core force, which is simply the negative of fPK.

C. Simulation setup

In our simulations, we use a model system in which we
can probe all the properties of the core force (listed in Sec. II)
and also measure its magnitude. It takes the precautions com-
mented in the previous subsection for having better precisions
in the numerical results. It also enables us good control over
the system, allowing us to probe the core-force properties. In
the following, we describe our system and its advantages in
having good knowledge and control over the strain fields and
the dislocation positions.

In Sec. III C 1, we tell the pair interaction between the
particles and explain how its choice facilitates us to probe
properties (i), (ii), (iii), and (v) of Sec. II. Then Secs. III C 2
and III C 3 describe the boundary conditions and the disloca-
tions’ configuration, and how they facilitate the measure of
the core-force magnitude and the check of properties (ii), (iv),
and (v). These properties are also more easy to check with the
the external body force described in Sec. III C 4.

1. Interparticles’ interactions

The simulations have particles with power-law repulsive
interactions Vp(r) = U0(a0/r)12. Interactions like this have

been used as a simple model in many situations, including
dislocation studies [47,48]. In Sec. I of the Supplemental
Material (SM) [49], we derive analytical expressions for the
bulk and shear moduli [50] resulted from this interaction.

Such type of system is useful for our analysis due to its
easiness for dislocation glide (i.e., a low Peierls-Nabarro bar-
rier, as observed in our results), facilitating the check of the
effective action of a driving force such as the core force, i.e.,
property (i) of Sec. II. In this case, the action can happen for
small strain gradients, avoiding nonlinear effects and allowing
us to test the linearity (ii) property.

Moreover, the negligible Peierls-Nabarro barrier avoids the
hysteresis in the movement which can appear due to the bar-
rier. Consequently, an adiabatic “come and go” movement of
the dislocation will not have hysteresis unless the force on it
is not uniquely determined by the current configuration. This
checks the uniqueness (iii) property.

Finally, the short-ranged character of the interaction facil-
itates us to probe the locality (v) property. Otherwise, in a
possible occurrence of nonlocal effects, we could not track at
first if their origin is in the core force or in the interparticles’
interaction.

2. Periodic boundary conditions

Since the particles in our simulations are repulsive, they
must be confined physically or by the use of periodic bound-
ary conditions (PBC). In a physical confinement, the theory
could not considerate the discretization effects in the bound-
ary precisely since the edge has irregularities due to the crystal
structure.

Therefore, we use PBC in which the theory is more precise,
helping us to probe the linearity (ii) and locality (v) properties
commented in Sec. II. We simulate N = 49 152 particles in
a rectangular cell (x, y) ∈ [ − Lx/2, Lx/2] × [ − Ly/2, Ly/2]
with Lx = 192a0 and Ly = 256(

√
3a0/2), where a0 is the lat-

tice spacing.

3. Dislocation dipole

The PBC constrain the total Burgers vector to be zero.
Therefore, other types of source for background strains must
appear: Other defects. We consider simulations in which we
take a perfect crystal and nucleate a dipole of dislocations.
They are formed in the slip line y = 0, have Burgers vectors
b = ±a0x̂ and positions x = ±d/2, respectively, where d is
the distance between them.

Figure 3 illustrates the configuration of the dislocations and
their images due to the PBC. The symmetric configuration in
our system helps us to probe the property (iv) commented in
Sec. II, i.e., the symmetry of the core force under Burgers
vector inversion.

The background shear strain ε
bg
xy at each dislocation in-

duced by the dipole formation and the PBC is derived in the
SM [49] and is given by

εbg
xy = − a0d

2LxLy
− πβa0

2L2
y

∑
n∈Z

(d + nLx )csch2

[
π

(d + nLx )

Ly

]
,

(10)
where β = B/(B + μ). The first term on the right-hand side
of Eq. (10) is a result of the negative resolved shear induced
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FIG. 3. Simulation box (the central one in the figure) and its im-
ages due to the PBC. In a horizontal slip line, a dipole of dislocation
is formed within the perfect crystal. Then we use PK and core forces
to control the dislocations’ positions.

by the gliding of the dislocations from the nucleation point
until their current positions (separated by d), in the sense of
what is shown on the right side of Fig. 1. Details are given in
the SM [49], where we use closed-form expressions for some
infinite series as it has been used in the context of dislocation
dipoles in PBC [51,52].

4. External-body force field

Each dislocation of the dipole in PBC is subjected to a PK
force of attraction to the other one. They tend to annihilate
each other and return the crystal to its perfect configuration.
External-body force fields can be used in order to induce
background strain fields that act as configurational forces and
counteract the attraction between the dislocations, keeping
them apart from each other at a fixed distance d . The con-
figurational force that we intend to induce is the core force.

