
PHYSICAL REVIEW B 106, 224104 (2022)

Ab initio structural optimization at finite temperatures based on anharmonic phonon theory:
Application to the structural phase transitions of BaTiO3
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We formulate a first-principle scheme for structural optimization at finite temperature (T ) based on the self-
consistent phonon (SCP) theory, which accurately takes into account the effect of strong phonon anharmonicity.
The T dependence of the shape of the unit cell and internal atomic configuration is determined by minimizing the
variational free energy in the SCP theory. At each optimization step, the interatomic force constants in the new
structure are calculated without running additional electronic structure calculations, which makes the method
dramatically efficient. We demonstrate that the thermal expansion of silicon and the three-step structural phase
transitions in BaTiO3 and its pressure-temperature (p-T ) phase diagram are successfully reproduced. The present
formalism will open the way to the nonempirical prediction of physical properties at finite T of materials having
a complex structural phase diagram.
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I. INTRODUCTION

Temperature dependence of crystal structure is one of the
most fundamental problems in solid state physics. As the
crystal structure changes, a wide variety of materials ex-
hibit fascinating properties: Ferroelectric phase transitions in
perovskite oxides [1–4], charge density wave in transition
metal dichalcogenides [5–8], and martensitic transformation
in the shape-memory alloy [9–11] are a few representative
examples. In addition to being an important topic for its fun-
damental interest and expected application, such as switches,
memories, and piezoelectric devices [12–14], various exotic
phenomena occur in the vicinity of structural phase transition.
For example, the thermoelectric effect is enlarged by the trans-
port anomaly due to the strong scattering of carriers [15–17].
Recent theoretical works claim that damped soft modes near
structural phase transitions greatly enhance superconductiv-
ity [18,19]. High-pressure high-Tc hydride superconductors
[20–24] and the halide perovskite photovoltaics [25,26] are
also close to structural phase transitions. Nonempirical de-
termination of T -dependent crystal structure is crucial for
quantitatively understanding these phenomena and searching
for related materials.

While the state-of-the-art structural optimization based
on density functional theory (DFT) accurately calculates the
crystal structure at zero temperature [27–33], it has been
a significant challenge to predict crystal structures at finite
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temperatures because one needs to consider the strong an-
harmonicity in lattice vibrations. Anharmonicity refers to
the third and higher-order terms of the Taylor expansion of
the Born-Oppenheimer potential energy surface, which corre-
sponds to phonon-phonon interaction from a field-theoretical
point of view. The finite-temperature phases of strongly an-
harmonic crystals often have unstable phonon modes, in
which case the perturbative theory based on the harmonic
approximation completely breaks down due to the imaginary
frequency [34–37]. In addition, the nuclear quantum effect
also has a significant impact on the structures of crystals and
molecules that contains light atoms or those in the vicinity of
the structural phase transition [38–41].

Ab initio molecular dynamics (AIMD) exactly treats the
anharmonic effect, but it neglects the nuclear quantum effect.
Additionally, AIMD calculations often suffer from the finite-
size effect of the supercell and the stochastic errors of the
sampling, which makes it infeasible to obtain accurate results
with reasonable computational costs. Recently, machine-
learning potentials, which can efficiently calculate atomic
forces and energies with first-principles quality, have been de-
veloped to overcome these difficulties [42–45]. Nonetheless,
the computational cost to generate the potentials is still high
because it requires a large set of training data, and assessing
the quality of the generated potentials requires special exper-
tise.

The self-consistent phonon (SCP) theory takes into ac-
count the nuclear quantum effect and the anharmonic effect
in a self-consistent way [46–49], which have been shown to
accurately reproduce the vibrational properties of strongly
anharmonic materials even with imaginary harmonic fre-
quencies [35–37,50,51]. While several different methods and
implementations have been presented [35–37,52–57], we
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employ the momentum-space SCP theory [37,56], which is
suitable for calculation on a fine temperature grid due to the
efficiency of SCP calculations at each temperature. Addition-
ally, the momentum-space formulation takes advantage of the
Brillouin zone interpolation of being able to efficiently obtain
results that are free from the finite size effect of the DFT
supercells.

In this paper, we formulate a theory of structural opti-
mization at finite temperature based on the SCP theory in
momentum space. The internal coordinates and the shape of
the unit cell are optimized to minimize the SCP free energy
with the aid of its gradient with respect to the structural de-
grees of freedom. At each optimization step, the interatomic
force constants (IFCs) in the updated structure are calculated
from the IFCs in the reference structure without running ad-
ditional DFT calculations, which makes our method highly
efficient. We call the process of updating the IFCs as IFC
renormalization. The momentum-space SCP theory combined
with the IFC renormalization technique remarkably extends
the applicability of our method to complex materials with
many degrees of freedom.

We then apply the present method to the thermal expan-
sion of silicon and the three-step structural phase transition
of BaTiO3, which shows good agreement with experimen-
tal results. BaTiO3 is a perovskite oxide, which is known
as one of the most representative ferroelectrics [13,58,59].
Under ambient pressure, BaTiO3 displays the cubic phase at
high temperatures. When cooled, it exhibits transitions to the
tetragonal phase at around 390 K, then to the orthorhombic
phase at around 270 K, and finally to the rhombohedral phase
at around 180 K [13]. We show that the developed method
successfully reproduces the three structural phase transitions
and the temperature dependence of the lattice constants as
well as the spontaneous polarization of BaTiO3. In addition,
we perform calculations on BaTiO3 under static pressure and
demonstrate that our method well reproduces the experimental
results of its p-T phase diagram.

II. THEORY

In this section, we explain the formulation of structural
optimization at finite temperature based on momentum-space

SCP theory. Starting from the Taylor expansion of the po-
tential energy surface, we explain the process of updating
interatomic force constants (IFCs) at each step in structural
optimization, which we call the IFC renormalization. The
process is essential to the efficiency of our method. In the end,
the theory of structural optimization at finite temperature is
presented based on the preparations.

A. Taylor expansion of the potential energy surface

In crystalline solids, in which the atoms are bound near
their equilibrium positions, the Born-Oppenheimer potential
energy surface can be Taylor-expanded in terms of the atomic
displacement operator ûRαμ. R denotes the position of the
primitive cell to which the atom belongs. α is the atom index
in the primitive cell and μ = x, y, z. If we write the potential
as Û , its Taylor expansion is

Û =
∞∑

n=0

Ûn, (1)

Ûn = 1

n!

∑
{Rαμ}

�μ1···μn (R1α1, · · · , Rnαn)ûR1α1μ1 · · · ûRnαnμn

= 1

n!

1

Nn/2−1

∑
{kλ}

δk1+···+kn�̃(k1λ1, · · · , knλn)q̂k1λ1 · · · q̂knλn .