We induce appropriate strain gradients in the system us-
ing one-dimensional (1D) and radial external-body forces.
We use V 1D

ext (x) = V0v(x/l ) and V rad
ext (r) = V0v(r/l ), where

v(x) = x8(κe−κx10 − e−x10
), κ = 0.35 and r =

√
x2 + y2. We

simulate for different values of the length parameter l , namely,
l = 55a0, 57a0, and 59a0.

We observed that, for these choices of external potential,
the dislocations can be kept apart with sufficiently small
strains and strain derivatives in the system, allowing the usage
of classical elasticity with good approximation. Such regime
allows us to probe the linearity (ii) property of the core force,
as commented in Sec. II. The induced background strains also
have enough variation within a few lattice spacings, allowing
us to probe the locality (v) property. We can use Eq. (8) to
evaluate such strains. They are given by

εbg
xx (x) = ρ0V 1D

ext (x)

B + μ
(11)

FIG. 4. (a) Profile of the external potential field V 1D
ext (x) =

V0v(x/l ), where v(x) = x8(κe−κx10 − e−x10
) and κ = 0.35, and of its

derivative, used in our simulations. (b) Plot of a0∂xε
bg
xx (x) for the sys-

tem under action of V 1D
ext (x), as derived from Eq. (11), with l = 55a0,

V0 ≈ 2.94U0 (light red), and V0 ≈ 5.85U0 (dark red). For these values
of V0, we observe the dislocations to equilibrate, respectively, at
x ≈ ±59.5a0 and x ≈ ±62.5a0, as shown by A and B. The plot is
shown near the position of the dislocation on the right side.

and ε
bg
yy = ε

bg
xy = 0 in the 1D case and by

εbg
yy (x) = ρ0

(B + μ)

1

x2

∫ x

0
x′V rad

ext (x′)dx′, (12)

εbg
xx (x) = ρ0V rad

ext (x)

B + μ
− εbg

yy (x), (13)

and ε
bg
xy = 0 in the radial case.

Figure 4(a) shows the profile of V 1D
ext and its derivative. The

symmetry of the external potential is convenient in order to
test the core-force symmetry under Burgers vector inversion
[property (iv) commented in Sec. II]. It is also convenient in
the identification of dislocation positions since the alignment
commented in Sec. III B 1 occurs simultaneously for both the
dislocations.

IV. SIMULATION RESULTS

As previously commented, we consider only the situations
in which the dislocations are at rest. Then, by analyzing
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different situations like this, we can obtain how the differ-
ent contributions to the force counterbalance each other. By
changing the strain gradients (e.g., through a change in V0)
that are responsible for the core-force contribution, the dis-
locations are driven to the new positions where the resulting
force is zero and they equilibrate. In fact, by increasing the
core force, the dislocations are driven apart, i.e., in a direction
that is opposite to the PK force. This observation confirms the
property (i) of Sec. II, i.e., that the core force is not a drag
force but a driving one.

In our simulations, the resulting force on the dislocations is
always able to drive them back and forth without any sign of
hysteresis, indicating that the Peierls-Nabarro barrier is very
small. This also confirms the property (iii) of Sec. II, i.e.,
the uniqueness of the core force. From one equilibrium con-
figuration to the other we use overdamped evolution for the
particles in the simulations. No unstable equilibrium appears,
as we probed by using a small temperature through Brownian
dynamics [53].

For the system in which we apply V 1D
ext (x) with l = 55a0,

Fig. 4(b) shows the graph of the strain gradient a0∂xε
bg
xx ,

as generated by the external force and evaluated through
Eq. (11), near the position at which the dislocation b = +a0x̂
is equilibrated in our simulations with V0 ≈ 2.94U0 (light
red) and V0 ≈ 5.85U0 (dark red). In this region, ε

bg
xy < 0 and

then, if we turn off the external force (i.e., set V0 = 0), the
dislocation shown in the figure would move to the left until
it finally annihilates the other dislocation, which would be
precisely at x = 0. We can see in the figure that, by increasing
V0, the strain gradient increases and the dislocation moves
to the right until it equilibrates in a new position. The same
happens simultaneously with the other dislocation in the other
direction. This mirror symmetry, observed in all simulations,
confirms the property (iv) of Sec. II, i.e., the Burgers vector
inversion symmetry of the core force.

We gather the data of equilibrium situations (i.e., disloca-
tions at rest with f disl

x = 0) in varying intensities of V 1D
ext (x) for

the three different values of the parameter l considered. As
we consider only the cases in which the dislocation positions
are well defined, as commented in Sec. III B 1, their distances
can be precisely evaluated. For these cases, we use Eqs. (10)
and (11) to evaluate the background deformations and plot
in Fig. 5(a) the values of −2ε

bg
xy versus a0∂xε

bg
xx acting at the

dislocations’ equilibrated positions. Note that a linear relation
is predicted for this graph if we consider Eq. (9) up to first
gradient. A simple fit results in Mxx ≈ 1.64μa2

0, but we clearly
see that the force counteracting the PK one does not depend
solely on the value of ∂xε

bg
xx .

In principle, the problem here could have a nonlocal origin,
as we can see from Fig. 4(b) that the strain derivative varies
greatly within a few lattice spacings. But we find that, by
considering higher-order derivative terms in Eq. (9) evaluated
precisely at the dislocation positions, we can match the data
with a good fit and then the locality property (v) of Sec. II is
valid. The motivation to consider the higher-order derivative
terms is discussed in the following.

The cases A and B of Fig. 5(a) are the same of Fig. 4(b).
In the transition from A to B, the dislocations are driven apart
and their new equilibrium positions have smaller |∂xε

bg
xx|. If

FIG. 5. Relations between the background-resolved shear and
strain gradients on the dislocation b = +a0x̂ for equilibrium con-
figurations in our simulations with the 1D external force field. All
the deformations can be obtained from the distance between the
dislocations using Eqs. (10) and (11). In (a) we can see that ∂xε

bg
xx

alone cannot explain the force which is counterbalancing the PK one.
By including a force due to ∂3

x εbg
xx , a good fit to the data is obtained,

as it is shown in (b).

we compare the cases B and C, where C was simulated with
a different external force field, we can see that the PK forces
(originated from ε

bg
xy) in them are almost equal, whereas the

strain gradients ∂xε
bg
xx are different. Thus, the core force that

counterbalances PK must depend on other factors that are dif-
ferent in these cases, such as the higher-order derivatives ∂2

x ε
bg
xx

and ∂3
x ε

bg
xx . Locally, these derivatives are the main differences

between the situations B and C of Fig. 4(a) aside from the dif-
ference in ∂xε

bg
xx . We can better fit the data by considering, for

instance, an additional contribution like Mxxx∂
2
x ε

bg
xx (provided

that Mxxx changes sign under a change in the sign of b) or
Mxxxx∂

3
x ε

bg
xx in the force of Eq. (9).

In the end of Sec. V B 1, we show some theoretical argu-
ments that make us believe that the core force cannot be linear
with ∂2

x ε
bg
xx and thus Mxxx must be zero. Using only the Mxx

and Mxxxx terms in Eq. (9), the fitting of the data provides
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Mxx ≈ 2.259μa2
0 and Mxxxx ≈ 7.023μa4

0. Figure 5(b) shows
how the formula for the force is greatly improved by the third
gradient term. Note that all the terms used here are linear in the
strains, confirming the property (ii) of Sec. II, i.e., the linearity
of the core force.

Finally, we use the data for the simulations with radial
forces (in which there appears ε

bg
yy ) and fit the general equi-

librium condition

f disl
x ≈ 2μbεbg

xy + Mxx∂xε
bg
xx + Myy∂xε

bg
yy

+ Mxxxx∂
3
x εbg

xx + Mxxyy∂
3
x εbg

yy = 0 (14)

to obtain the values Myy ≈ 0.5024μa2
0 and Mxxyy ≈

−17.57μa4
0. The other background strain derivatives were not

considered since their values are relatively much smaller in
our system.

V. THEORETICAL APPROACHES

In this section, we investigate some theoretical predictions
about the core force that are found in the literature and also
other possibilities. Unfortunately, all of them have issues and
none of them were found to predict the coefficients of the core
force without a direct measurement from the simulations. But
many properties are correctly predicted and some interesting
results are found.

We can separate the theoretical approaches into two types:
Continuum theory modifications and core-energy analysis.
Any type of continuum theory of elasticity is an approxima-
tion and its prediction about the dislocation energy must be
complemented by a core-energy correction. In Sec. V A, we
show some efforts to modify the classical elasticity theory
in order to better describe the dislocation dynamics, without
resorting to core-energy considerations. In Sec. V B, we fo-
cus on the core-energy consideration and try to find ways of
measuring it in order to predict the core force. Also, we show
a case in which we can go the other way around, i.e., use the
coefficients in the core force to evaluate the core energy.

A. Modifications within continuum theory

The dislocation energy within the continuum elasticity
theory depends on the energy functional and on how the
dislocation is described. In order to obtain the core force, here
we investigate possible modifications of the functional or of
the dislocation description.