(2)

The expansion coefficients

�μ1···μn (R1α1, · · · , Rnαn) = ∂nU

∂uR1α1μ1 · · · ∂uRnαnμn

∣∣∣∣∣
u=0

, (3)

are called the interatomic force constants (IFCs). The second-
order, third-order, and fourth-order terms are called the
harmonic, cubic, and quartic terms, respectively. The normal
coordinate operators

q̂kλ = 1√
N

∑
Rαμ

e−ik·Rε∗
kλ,αμ

√
Mα ûRαμ (4)

are introduced in the momentum space, where N is the number
of primitive cells. Accordingly, the momentum-space repre-
sentation of the interatomic force constants is defined as

�̃(k1λ1, · · · , knλn) = 1

N

∑
{Rαμ}

�μ1···μn (R1α1, · · · , Rnαn)
εk1λ1,α1μ1√

Mα1

eik1·R1 · · · εknλn,αnμn√
Mαn

eikn·Rn

=
∑
{αμ}

εk1λ1,α1μ1√
Mα1

· · · εknλn,αnμn√
Mαn

∑
R1···Rn−1

�μ1···μn (R1α1, · · · , Rn−1αn−1, 0αn)ei(k1·R1+···+kn−1·Rn−1 ).

where εkλ,αμ is the polarization vector of phonon mode kλ,
which diagonalizes the harmonic dynamical matrix in the
reference structure.

B. Changes in the crystal structure and the IFC renormalization

The SCP theory incorporates the vibrational free energy
based on the Born-Oppenheimer approximation, which we

use to consider the finite-temperature effect in crystal struc-
tures. Therefore, the IFCs, which determine the potential
energy surface, play a crucial role in SCP calculations, as we
later explain in more detail. In this section, we explain that it
is possible to calculate the IFCs in updated crystal structures
from the IFCs in the reference crystal structure [60].

We first consider the change of the internal coordinates of
the atoms. We write the μ component of the atomic shift of
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the atom α as

q(0)
αμ =

√
Mαu(0)

αμ. (5)

Here, we assume that the atomic shift is commensurate to
the primitive cell, i.e., u(0)

αμ is independent of the choice of
primitive cell R. When the crystal structure is updated in
the structural optimization process, we redefine the atomic
displacement operators ûRαμ or q̂kλ as the displacements from
the new crystal structure. This redefinition of displacement
operators corresponds to substituting

q̂kλ ←
{

q̂kλ (k �= 0)
q̂kλ + √

Nq(0)
λ (k = 0)

(6)

to Eq. (2), where

q(0)
λ =

∑
αμ

ε0λ,αμq(0)
αμ. (7)

Thus, Eq. (2) in the reference structure is rewritten as

Û (q(0)=0)
n = 1

n!

1

Nn/2−1

∑
{kλ}

δk1+···+kn�̃
(q(0)=0)(k1λ1, · · · , knλn)

× (
q̂k1λ1 + δk1

√
Nq(0)

λ1

) · · · (q̂knλn + δkn

√
Nq(0)

λn

)
.

(8)

Note that the normal-coordinate operators q̂kλ are defined
in accordance with the atomic displacements in the updated
structure. Properly rearranging the terms, we get

Û =
∞∑

n=0

Û (q(0) )
n , (9)

Û (q(0) )
n = 1

n!

1

Nn/2−1

∑
{kλ}

δk1+···+kn

×�̃(q(0) )(k1λ1, · · · , knλn)q̂k1λ1 · · · q̂knλn , (10)

�̃(q(0) )(k1λ1, · · · , knλn)

=
∑

m

1

m!

∑
{ρ}

�̃(q(0)=0)(k1λ1, · · · , knλn, 0ρ1, · · · 0ρm)q(0)
ρ1

· · · q(0)
ρm

.

(11)

Thus, the IFCs in the structure with atomic shifts �̃(q(0) ) can
be obtained using the IFCs in the reference structure without
atomic shifts (�̃(q(0)=0)) and the values of {q(0)

λ }.
Next, we consider the case where the shape of the unit cell

is distorted from the reference structure. If the atom at x is
moved to X by the deformation, the strain can be described
by the displacement gradient tensor

uμν = ∂Xμ

∂xν

− δμν. (12)

Under this strain, the atom α in the primitive cell R is shifted
by

u(0)
Rαμ =

∑
ν

uμν (Rν + dαν )

=
∑

ν

uμνRαν, (13)

in real space. dα is the atomic position of atom α in the primi-
tive cell, and we define Rα = R + dα for notational simplicity.
Equation (13) expresses the strain by the shifts of constituting
atoms. Following the same procedure as that for the change
of internal coordinates, we can derive the formulas of the IFC
renormalization for deformations of the primitive cell,

Û (uμν )
n = 1

n!

∑
{Rαμ}

�
(uμν )
μ1···μn (R1α1, · · · , Rnαn)ûR1α1μ1 · · · ûRnαnμn ,

(14)

�
(uμν )
μ1···μn (R1α1, · · · , Rnαn)

=
∞∑

m=0

1

m!

∑
{R′α′μ′ν ′}

× �
(uμν=0)
μ1···μnμ

′
1···μ′

m
(R1α1, · · · , Rnαn, R′

1α
′
1, · · · , R′

mα′
m)

× uμ′
1ν

′
1
R′

1α′
1ν

′
1
· · · uμ′

mν ′
m
R′

mα′
mν ′

m
. (15)

Combining Eqs. (11) and (15), it is possible to calculate the
IFCs for arbitrary crystal structures (�(q(0),uμν ) or �̃(q(0),uμν ))
as long as the structural change is reasonably small. These
equations are the key to the efficiency of our methods, which
enables us to run SCP calculations without running additional
DFT calculations at each structure optimization step.

We found that the second-order IFC renormalization by
cell deformation [Eq. (15)] appears to be less accurate than
that by atomic shift [Eq. (11)]. The former attempts to es-
timate the IFCs in the distorted unit cell, which is different
from the original one, but the atomic forces in the distorted
cell are not included in the training data set used for extracting
the original IFCs. By contrast, the latter changes the center of
the Taylor expansion without changing the functional form of
the potential energy surface. Hence, we provide an alternative
option that directly calculates the coupling between the strain
and the harmonic IFCs

∂�μ1μ2 (R1α1, R2α2)

∂uμν

, (16)

by finite displacement method in terms of the tensor uμν ,
which we use in the calculation of BaTiO3. This option en-
sures the accurate renormalization on the harmonic IFCs,
which is vital to the quantitative description of structural
phase transitions because the harmonic IFCs describe the
stability/instability of the system. The additional computa-
tional cost is marginal compared to that for calculating the
anharmonic IFCs. The details of the method to calculate the
IFCs are described in Sec. III A. Hereafter in this paper, �

and �̃ without notes on q(0) and uμν in superscripts signifies
�(q(0),uμν ) and �̃(q(0),uμν ) respectively, unless stated otherwise.
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C. Structural optimization based on the SCP theory

In SCP theory, the SCP frequency 
kλ′ and the SCP polar-
ization vectors are obtained by solving the SCP equation


2
kλ1λ2

=
∞∑

n=1

1

(n − 1)!Nn−1

∑
{kλ′}

(
h̄

2

)n−1

× �̃(−kλ1, kλ2, k1λ
′
1,−k1λ

′
1, · · · ,−kn−1λ

′
n−1)


k1λ
′
1
· · ·
kn−1λ

′
n−1

×
(

nB(h̄
k1λ
′
1
) + 1

2

)
· · ·

(
nB(h̄
kn−1λ

′
n−1

) + 1

2

)
.

(17)

Here, nB(h̄
) = [eβ h̄
 − 1]−1 is the Bose-Einstein distribu-
tion function, and β = 1/kBT is the inverse temperature with
kB being the Boltzmann constant. Note that indices of phonon
modes with primes such as λ′ denotes the updated modes,
which diagonalizes the SCP dynamical matrix 
kλ1λ2 at tem-
perature T . The phonon modes without primes like λ are
fixed throughout the calculation. The SCP frequencies 
kλ′

are obtained by diagonalizing the SCP dynamical matrix as∑
λ1


kλλ1Ckλ1λ′ = 
kλ′Ckλλ′ using the C matrix, which is
defined in Appendix A. See Appendix A for the detailed
derivation of SCP equation. Because the derivation relies
on the variational principle, the solution of the SCP equa-
tion [Eq. (17)] satisfies

∂F
∂
kλ1λ2

= 0, (18)

for the variational free energy F = −kBT log Tre−βĤ0 +
〈Ĥ − Ĥ0〉Ĥ0

. Therefore, the gradient of the SCP free energy
with respect to the atomic shift is calculated as

1

N

∂F (�̃(q(0),uμν ),
kλ1λ2 (q(0), uμν ))

∂q(0)
λ

= 1

N

∂F (�̃(q(0),uμν ),
kλ1λ2 )

∂q(0)
λ

+ 1

N

∑
kλ1λ2

∂F
∂
kλ1λ2

∂
kλ1λ2

∂q(0)
λ

= 1

N

∂F (�̃(q(0),uμν ),
kλ1λ2 )

∂q(0)
λ

=
∞∑

n=0

1

n!Nn

∑
{kλ}

×
(

h̄

2

)n
�̃(k1λ

′
1,−k1λ

′
1, · · · , knλ

′
n,−knλ

′
n, 0λ)


k1λ
′
1
· · · 
knλ′

n

×
(

nB(h̄
k1λ
′
1
) + 1

2

)
· · ·

(
nB(h̄
knλ′

n
) + 1

2

)
, (19)

in the normal coordinate representation, where we used
Eqs. (11) and (A5). 
kλ1λ2 (q(0)

λ , uμν ) is the solution of the SCP
equation for the crystal structure given by q(0)

λ , uμν . As for
the cell deformation, the gradient of the SCP free energy with
respect to the displacement gradient tensor uμν can be derived
in the same way. Here, we add the pV term to the free energy

to take into account the effect of pressure,

1

N

∂F (�̃(q(0),uμν ),
kλ1λ2 (q(0), uμν ))
∂uμν

= 1

N

∂F (�̃(q(0),uμν ),
kλ1λ2 )

∂uμν

= p
∂vcell

∂uμν

+
∞∑

n=0

1

n!Nn

∑
{kλ}

×
(

h̄

2

)n
∂�̃(k1λ

′
1,−k1λ

′
1, · · · , knλ

′
n,−knλ

′
n)

∂uμν

× (nB(h̄
k1λ
′
1
) + 1/2)


k1λ
′
1

· · · (nB(h̄
knλ′
n
) + 1/2)


knλ′
n

, (20)

where p is the static pressure and vcell is the volume of the unit
cell. Using the above formulas, we can relax the crystal struc-
ture to minimize the SCP free energy in the following way.
Concerning the internal coordinates, the difference δq(0)

λ from
the optimum values at a given temperature can be estimated
by solving

1

N

∂F
∂q(0)

λ

=
∑
λ1


2
0λλ1

δq(0)
λ1

, (21)

if we approximate the Hessian of the SCP free energy by
the SCP dynamical matrix 
2

0λ1λ2
. The internal coordinate is

updated as

q(0)
λ ← q(0)

λ − βmix,ionδq(0)
λ . (22)

βmix,ion is introduced to make the calculation scheme more ro-
bust and is usually chosen to be 0 < βmix,ion < 1. In updating
the shape of the unit cell, we estimate the difference δuμν from
the optimum value by

1

N

∂F
∂uμν

=
∑
μ1ν1

Cμν,μ1ν1δuμ1ν1 , (23)

where we approximate the Hessian of the SCP free energy by
the second-order elastic constants Cμν,μ1ν1 , which is defined
in Appendix C. We restrict the solution δuμ1ν1 of Eq. (23) to
be symmetric in order to fix the rotational degree of freedom
and get an unique solution. The displacement gradient tensor
is updated by

uμν ← uμν − βmix,cellδuμν, (24)

where 0 < βmix,cell < 1 is a coefficient like βmix,ion, which is
introduced to improve robustness of the calculation.

Putting together the above considerations, the calculation
scheme of the structural optimization based on SCP theory is
as follows, which is visualized with a flowchart in Fig. 1:

(1) Calculate IFCs of the current structure by the IFC
renormalization.

(2) Solve SCP equation [Eq. (A19)]
(3) Calculate the gradient of the SCP free energy by

Eqs. (19) and (20).
(4) Update crystal structure by Eqs. (22) and (24).
(5) Check convergence. The calculation ends if the con-

verged structure has been obtained.
(6) If convergence has not been achieved, return to 1.
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IFCs ,
elastic constants , etc.

in the reference structure.
Initial displacement, strain

Calculate 
by SCP equation

Calculate gradients of 

,

Update crystal structure:
unit cell and 

internal coordinate

Convergent?

Update IFCs :
IFC renormalization

Crystal structure
at

finite temperatures

Yes

No

FIG. 1. Schematic figure of the calculation flow of the structural
optimization at finite temperature based on SCP theory.

We discuss the details of the implementation in Ap-
pendix C.

III. SIMULATION DETAILS

We apply the developed method to the thermal expansion
of silicon and the three-step structural phase transition of

BaTiO3. In this section, we describe the detailed setting in the
calculation of these materials.

A. Calculation of the interatomic force constants (IFCs) and the
SCP calculation

The interatomic force constants (IFCs) and the elastic
constants are calculated before performing the structural op-
timization at finite temperatures. The Taylor expansion of
the potential energy surface is truncated at the fourth order
(Û 
 U0 + Û2 + Û3 + Û4). The IFCs are calculated by fitting
the relationship between atomic displacements and atomic
forces, which are calculated by using external DFT packages.
The fitting is performed by the compressive sensing method,
which enables the efficient extraction of IFCs from a small
number of displacement-force data [37,61,62]. We impose on
the IFCs the acoustic sum rule, the permutation symmetry, and
the space group symmetry not only in the supercell model but
also in the infinite real space. The details on the sum rules
and symmetries of the IFCs are described in Appendix D. The
second-order and third-order elastic constants are calculated
by fitting the strain-energy relation making use of the crystal
symmetry [63,64].

For silicon, 2 × 2 × 2 conventional cubic supercell, which
contains 64 atoms, is used in the phonon calculation. We use
the lattice constant 5.4362 Å for calculating the IFCs and the
elastic constants, which is obtained by the structural optimiza-
tion based on DFT so that the stress tensor in the reference
structure vanishes. We generate 100 configurations by the ran-
dom sampling at 300 K from harmonic phonon dispersion to
obtain the displacement-force data and extract the anharmonic
IFCs. The cutoff radius, which is introduced in Appendix F,
for the third and fourth-order IFCs are 20.0 Bohr and 10.0
Bohr, respectively. The cutoff radius for the fourth-order IFCs
can be relatively small because the anharmonicity is so weak
in silicon that the higher-order IFCs are highly localized. The
fitting error of the displacement-force data is 0.52%. We use
8 × 8 × 8 k mesh for the SCP calculation.