1. Energy functional modifications

The Peach-Koehler force results from the classical elastic-
ity functional, expressed in Eq. (7), and the Burgers vector
definition b = ∮

du. In the SM [49], we derive it together
with a possible modification in the energy functional which
can provide strain gradient forces without using a core-energy
correction but adding a term like −C(1)

i jklmεi j∂mεkl/2, where

C(1)
i jklm are constants, inside the integral (7). This modification

is a type of strain gradient theory (SGT), that is, a continuum
theory that considers relevant influences of strain gradients in
the elasticity and plasticity. The correction to the PK force

derived in the SM [49] is

f SGT
n = εnkblC

(1)
i jklm∂mε

bg
i j , (15)

where ε = [ 0 1
−1 0]. It obeys properties such as uniqueness,

locality, and linearity but it has problems with the symmetry
under the inversion b → −b [property (iv) of Sec. II], which
was confirmed by our simulations to be valid in the core force.

SGTs of elasticity which correctly obey the symmetries
have long been studied [54,55]. For example, we can add a
term ∝ ∂kεi j∂nεlm in (7), which correctly obeys the symme-
tries, and obtain fdisl through a procedure similar to the one
used in the SM [49]. The resulting force has a term propor-
tional to second gradients of strains. This second gradient
force is similar to the third term in the right-hand side of
Eq. (9) and is originated from a generalized elasticity theory,
without considering the core energy. Unfortunately, no correct
account for a first gradient force on dislocations, with the
properties that we observe in this work, was ever obtained in
this way.

Another possible correction within continuum theory is to
consider nonlinear terms in the energy functional. But, the
formal derivations of the configurational force in nonlinear
elasticity [56] provide only nonlinear corrections to PK, which
disobey the property (ii) of Sec. II, and have no strain gradient
dependence.

2. A modification in the dislocation description: The core field

We can try to correct the classical elasticity by modifying
the way we characterize a dislocation. To do so, we present
here an approach that provides a prediction of the core force,
as derived in [34]. But, as commented further in the end of
this subsection, we observe that it cannot predict the correct
coefficients of the core force, and therefore it is quantitatively
wrong.

The classical (Volterra) displacement field uV of a disloca-
tion at the origin is the solution of the equations

ε jk∂ j∂kuV
i = biδ(r) and Ci jkl∂ j∂l u

V
k = 0. (16)

The first equation comes from the Burgers vector definition
and the second one is the classical elasticity field equation (8)
for zero body forces. In polar coordinates, the Volterra field
has the form

uV (r, θ ) = v(θ ) ln r + u0(θ ). (17)

A simple way to modify such dislocation description is
to consider that there are some forces acting near the dislo-
cation core. Thus, the so-called core field uc f , which is the
solution of

Ci jkl∂ j∂l u
c f
k = − f c f

i , (18)

must be considered in order to correct the Volterra approx-
imation. Here, fc f (r) is an ad hoc body force density field
associated with the dislocation. In the literature [34,41], fc f (r)
is usually considered as a set of point forces. This force field
does not necessarily have a physical existence. It is used here
as a mathematical tool to obtain the core field, which has
physical existence. Consequently, this force field accompanies
the dislocation during the motion, being a function of r − rd .
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Note that the net contribution of fc f must be zero, i.e.,∫
fc f (r)d2r = 0, since no net force appears in the dislocation

region. Moreover, as it represents a core effect, this force must
be zero outside some core radius, where classical elasticity
is valid. Therefore, the core field decays rapidly and has the
following multipole expansion:

uc f (r, θ ) = u1(θ )
1

r
+ u2(θ )

1

r2
+ O

(
1

r3

)
, (19)

where u1 and u2 depend on the dipolar and quadrupolar mo-
ments of fc f (r), respectively.

Other constraints on fc f are necessary in order to obey
the reflection symmetry of the edge dislocation. For the case
b = bx̂, we must have fc f (r) = P · fc f (P · r) for the reflection
(parity) operation P = [−1 0

0 1], i.e., f c f
x (x, y) = − f c f

x (−x, y)

and f c f
y (x, y) = f c f

y (−x, y). In this case, the contribution to
the energy due to fc f interacting with the background defor-
mation can be directly obtained from the energy functional
(7). We can make a multipole expansion and use the symme-
tries to simplify it, obtaining

Ec f -bg = −
∫

f c f
i (r)ubg

i (r)d2r

≈ −[
M1∂xubg

x + M2∂yubg
y + M12∂x∂yubg

x + M11∂
2
x ubg

y

+ M22∂
2
y ubg

y + M111∂
3
x ubg

x + M112∂
2
x ∂yubg

y

+ M122∂x∂
2
y ubg

x + M222∂
3
y ubg

y + O(∂4ubg)
]
, (20)

where M1 = ∫
x f c f

x d2r, M2 = ∫
y f c f

y d2r, M12 =∫
xy f c f

x d2r, M11 = ∫
(x2/2) f c f

y d2r, M22 = ∫
(y2/2) f c f

y d2r,
M111 = ∫

(x3/6) f c f
x d2r, M112 = ∫

(x2y/2) f c f
y d2r, M122 =∫

(xy2/2) f c f
x d2r, and M222 = ∫

(y3/6) f c f
y d2r. Also, by

symmetry, a change in the sign of b changes the sign of the
quadrupolar moments M12, M11, and M22 in Eq. (20).