A 2 × 2 × 2 supercell, which contains 40 atoms, is
employed for the phonon calculation of BaTiO3. The high-
symmetry cubic cell with the lattice constant 3.9855 Å is
employed as the reference structure, which is used to cal-
culate IFCs and the elastic constants, whose lattice constant
is obtained by the DFT-based structural optimization. We
choose the cubic phase as the reference structure to take full
advantage of the crystal symmetry. For BaTiO3, we generated
300 configurations by adding random displacements to AIMD
snapshots. The AIMD calculation is run with a smaller basis
cutoff and a smaller number of k points to efficiently sample
the potential energy surface, whose details are shown in the
next section. The displacement-force data are generated by
DFT calculations with higher accuracy. We set the cutoff ra-
dius for the third- and fourth-order IFCs as 15.0 Bohr, which is
comparable to one side of the supercell. The fourth-order IFCs
are restricted up to three-body terms, in which at least two
of the four atoms regarding the IFC are the same. The fitting
error of the forces is 3.51%, which shows that the calculated
IFCs well reproduce the complex landscape of the potential
energy surface of BaTiO3. We use 8 × 8 × 8 k mesh and do
not add the nonanalytic correction to the dynamical matrix
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in the SCP calculation. The convergence of the calculation
results with respect to the setting in the IFC calculation and
the SCP calculation are thoroughly checked in Appendices F
to J.

B. DFT calculation

We employ the Vienna ab initio simulation package (VASP)
[27] for the electronic structure calculations. The PBEsol
exchange-correlation functional [65] and the PAW pseudopo-
tentials [66,67] are used. The convergence criteria of the SCF
loop is set 10−8 eV and accurate precision mode, which sup-
presses egg-box effects and errors, are used to calculate the
forces accurately. We use a 4 × 4 × 4 Monkhorst-Pack k mesh
for both materials. The basis cutoff is set 500 eV for silicon
and 600 eV for BaTiO3. A 2 × 2 × 2 Monkhorst-Pack k mesh
and basis cutoff of 400 eV are used for the AIMD calculation
of BaTiO3, which is for sampling the potential energy surface
to generate the random configurations.

IV. RESULTS AND DISCUSSION

We perform the first-principles calculation on the thermal
expansion of silicon and the successive structural phase tran-
sitions of BaTiO3.

A. Silicon

The thermal expansion of silicon is calculated by the struc-
tural optimization at finite temperatures developed in this
research. Since the internal coordinate in the cubic cell is de-
termined by the symmetry, only the lattice constant a change
with temperature. In Fig. 2, the linear thermal expansion co-
efficient αL = 1

a
∂a
∂T calculated by two methods are compared,

where a is the lattice constant. In the former method (SCP,
IFCs from DFT at each a), the calculation of the IFCs and the
free energy is performed at 14 different lattice constants, and
the optimum lattice constant at each temperature is obtained
by fitting the free energy by the Birch-Murnaghan equa-
tion of state [68,69], as in the calculations in Refs. [57,70].
It is more accurate because the IFCs are calculated from
DFT calculations at different lattice constants instead of es-
timating them by the IFC renormalization. However, our
method (SCP, renormalized IFCs) is much more efficient than
the other because running the DFT calculations to generate
the displacement-force data is the most expensive part of
the calculation. The calculation results of the two methods
in Fig. 2 are almost identical, which confirms that the IFC
renormalization accurately calculates the change of IFCs in
this case. The accuracy of the IFC renormalization is also
tested in Appendix E by investigating the harmonic phonon
dispersions in different lattice constants.

B. BaTiO3

1. Structural optimization at finite temperatures

BaTiO3 is a typical perovskite ferroelectrics, which shows
a three-step structural phase transition at ambient pressure
[2,13,41,45,73,74]. When the temperature is lowered, it ex-
hibits structural phase transitions from the cubic phase to the
tetragonal phase at around 390 K, then to the orthorhombic

0 200 400 600 800 1000
Temperature [K]

0

2

4

6

α
L
[K
−1
]

×10−6
SCP, IFCs from DFT at each a

SCP, renormalized IFCs

FIG. 2. Calculation results of the temperature dependence of the
linear thermal expansion coefficient αL = 1

a
∂a
∂T of silicon, where a

is the lattice constant. In the calculation of the purple line (SCP,
IFCs from DFT at each a), the calculation of the IFCs and the free
energy is performed at 14 different lattice constants and the optimum
lattice constant at each temperature is obtained by fitting the free
energy by the Birch-Murnaghan equation of state. For the green line
(SCP, renormalized IFCs), the lattice constant is directly calculated
by the structural optimization at finite temperature including the
nuclear quantum effect, which is developed in this research. The
experimental data are taken from Ref. [71] (blue-dotted line) and
Ref. [72] (red diamond).

phase at around 270 K, and lastly to the rhombohedral phase
at around 180 K [13].

We start with the calculation at ambient pressure, where
we set the static pressure as 0 GPa. We first calculate the
cubic-tetragonal phase transition, which occurs at the high-
est temperature of the three structural phase transitions. The
temperature dependence of the crystal structure (displacement
gradient tensor uμν and the atomic displacements u(0)

αz ) is
shown in Fig. 3. In the cooling calculation, the initial structure
is set by adding a small displacement to the high-symmetry
cubic phase to induce symmetry breaking. In the heating
calculation, we start from the lower temperatures and use the
optimized structure at the previous temperature as the initial
structure for the calculation at each temperature. According to
the figure, the atomic displacements are zero at high tempera-
ture while they become finite at low temperature, which shows
the presence of the structural phase transition. The hysteresis
between the cooling and heating calculations shows that the
transition is first-order, which is consistent with the experi-
ments although its temperature range is overestimated [2,13].

Figure 4 depicts the calculation result of the T -dependent
SCP free energy of the four phases of BaTiO3. As shown in
Fig. 4, the cubic phase is the most stable at high temperatures.
As the temperature is lowered, the tetragonal phase, the or-
thorhombic phase, and then the rhombohedral phase become
the most stable, whose order is consistent with the experiment.
Therefore, we have successfully reproduced the three-step
structural phase transition of BaTiO3 with our method. The
transition temperatures (Tc) can be calculated from the cross-
ing points of the free energy, which are comparable to the
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FIG. 3. Temperature dependence of the crystal structure near the
cubic-tetragonal phase transition of BaTiO3. A hysteresis is observed
between the cooling and heating calculations. In the cooling calcu-
lation, the initial structure is set by adding a small displacement to
the high-symmetry cubic phase to induce symmetry breaking. In the
heating calculation, we start from the lower temperatures and use the
optimized structure at the previous temperature as the initial structure
for the calculation at each temperature. Both the unit cell and internal
coordinates are relaxed considering the nuclear quantum effect.
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FIG. 4. Temperature dependence of SCP free energy of the four
phases of BaTiO3 calculated by the structural optimization at finite
temperature. The difference from the SCP free energy of the cubic
phase Fcubic is plotted to make the difference clearer. The nuclear
quantum effect is included in the calculation of the crystal structure
and the free energy.

TABLE I. Transition temperatures of the three successive struc-
tural phase transitions of BaTiO3. The comparison between the
calculation results estimated from the crossing points of the SCP free
energy and the experimental result [2]. The nuclear quantum effect
is taken into account in the calculation.

Our method [K] Experiment [K]

Cubic-tetra 606 ∼390
Tetra-ortho 509 ∼270
Ortho-rhombo 411 ∼180

experimental results as summarized in Table I. The origin
of the differences between the experimental and calculation
results are discussed later in this section in relation to the
lattice constants.

The calculation results of the lattice constants and the spon-
taneous polarization are shown in Figs. 5 and 6, which are in
agreement with the experimental results [2] if the difference
in transition temperatures are compensated. The spontaneous
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FIG. 5. (a) Calculation result of the temperature-dependent lat-
tice constants of BaTiO3. The results of the rhombohedral and the
orthorhombic phases are plotted only in the temperature ranges
where each phase is the most stable. The dotted lines represent the
cubic root of the cell volume. The hysteresis between the cooling
and the heating calculations is plotted for the cubic-tetragonal phase
transition. Both the unit cell and internal coordinates are relaxed
including the nuclear quantum effect. (b) The experimental data
taken from Ref. [2]. The boundaries of the background colors of each
phase are taken to be the center of the hysteresis regions.
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FIG. 6. (a) Calculation result of the temperature dependence of
the spontaneous polarization Pz. The results of the rhombohedral and
the orthorhombic phase are plotted only in the temperature ranges
where each phase is the most stable. The hysteresis between the cool-
ing and the heating calculations is plotted for the cubic-tetragonal
phase transition. The spontaneous polarization is calculated from
the atomic displacements and the Born effective charge. Both the
unit cell and internal coordinates are relaxed including the nuclear
quantum effect. (b) The experimental data taken from Ref. [2]. The
boundaries of the background colors of each phase are taken to be
the center of the hysteresis regions.

polarization is calculated by using the atomic displacements
u(0)

αν and the Born effective charge Z∗
α,μν as

Pμ = e

Vcell

∑
αν

Z∗
α,μνu(0)

αν , (25)

where Vcell is the volume of the primitive cell and e is the
elementary charge. The Born effective charge is calculated by
density functional perturbation theory [75,76] in the original
high-symmetry cubic structure. In Figs. 5 and 6, we show
the hysteresis only for the cubic-tetragonal phase transition
since we have not directly calculated the transitions between
the tetragonal and the orthorhombic phase and between the
orthorhombic and the rhombohedral phases. This is because
we calculate the phase transitions between the cubic phase
and each of the other three phases to take full advantage of
the crystal symmetry.

Let us discuss the origin of the overestimation of Tc

in Table I. The lattice constant is one of the primary fac-
tors that produce this deviation. In the inset in Fig. 7(a),
we show the relation between the calculated Tc of the
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FIG. 7. (a) The p-T phase diagram of BaTiO3 calculated by the
structural optimization at finite temperature including the nuclear
quantum effect. The inset shows the relation between the lattice
constant a and the transition temperature Tc of the cubic-tetragonal
phase transition. (b) The experimental result taken from Ref. [78].

cubic-tetragonal phase transition in BaTiO3 and the lattice
constant a at the corresponding temperature, which is derived
from the finite-pressure calculations. The transition tempera-
ture at the experimental value of a = 4.0093 Å is estimated
as 511 K from the linear fitting in the figure. Thus, the error
in the lattice constant explains around half of the error in the
transition temperature. The other possible sources of the errors
in the transition temperatures can be the error in the DFT func-
tional, the truncation of the Taylor expansion of the potential
energy surface at the fourth order, and the approximation of
the SCP theory.
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The error in the lattice constant originates from the errors
of the functional used in the DFT calculations. From the inset
of Fig. 7(a), we estimate that dTc

da ∼ 8500 K Å−1. Since the
PBEsol functional predicts the lattice constants of materials
with the accuracy of 0.3% [77], the DFT error of the lattice
constant can lead to an error in Tc of around 102 K in this case.
Comparing at the same temperature, the error of the lattice
constant in our calculation is around 0.2%, which is within
the DFT accuracy but significantly affects the calculated tran-
sition temperature.

We then investigate the pressure dependence of transition
temperatures to draw the p-T phase diagram of BaTiO3.
Similar calculations are run with different pressures, and the
pressure (p)-dependent transition temperatures are estimated
either from the crossing points of the T -dependent free en-
ergies or from the onset of finite atomic displacements when
no hysteresis is observed between the cooling and the heat-
ing calculations. The resultant phase diagram is shown in
Fig. 7. The calculated phase diagram well reproduces the
experimental result [78]. At zero temperature, the rhombohe-
dral phase is the most stable at low pressure. Applying the
pressure, the orthorhombic phase, tetragonal phase, and then
the cubic phase become the most stable, which is shown to be
a consequence of the nuclear quantum effect [41].

Note that the temperature dependencies of the crystal struc-
tures in Figs. 3–6 are calculated at every 5 K, and the gaps
are connected by linear interpolation. The plotted curves look
smooth because we perform a deterministic calculation on
a fine temperature grid. This is because we do not need
to run time-consuming electronic structure calculations at
each temperature or structural optimization step, which is
enabled by the IFC renormalization as discussed in Sec. II B.
Therefore, the most costly part of the calculation is to run
electronic structure calculations to get the force-displacement
data for the 300 supercells. In comparison, the computational
cost of each step of the structural optimization is negligi-
ble, which is one of the most significant advantages of the
present method compared to other methods [36,52–54]. In
addition, this property is also effective in the calculation of
p-T phase diagram in Fig. 7 because no additional electronic
structure calculations are required for calculations at different
pressures.

Some papers proposed that the phase transitions of BaTiO3

have an order-disorder nature [45,79–81], which is character-
ized by multiple-peak distribution of atomic positions above
Tc. Our method based on SCP theory does not reproduce
this property because the distribution is calculated within
the effective harmonic Hamiltonian. However, softening of
the optical phonons is observed in BaTiO3 [82,83], which
indicates that the treatment using the effective harmonic
Hamiltonian is valid in this material. Since the main point of
SCP theory is to calculate the best effective harmonic Hamil-
tonian by the variational principle, we consider that the SCP
theory can be applied when the effective harmonic approach
is reasonable, which is supported by the calculation results.
Even when the transition is order-disorder or mixed type, SCP
theory captures the general trend of the true distribution in a
mean-field way because the displacement along the soft mode
will be larger near the phase transition.
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FIG. 8. The temperature-dependence of SCP free energy of the
four phases of BaTiO3 calculated by the structural optimization at
finite temperature. The unit cell is fixed to the original cubic cell
and only the internal coordinates are relaxed. The difference from
the SCP free energy of the cubic phase Fcubic is plotted to make
the difference clearer. The nuclear quantum effect is included in the
calculation.

2. Importance of relaxing the shape of the unit cell

We perform the calculation of the structural phase transi-
tions of BaTiO3 with the unit cell fixed to the original cubic
cell to investigate the importance of relaxing the unit cell.
The calculation result of the free energy of the four phases
is shown in Fig. 8. In Fig 8, the three transition temperatures
are very close to each other, with gaps of around only 10 K.
These gaps between transition temperatures are much smaller
than in Fig. 4, in which calculation the unit cell is relaxed.