The derivatives in Eq. (20) are evaluated at the dislocation
position and then the energy varies as the defect moves. From
Eq. (1), such variation of Ec f -bg implies in a force acting on the
dislocation which has the same form of Eq. (3) and satisfies
all the properties guessed in Sec. II and confirmed in Sec. IV.
Up to first gradients of strains, this approach gives

f disl
x ≈ 2μbεbg

xy + M1∂xε
bg
xx + M2∂xε

bg
yy . (21)

This approach predicts that the coefficients appearing in the
core force are the moments of fc f (r) that appear in the core
field. In principle, these moments can be measured by com-
paring the theoretical dislocation field ud = uV + uc f with the
one observed in the crystal, as long as the core-field considera-
tion is a good way to correct the Volterra approximation. In the
SM [49], we analyze this through simulation. Unfortunately,
we observed that the correct coefficients for the core force
measured through simulations (Sec. IV), i.e., Mxx and Myy,
cannot be obtained by the core-field analysis.

B. Core energy as the origin of the core force

This section investigates the core energy and its relation
with the core force. Note that all the properties of the core
force guessed in Sec. II (i.e., effective driving action, linearity,

uniqueness, etc.) and confirmed in Sec III are obeyed if we
write the force (3) in the form

fcore = −∂E co

∂ε
bg
i j

∇ε
bg
i j − ∂E co

∂
(
∂kε

bg
i j

)∇∂kε
bg
i j − · · · , (22)

where we only need to know how to evaluate the crystal’s
core-energy function E co = E co(εbg

i j , ∂kε
bg
i j , . . . ) in a unique

way.
In the following, Sec. V B 1, a general definition of the core

energy is given. The final evaluation of it depends on how
the continuum theory is considered. Section V B 2 shows the
standard way to do so and its problems with ambiguity are
commented. Finally, in Sec. V B 3, we show that, in systems
with power-law interactions, we can obtain the core energy
from measurements of the core force.

1. General definition of the core energy

The general idea for the core energy (E co) is that it rep-
resents the energetic correction necessary for the continuum
theory result (E cont) to match the total dislocation energy
(Edisl) in the real crystal, i.e., Edisl = E cont + E co.

The crystal’s Edisl has a definite way to be evaluated. It is
obtained from the total energy of the crystal when deformed
by the dislocation presence minus the energy of the crystal
without it. By considering the crystal’s energy as a function of
the particles’ positions, we can write

Edisl = E ({rα}) − E ({rα,0}), (23)

where {rα} and {rα,0} are the particles’ positions with and
without the dislocation presence, respectively. The evaluation
of E cont, on the other hand, depends on the theory considered
and the standard one is presented in Sec. V B 2.

In practice, Edisl increases with the size of the crystal, di-
verging for infinite crystals. The continuum theory prediction
also diverges while the core energy is finite. Therefore, we
consider energetic evaluations inside a circular region, with
radius R and centered at the dislocation, and define

E co = lim
R→∞

[Edisl(R) − E cont(R)]. (24)

The convergence of this limit is usually fast, as the continuum
theory rapidly becomes accurate far from the core.

The presence of background strains can affect the core en-
ergy and some symmetric considerations can be made a priori.
For an edge dislocation with b = bx̂, e.g., linear dependencies
of E co on ε

bg
xy and ∂xε

bg
xx are forbidden, as we can see from

Fig. 6. Consequently, the force obtained from Eq. (22) does
not have terms linearly proportional to ∂xε

bg
xy or to ∂2

x ε
bg
xx . Note

that Eq. (20) does not represent the core energy since it is zero
when there is no background deformation, but it carries all the
symmetries expected for E co.