We consider that there are two possible reasons for the
underestimation of the gaps between transition temperatures
when the unit cell is fixed. Firstly, the stabilization effect
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FIG. 9. Temperature dependence of the spontaneous polarization
Pz calculated without nuclear quantum effect. The results of the
rhombohedral and the orthorhombic phase are plotted only in the
temperature ranges where each phase is the most stable. The hys-
teresis between the cooling and the heating calculations is plotted for
the cubic-tetragonal phase transition. The spontaneous polarization
is calculated from the atomic displacements and the Born effective
charge as in Eq. (25).
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FIG. 10. Temperature dependence of the crystal structure near
the cubic-tetragonal phase transition of BaTiO3. The solid lines rep-
resent the calculation without nuclear quantum effect. The dashed
lines are the calculation results with nuclear quantum effect, which
is plotted for comparison.

by the cell deformation is underestimated in the tetragonal
and orthorhombic phases. In both phases, the cell will get
elongated to the polarization direction, which is in the z di-
rection for the tetragonal phase and in the xy direction for
the orthorhombic phase. This effect will be smaller in the
cubic and the rhombohedral phase because the three lattice
constants are the same as shown in Fig. 5. Therefore, if the
unit cell is fixed, the crossing point of the free energy curves
of the cubic and the tetragonal phase is shifted to a lower
temperature while that of the orthorhombic and the rhombo-
hedral phase is shifted to a higher temperature. The second
possible explanation is the effect of thermal expansion. In
general, the instability of the soft mode gets more significant
if the unit cell expands, which can be seen from Figs. 13 and
14. Hence, the transition temperatures will become higher in
expanded unit cells. When the effect of thermal expansion
is taken into account, the higher transition temperatures will
go further higher than lower transition temperatures because
high-symmetry phases become less favored in expanded cells.
Therefore, it is vital to relax the shape of the unit cell to per-
form accurate calculations on the structural phase transition
of materials, especially when three or more competing phases
are involved.

3. Significance of the nuclear quantum effect

We examine the importance of considering the nuclear
quantum effect in calculating the structural phase transition.

TABLE II. Transition temperatures of the successive structural
phase transitions of BaTiO3. The comparison between the calculation
results with and without nuclear quantum effect (NQE). The calcu-
lation, which considers the nuclear quantum effect is explained in
Sec. IV B in the main part [2].

With NQE [K] Without NQE [K]

Cubic-tetra 606 666
Tetra-ortho 509 572
Ortho-rhombo 411 475

Here, we perform calculation without nuclear quantum ef-
fect, in which we replace nB(h̄ω) + 1

2 by kBT
h̄ω

in the theory.
The calculations are performed for four different phases of
BaTiO3, and the T -dependent crystal structure and free en-
ergy are calculated. The three-step structural phase transition
of BaTiO3 has been reproduced by the calculation without
nuclear quantum effect. However, as shown in Table II, the
transition temperatures are overestimated when we disregard
the nuclear quantum effect. This overestimation occurs be-
cause the quantum fluctuation stabilizes the high-symmetry
phases.

In addition, the temperature dependence of the spon-
taneous polarization and the crystal structure near the
cubic-tetragonal phase transition are shown in Figs. 9 and
10. We can see that the spontaneous polarization is overesti-
mated compared to the experimental results or the calculation
that includes the nuclear quantum effect, which are shown in
Fig. 5. According to Fig. 10, the deviation from the cubic
structure gets larger in the classical calculation, which we
identify as the reason for the overestimation of spontaneous
polarization P.

From the above analysis, we can see that the nuclear quan-
tum effect has a significant impact on the crystal structures
near the structural phase transitions, and properly incorporat-
ing it is essential for the quantitative prediction of material
properties at finite temperatures.

V. CONCLUSIONS

We formulate the theory of structural optimization at finite
temperature based on the SCP theory, which can accurately
describe the lattice vibrations with strong anharmonic effect.
The crystal structure is calculated by minimizing the SCP free
energy with the help of its gradient with respect to the internal
coordinates and the displacement gradient tensor uμν . The
interatomic force constants are updated without additional
DFT calculations at each structural optimization step, which
makes the calculation efficient.

We implement the theory to the ALAMODE package
[37,55,57] and perform calculations on silicon and BaTiO3,
which accurately reproduce the experimental results. As for
BaTiO3, we have successfully reproduced its three-step struc-
tural phase transition with quantitative agreement between
theory and experiment for the T -dependent lattice constants
and spontaneous polarization. Furthermore, the pressure-
temperature (p-T ) phase diagram of BaTiO3 calculated by the
developed method shows good agreement with experiment.
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The present methodology can be generally applied to a
wide range of materials. We expect that it lays the foundation
for the nonempirical calculation of exotic finite temperature
properties near the structural phase transitions.
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APPENDIX A: SELF-CONSISTENT PHONON (SCP)
THEORY

We derive the self-consistent phonon (SCP) equation in
momentum-space representation from the variational prin-
ciple of the free energy. The resultant SCP equation is
equivalent to the previous derivations that use self-energy and
Dyson’s equation [37] or the ones in real-space representation
[84]. The variational property plays an important role in cal-
culating the gradient of the SCP free energy in Sec. II C.

In preparation, we define the C matrix, which describes the
mode transformation, as

q̂kλ =
∑
λ′

Ckλλ′ q̂kλ′ , (A1)

Ckλλ′ =
∑
αμ

ε∗
kλ,αμεkλ′,αμ, (A2)

where λ′ is the index of the updated polarization vector and
the λ of the original polarization vector. The updated mode
λ′ diagonalizes the SCP dynamical matrix like Eq. (A7).
The original mode λ must be fixed throughout the structural
optimization process, for which we take the mode that di-
agonalizes the harmonic dynamical matrix in the reference
structure, �̃(q(0)=0,uμν=0). We distinguish the indices of the
original mode and the updated mode by the absence and the
presence of prime (′), as stated in Sec. II C.

The variational principle that the trial free energy F de-
fined below are always the same or larger than the true free
energy F , is used in the derivation of the SCP equation,

F = −kBT log Tre−βĤ0 + 〈Ĥ − Ĥ0〉Ĥ0
� F. (A3)

Note that F and F need to include pV term when we consider
systems under static pressure. However, we do not treat the
pV term explicitly in this Appendix because it does not play
an important role here. In SCP theory, we restrict the trial
Hamiltonian Ĥ0 to harmonic Hamiltonians

Ĥ0 =
∑
kλ′

h̄
kλ′ â†
kλ′ âkλ′ . (A4)

The variational parameters Ckλλ′ (or εkλ′,αμ) and 
kλ′ are
optimized so as to minimize the variational free energy to
get the best approximation of the original problem. We first
calculate the variational free energy by substituting Eq. (A4)
to Eq. (A3),

F = −kBT log Tre−βĤ0 + 〈Ĥ − Ĥ0〉Ĥ0

=
∑
kλ′

[
1

2
h̄
kλ′ + kBT log(1 − e−β h̄
kλ′ )

]
−

∑
kλ′

h̄

2

(
nB(h̄
kλ′ ) + 1

2

)(

kλ′ −

∑
λ1λ2

C∗
kλ1λ′�̃(−kλ1, kλ2)Ckλ2λ′


kλ′

)

+
∞∑

n=2

1

n!

1

Nn−1

∑
{kλ′}

( h̄

2

)n �̃(k1λ
′
1,−k1λ

′
1, · · · , knλ

′
n,−knλ

′
n)


k1λ
′
1
· · ·
knλ′

n

(
nB(h̄
k1λ

′
1
) + 1

2

)
· · ·

(
nB(h̄
knλ′

n
) + 1

2

)
. (A5)

The IFCs in the updated-mode representation are defined as

�̃(k1λ
′
1, · · · , kmλ′

m)

=
∑

λ1···λm

�̃(k1λ1, · · · , kmλm)Ck1λ1λ
′
1
· · ·Ckmλmλ′

m
. (A6)

Now, let us consider minimizing the variational free energy of
Eq. (A5). We treat the SCP dynamical matrix


kλ1λ2 =
∑
λ′

Ckλ1λ′
kλ′C∗
kλ2λ′ (A7)

as the variational parameters because the C matrix is difficult
to handle due to the unitarity condition and the phase de-
grees of freedom. Abbreviating the momentum and the mode
indices, the SCP dynamical matrix can be written as 
 =
CDC†, where D = diag(
kλ′ ). Here, we derive some formulas
that are used in the following derivation of the SCP equation.
We consider that the SCP dynamical matrix 
 = CDC† is de-
pendent on a parameter s. From the unitarity of the C matrix,

we can show

∂C†

∂s
C + C† ∂C

∂s
= 0. (A8)

Differentiating both hand sides of 
 = CDC†, we get

∂D

∂s
= C† ∂


∂s
C − C† ∂C

∂s
D − D

∂C†

∂s
C. (A9)

The diagonal component in the update-mode representation is
written as

∂
kλ′

∂s
=

(
C† ∂


∂s
C

)
λ′λ′

. (A10)

Thus, substituting s = 
kλ1λ2 , we get

∂
kλ′

∂
kλ1λ2

= C∗
kλ1λ′Ckλ2λ′ . (A11)
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We also consider the off-diagonal components,(
C† ∂


∂s
C

)
λ′

1λ
′
2

=
(

C† ∂C

∂s

)
λ′

1λ
′
2


kλ′
2
+ 
kλ′

1

(
∂C†

∂s
C

)
λ′

1λ
′
2

(A12)

= (
kλ′
2
− 
kλ′

1
)

(
C† ∂C

∂s

)
λ′

1λ
′
2

. (A13)

We used that ( ∂D
∂s )λ′

1λ
′
2
= 0 if λ′

1 �= λ′
2 because D is taken to be

diagonal. Substituting s = 
kλ1λ2 , we get

∂Ckλλ′

∂
kλ1λ2

=
∑
λ′

1

Ckλλ′
1

C∗
kλ1λ

′
1
Ckλ2λ′


kλ′ − 
kλ′
1

. (A14)

In the same way, we get

∂C∗
kλλ′

∂
kλ1λ2

=
∑
λ′

1

C∗
kλ1λ′Ckλ2λ

′
1


kλ′ − 
kλ′
1

C∗
kλλ′

1
. (A15)

The sums in Eqs. (A14) and (A15) are taken over the modes
that are not degenerate to 
kλ′ because the contribution from
the degenerate modes can be made vanish by using the degrees
of freedom in unitary transformation.

Using the formulas above, the gradient of the variational
free energy with respect to the SCP dynamical matrix is de-
rived as

∂F
∂
kλ1λ2

=
∑
λ′

[
h̄

2

∂

∂
kλ′

(
nB + 1/2


kλ′

)
C∗

kλ1λ′Ckλ2λ′

{
− 
2

kλ′ + �̃(−kλ′, kλ′)

+
∞∑

n=2

1

(n − 1)!Nn−1

∑
{kλ′}

(
h̄

2

)n−1 �̃(−kλ′, kλ′, k1λ
′
1,−k1λ

′
1, · · · ,−kn−1λ

′
n−1)


k1λ
′
1
· · · 
kn−1λ

′
n−1

×
(

nB(h̄
k1λ
′
1
) + 1

2

)
· · ·

(
nB(h̄
kn−1λ

′
n−1

) + 1

2

)}]
(A16)

+
∑
λ′λ′

1

[
h̄

2

nB(h̄
kλ′ ) + 1/2


kλ′

C∗
kλ1λ′Ckλ2λ

′
1


kλ′ − 
kλ′
1

{ ∞∑
n=1

1

(n − 1)!Nn−1

∑
{kλ′}

(
h̄

2

)n−1

× �̃(−kλ′
1, kλ′, k2λ

′
2,−k2λ

′
2, · · · ,−kn−1λ

′
n−1)


k2λ
′
2
· · ·
knλ′

n

(
nB(h̄
k2λ

′
2
) + 1

2

)
· · ·

(
nB(h̄
knλ′

n
) + 1

2

)}
(A17)

+ h̄

2

nB(h̄
kλ′ ) + 1/2


kλ′

C∗
kλ1λ

′
1
Ckλ2λ′


kλ′ − 
kλ′
1

{ ∞∑
n=1

1

(n − 1)!Nn−1

∑
{kλ′}

(
h̄

2

)n−1

× �̃(−kλ′, kλ′
1, k2λ

′
2,−k2λ

′
2, · · · ,−knλ

′
n)


k2λ
′
2
· · · 
knλ′

n

(
nB(h̄
k2λ

′
2
) + 1

2

)
· · ·

(
nB(h̄
knλ′

n
) + 1

2

)}]
. (A18)

The variational condition is that the terms in the curly brackets in Eqs. (A16)–(A18) all vanish. In the original-mode representa-
tion, these three conditions can be put together to a single SCP equation


2
kλ1λ2

=
∞∑

n=1

1

(n − 1)!Nn−1

∑
{kλ′}

(
h̄

2

)n−1 �̃(−kλ1, kλ2, k1λ
′
1,−k1λ

′
1, · · · ,−kn−1λ

′
n−1)


k1λ
′
1
· · ·
kn−1λ

′
n−1

×
(

nB(h̄
k1λ
′
1
) + 1

2

)
· · ·

(
nB(h̄
kn−1λ

′
n−1

) + 1

2

)
. (A19)

APPENDIX B: CALCULATION OF THE HESSIAN OF THE SCP FREE ENERGY

The Hessian of the SCP free energy is useful in discussing the stability of the crystal structure at given conditions. In this
Appendix, we discuss the formulation to calculate the Hessian, whose implementation is a future task. We derive the Hessian
with respect to the internal coordinates. The Hessian for the strain and the mixed derivatives can be calculated in the same
manner. We start from the general formula for the derivative

∂2F (�̃(q(0),uμν ),
kλ1λ2 (q(0)
λ , uμν ))

∂q(0)
λ1

∂q(0)
λ2

=
(

∂

∂q(0)
λ1

+
∑
kλ3λ4

∂
kλ3λ4

∂q(0)
λ1

∂

∂
kλ3λ4

)

×
(

∂

∂q(0)
λ2

+
∑
kλ3λ4

∂
kλ3λ4

∂q(0)
λ2

∂

∂
kλ3λ4

)
F (q(0)

λ , uμν,
kλ1λ2 ), (B1)
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where 
kλ1λ2 (q(0)
λ , uμν ) is the solution of the SCP equation in the crystal structure given by q(0)

λ , uμν . Since the solution of the
SCP equation satisfies the variational condition, we can simplify the right-hand side (RHS) by using(

∂

∂q(0)
λ

+
∑
kλ1λ2

∂
kλ1λ2

∂q(0)
λ

∂

∂
kλ1λ2

)
∂F

∂
kλ3λ4

= 0 (B2)

as

∂2F (�̃(q(0),uμν ),
(q(0)
λ , uμν ))