2. Ambiguity in the standard core energy

The standard way to evaluate the continuum theory pre-
diction E cont for the dislocation energy is through Eq. (7), by
using the dislocation strains in the integral. The classical strain
fields of a dislocation are obtained from the Volterra solution
of Eq. (16). In polar coordinates, there exist functions hV

i j (θ )
such that the solution for a dislocation b = bx̂ at the origin has
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FIG. 6. Illustration of the effects of εbg
xy and ∂xε

bg
xx around an edge

dislocation. The reflection symmetry in the x direction implies that
the change in the core energy must be the same for positive and
negative values of these deformations. Therefore, this energy cannot
depend linearly on them.

the form [4]

εV
i j (r) = hV

i j (θ )
b

r
. (25)

Note that the integral of Eq. (7) using Volterra strains diverges
logarithmically for both large and small radii. The usual
procedure to obtain E cont is to integrate Eq. (7) in a region
between a fixed core radius rco and a larger radius R 
 rco.
By doing so, the core energy is standardly defined as [4]

E co,std = lim
R→∞

[
Edisl(R) − b2K

8π
ln

(
R

rco

)]
, (26)

where the prelogarithmic factor K depends on the elastic
constants, e.g., K = 4Bμ/(B + μ) for the triangular crystal.

The choice of the core radius rco is arbitrary and usually
taken to be of the order of the Burgers vector modulus b,
which is frequently the lattice spacing. By taking simula-
tions for large values of R and using the correct K , Eq. (26)
converges and E co,std is then independent of R [57]. See
[35,39,58] for some recent calculations of E co,std from sim-
ulations of straight dislocations in some relevant 3D crystals.

In order to obtain the core force through Eq. (22), we need
to know how the core energy depends on the background
strains. By using background deformations in the defected
crystal of the simulation and measuring the corresponding
core energies, the dependence E co,std = E co,std(εbg

i j ) can be
evaluated, as it was done in previous works [35,38]. These
works used the evaluated derivatives of E co,std(εbg

i j ) to predict
the core force, through Eq. (22). But this core-energy defini-
tion has problems with uniqueness, i.e., with the property (ii)
of Sec. II, as we discuss in the following.

The standard core energy greatly depends on the choice
of the core radius. Once measured for some rco, the en-
ergy E

co,std
for any other core radius is E

co,std = E co,std +
(b2K/8π ) ln (rco/rco). Since the factor b2K is also a func-
tion of the background strains, in general, we have that

∂E
co,std

/∂ε
bg
i j �= ∂E co,std/∂ε

bg
i j . This means that the arbitrary

choice of rco affects the dependence E co,std = E co,std(εbg
i j ) and

the core force of Eq. (22). As uniqueness is a confirmed
property of the core force, the standard core energy is not

appropriate, due to its ambiguous definition, to be used in
Eq. (22).

There are some known definitions for the core energy
which are unambiguous, e.g., in the framework of the
KTHNY theory [36] and in the Kanzaki force approach [37].
The correct one to be used in Eq. (22) and then predict the cor-
rect core force acting on a dislocation is still to be discovered.

3. Crystals with power-law interactions: Obtaining
the core energy from the core force

By considering that Eq. (22) is valid, the measured coef-
ficients of the core force give us the derivatives of E co,std =
E co,std(εbg

i j , ∂kε
bg
i j , . . . ). Here we show that there are systems

in which we can obtain the absolute value of the core energy
directly from its derivatives. In such cases, the core energy can
be obtained from measures of the core force. This happens in
systems with power-law interactions, which are known to have
special relations, such as the virial theorem, between energy
and force.

If the particles interact via a power-law potential Vp(r) ∝
1/rm, we have the scaling law E ({λrα}) = λ−mE ({rα}) for
the total potential energy. This is satisfied by Edisl, as we can
see from Eq. (23), by E cont, which comes from a continuum
theory, and therefore by E co = Edisl − E cont. The scaling law
describes how these energies depend on the density, which
scales as λ−2. Thus, the energies have no other dependence on
the density but the power law E ∝ λ−m ∝ ρm/2. In 2D linear
elasticity, the density is ∝ (1 − ε

bg
xx − ε

bg
yy ) and then the scaling

law tells us that the dependence of E co(εbg
i j ) on (εbg

xx + ε
bg
yy ) is

in the form ∝ (1 − ε
bg
xx − ε

bg
yy )m/2, while the dependencies on

(εbg
xx − ε

bg
yy ) and on ε

bg
xy are not known, in principle. We can

write this as

E co
(
ε

bg
i j

) = [
1 − εbg

xx − εbg
yy

]m/2
Gco

(
εbg

xx − εbg
yy , ε

bg
xy

)
, (27)

where Gco is a function of the deviatoric deformations ε
bg
xy and

(εbg
xx − ε

bg
yy ) which change the shape but not the size of the

crystal. If the core energy depends also on derivatives of ε
bg
i j ,

i.e., if E co = E co(εbg
i j , ∂kε

bg
i j , . . . ), we have Gco = Gco(εbg

xx −
ε

bg
yy , ε

bg
xy, ∂kε

bg
i j , . . . ).

By taking derivatives of Eq. (27) with respect to ε
bg
xx and

ε
bg
yy , it is easy to show that

− 1

m

[
∂E co

∂ε
bg
xx

∣∣∣∣
ε

bg
i j =0

+ ∂E co

∂ε
bg
yy

∣∣∣∣
ε

bg
i j =0

]
= Gco(0, 0) = E co(0).

(28)
Therefore, by relating the derivatives of E co in Eq. (22) with
the coefficients in Eq. (3), the scaling law (28) tells us that the
core energy at zero background deformations is

E co = 1

m
(Mxx + Myy) (29)

for systems with power-law interparticle interactions ∝ 1/rm.
With the results for Mxx and Myy obtained from simulations
in Sec. IV, we find E co ≈ 0.23μa2

0 ≈ 12U0 for the system
with Vp(r) = U0(a0/r)12 and density ρ = 2/(

√
3a2

0). A def-
inite value for the core energy can be used, e.g., to obtain
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TABLE I. Here we list some theoretical approaches that are commented in Sec. V and predict forces on the dislocations that go beyond the
PK force: Nonlinear elasticity [56], nonlocal elasticity [28], the strain gradient theory (SGT) of Sec. V A 1 and the core field [34] approaches
that result in in Eqs. (15) and (21), respectively, and the core-energy approach of Eq. (22) that can consider the standard core energy shown
in Eq. (26), as done in [35], or simply a definite ad hoc core energy. In Sec. IV, we observe through simulations that a correction to the PK
force is needed in order to explain the results. Properties of this correction, such as linearity, locality, symmetry under Burgers vector inversion,
uniqueness, and driving effectiveness were analyzed and quantitative measures of the force were made. In this table, we compare the theoretical
approaches with the results of our simulations, indicating if these theories satisfy the properties and are quantitatively correct.

Validity of some theoretical approaches for predicting a correction to the PK force and its properties
Theoretical approach Linearity Locality Symmetry Uniqueness Effectiveness Quantitative

Nonlinear elasticity [56] no yes no yes no
Nonlocal elasticity [28] yes no no yes no
SGT [Eq. (15)] yes yes no yes no
Core field [Eq. (21)] yes yes yes yes possibly no
Standard core energy [Eqs. (22) and (26)] yes yes yes no no
Ad hoc core energy [Eq. (22)] yes yes yes yes yes yes

the appropriate core radius through Eq. (26) and predict the
melting temperature in 2D, through the KTHNY theory [36].

C. Summary of the agreements and disagreements between
the theories and our 2D simulated system

In the previous subsections, we presented some theoretical
approaches developed with the aim of providing a correction
to the PK force, i.e, the core force. We analyzed if these
theories are in agreement with the results of our simulations.
Special attention was paid to the physical properties revealed
in our simulations, i.e., linearity, locality, symmetry under
Burgers vector inversion, uniqueness, and effectiveness to
drive a dislocation. When possible, quantitative comparisons
concerning the core force values were also made.

In this section, we introduce Table I in order to present
a summary of the comparisons made between the different
theories and the results of our simulations. These theories are
listed along the first column, the properties are listed from the
second to the sixth columns, while the last column refers to
the quantitative prediction of the core force (see Table I). For
instance, if a given theory obeys a certain property, we signal
the table with a “yes” and in the opposite case, we signal it
with a “no.”

If a theory does not satisfy a property such as linearity,
locality, symmetry, or uniqueness, it cannot be the core force
observed in our system. Consequently, it does not satisfy the
property of effectiveness in our simulations and we cannot
make a quantitative investigation about it. The noneffective-
ness can be due to several reasons. For instance, nonlinear
elasticity is expected a priori to be noneffective here since
it presumes high deformations for the nonlinear effects to be
present, which is not the case in our simulations. In contrast,
the assumptions for the SGT that resulted in Eq. (15) expect
that it would be present in our simulations, but our results
showed no such force since this theory does not satisfy the
symmetry that we observed.

The nonlinear elasticity theory of [56] presumes high
deformations in the system. Our simulations used small back-
ground strains and, as expected a priori, the linear response
of the core force was observed. In addition to nonlinearity,
the antisymmetry under b inversion is also predicted by this

theory and was not observed. Thus, such theory is not effective
in our case and we could not quantitatively investigate it. But,
it can be relevant in simulations with high deformations.

The nonlocal elasticity theory of [28] predicts nonlocal
effects in the force when the background strains have high
variations within the region around the dislocation. Our sim-
ulations have such type of background strain variations, as
it can be seen in Fig. 4, but all the effects observed can be
explained locally. In other words, we do not need to know
the background strains and their derivatives at other positions
but only at the dislocation position. In addition to nonlo-
cality, the antisymmetry under b inversion is also predicted
by the nonlocal theory and was not observed in our simu-
lations. Thus, such theory is not effective in our case and
we could not quantitatively investigate it. Although unlikely,
this theory may be relevant in simulations with other crystals
or in 3D.

The results of our simulations are compatible with a force
that is linearly proportional to local values of the background
strain gradients. This is satisfied by the strain gradient theory
(SGT) commented in Sec. V A 1 that results in Eq. (15). But,
as we can see directly from the equation, it does not obey
the symmetry under Burgers vector inversion that is observed
in our simulations. Thus, such theory is not effective in our
case and we could not quantitatively investigate it. Although
unlikely, this theory may be relevant in simulations with other
crystals or in 3D.

It is easy to show that the core-field approach, addressed in
Sec. V A 2, and used in [34], does satisfy some properties (that
is, linearity, locality, symmetry, and uniqueness) of the core
force observed in our simulations. This approach also predicts
that the values of the coefficients of the core force (Mxx, Myy,
...) are equal to the values of the coefficients of the core field
(M1, M2, ...). The latter can be calculated through fittings of
the crystal’s deformations with the theoretical ones. We per-
form such fittings in Fig. S2 of the Supplemental Material [49]
and observe that the fitted value for (M2 − M1)/2 depends on
the fitting region and does not match with (Mxx − Myy)/2 in
any meaningful case. Thus, the core-field approach prediction
is not quantitatively satisfactory. It may possibly have some
effectiveness in our system, i.e., either it is wrong or it is true
and other types of correction are needed to complement it.
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Equation (22) gives an approach to obtain the core force
through a given core energy, which is taken as a function of
the background strains and their derivatives. This approach
straightforwardly satisfies the linearity, locality, and symme-
try properties. If we consider an ad hoc core energy which
is unique and gives a core force that quantitatively matches
the simulational results, then such approach satisfies all the
properties of Table I. This is the ultimate theoretical way to
describe the core force observed in our simulations. The re-
maining question is if the ad hoc core energy can be evaluated
through other methods. Otherwise, we could not predict the
core-force coefficients without directly measuring them.

The standard way to evaluate the core energy is the one
of Eq. (26), but it has ambiguity in the choice of the core
radius. Thus, such standard core energy (that was used in
[35]) does not satisfy the uniqueness property and then cannot
be effective and quantified in our system, which observed a
unique core force.

VI. CONCLUSIONS

The effect of strain gradients acting as a driving force
on edge dislocations, the so-called core force, was directly
observed and quantified. This was done in a system where
the strains are known and controllable, using 2D atomistic
simulations with periodic boundary conditions. We simulate
an idealized model which is able to probe each of the relevant
properties of the driving force and then allows us to predict
the behavior of the core force in any realistic situation.

Our results confirm that the core force satisfies the proper-
ties of effective driving action, linearity, uniqueness, locality,
and symmetry under Burgers vector inversion. In order to
probe the linearity and locality, our system used strongly
varying strains. In such system, we observe that terms with
higher-order gradients of strains are necessary to be consid-
ered in the core force for a better match with the data.

We compare the observed properties and the measured
coefficients of the core force with some theoretical predic-
tions. None of the proposed theories present in the literature
were found to be completely satisfactory for explaining the
results observed in our 2D system, as summarized in Table I.

For instance, the approaches proposed in [35] and in [34]
have problems with uniqueness and quantitative predictions,
respectively.

In general, the results are compatible with a core force that
is originated from a dislocation core energy that depends on
the background strains. But, the correct way to measure such
energy (and then predict the core-force coefficients) is yet to
be discovered. We show that we can go the other way (i.e., to
use the results for the core force to evaluate the core energy)
in systems with power-law interactions. This is the case in our
simulations, with which we obtain E co ≈ 12U0 for a system
with Vp(r) = U0(a0/r)12 and density ρ = 2/(

√
3a2

0).
On the theoretical side, we used the core-force analysis

to exclude, constrain, improve, or relate some fundamental
theories about dislocation dynamics. Moreover, it provides
that dislocation distributions have nonreciprocal interactions,
serving as a natural model for research on this type of inter-
action [44,45]. The consideration of the core force can help
our understanding of how geometrically necessary disloca-
tions [59] are influenced by strain gradients and then improve
phenomenological strain gradient plasticity theories. Potential
applications are in studying phenomena that appear in some
systems with high strain gradients. These have been better
investigated recently and include systems with shock loadings
[24], crack tips [60], flexoelectric polarization [61], and de-
formations at micron and submicron scales (e.g., cutting [62],
indentation [63], and torsion [64]), that is, systems with higher
and higher strain gradients.

Finally, strain gradient effects on the properties of the
solids have gained much attention experimentally [24,65–69]
and we hope that their influence on dislocation dynamics can
be directly seen in experiments soon.
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