∂q(0)
λ1

∂q(0)
λ2

= ∂2F (�̃(q(0),uμν ),
)

∂q(0)
λ1

∂q(0)
λ2

+
∑
kλ3λ4

∂
kλ3λ4

∂q(0)
λ1

∂2F
∂q(0)

λ2
∂
kλ3λ4

. (B3)

Let us estimate each term in the RHS of Eq. (B3). The first term is rewritten by the SCP dynamical matrix

∂2F (�̃(q(0),uμν ),
)

∂q(0)
λ1

∂q(0)
λ2

= N ×
∞∑

n=0

1

n!Nn

∑
{kλ′}

(
h̄

2

)n
�̃(k1λ

′
1,−k1λ

′
1, · · · , knλ

′
n,−knλ

′
n, 0λ1, 0λ2)


k1λ
′
1
· · ·
k1λ

′
1

×
(

nB(h̄
k1λ
′
1
) + 1

2

)
· · ·

(
nB(h̄
knλ′

n
) + 1

2

)
= N
2

0λ1λ2
. (B4)

The second term is more complicated. ∂2F
∂q(0)

λ2
∂
kλ3λ4

is expanded as

∂2F
∂q(0)

λ ∂
kλ1λ2

= N
∞∑

n=1

1

(n − 1)!Nn

∑
{kλ′}

(
h̄

2

)n
�̃(kλ′

1,−kλ′
1, k2λ

′
2,−k2λ

′
2, · · · , knλ

′
n,−knλ

′
n, 0λ)


k2λ
′
2
· · · 
knλ′

n

×
(

nB(h̄
k2λ
′
2
) + 1

2

)
· · ·

(
nB(h̄
knλ′

n
) + 1

2

)
∂
kλ′

1

∂
kλ1λ2

∂

∂
kλ′
1

(
nB(h̄
kλ′

1
) + 1

2

)

+ N
∞∑

n=1

1

(n − 1)!Nn

∑
{kλ′}

(
h̄

2

)n ∑
λ3λ4

�̃(kλ3,−kλ4, k2λ
′
2,−k2λ

′
2, · · · , knλ

′
n,−knλ

′
n, 0λ)


k1λ
′
1
· · ·
knλ′

n

×
(

nB(h̄
kλ′
1
) + 1

2

)
· · ·

(
nB(h̄
knλ′

n
) + 1

2

)
∂

∂
kλ1λ2

(Ckλ3λ
′
1
C∗

kλ4λ
′
1
). (B5)

The derivative
∂
kλ3λ4

∂q(0)
λ1

cannot be analytically calculated. Thus, we derive a self-consistent equation of
∂
kλ3λ4

∂q(0)
λ1

by differentiating

the both sides of the SCP equation,

∂
2
kλ1λ2

∂q(0)
λ

=
∞∑
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1

n!Nn
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×
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2
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· · ·
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n
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2

)

+
∞∑
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1
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· · · 
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n

×
(
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′
2
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2

)
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(
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knλ′

n
) + 1

2

)∑
λ3λ4

∂
k1λ3λ4

∂q(0)
λ

∂
k1λ
′
1

∂
k1λ3λ4

∂

∂
k1λ
′
1

(
nB(
k1λ

′
1
) + 1/2


k1λ
′
1

)

+
∞∑

n=1

1

(n − 1)!Nn

∑
{kλ′}

(
h̄

2

)n ∑
λ3λ4

�̃(−kλ1,−kλ2, k1λ3,−k1λ4, · · · , knλ
′
n,−knλ

′
n, 0λ)


k1λ
′
1
· · · 
knλ′

n

×
(

nB(h̄
k1λ
′
1
) + 1

2

)
· · ·

(
nB(h̄
knλ′

n
) + 1

2

) ∑
λ5λ6

∂
k1λ5λ6

∂q(0)
λ

∂

∂
k1λ5λ6

(Ck1λ3λ
′
1
C∗

k1λ4λ
′
1
). (B6)

We get
∂
2

kλ1λ2

∂q(0)
λ

or
∂
kλ1λ2

∂q(0)
λ

by solving Eq. (B6) self-consistently. Substituting the solution to Eq. (B5) and then to Eq. (B3), it is

possible to calculate the Hessian of the SCP free energy and discuss the stability of crystal structures at finite temperature.
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APPENDIX C: IMPLEMENTATION DETAILS OF THE IFC RENORMALIZATION

In this Appendix, we explain the details of the implementation of the IFC renormalization to the ALAMODE package. We
truncate the Taylor expansion of the potential energy surface at the fourth order, which is the approximation in the ALAMODE
implementation of the SCP calculation.

The IFC renormalization by strain is written down in real-space representation as shown in Eq. (15). However, the Fourier
transformation of the anharmonic IFCs is so computationally costly that it is not feasible to Fourier transform the anharmonic
IFCs at every step of the structural optimization. Therefore, the derivatives of the IFCs with respect to the strain and their
Fourier transformation are calculated in the precalculation before the structural optimization process. For the first-order IFCs,
the following quantities are calculated:

∂�̃(0λ1)

∂uμν

∣∣∣∣
q(0)=0,uμν=0

=
∑
α1μ1

ε0λ1,α1μ1√
Mα1

∑
R′

1α
′
1

�(0)
μ1μ

(0α1, R′
1α

′
1)R′

1α′
1ν,

(C1)

∂2�̃(0λ1)

∂uμ1ν1∂uμ2ν2

∣∣∣∣
q(0)=0,uμν=0

=
∑
α1μ

′
1

ε0λ1,α1μ
′
1√

Mα1

∑
{R′α′}

�
(0)
μ′

1μ1μ2
(0α1, R′

1α
′
1, R′

2α
′
2)R′

1α′
1ν1

R′
2α′

2ν2
, (C2)

∂3�̃(0λ1)

∂uμ1ν1∂uμ2ν2∂uμ3ν3

∣∣∣∣
q(0)=0,uμν=0

=
∑
α1μ

′
1

ε0λ1,α1μ
′
1√

Mα1

∑
{R′α′}

�
(0)
μ′

1μ1μ2μ3
(0α1, R′

1α
′
1, R′

2α
′
2, R′

3α
′
3)R′

1α′
1ν1

R′
2α′

2ν2
R′

3α′
3ν3

. (C3)

�(0) = �(q(0)=0,uμν=0) is the IFC in the reference structure without atomic displacements nor cell deformation. For the harmonic
and cubic IFCs, we calculate

∂�̃(k1λ1,−k1λ2)

∂uμ1ν1

∣∣∣∣
q(0)=0,uμν=0

=
∑
{αμ′}

εk1λ1,α1μ
′
1√

Mα1

ε−k1λ2,α2μ
′
2√

Mα2

∑
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×
∑
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1α
′
1

�
(0)
μ′

1μ
′
2μ1
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1α

′
1)R′

1α′
1ν1

, (C4)

∂2�̃(k1λ1,−k1λ2)

∂uμ1ν1∂uμ2ν2

∣∣∣∣
q(0)=0,uμν=0

=
∑
{αμ′}

εk1λ1,α1μ
′
1√

Mα1

ε−k1λ2,α2μ
′
2√

Mα2

∑
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eik1·R1

×
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{R′α′}

�
(0)
μ′

1μ
′
2μ1μ2

(R1α1, 0α2, R′
1α

′
1, R′

2α
′
2)R′

1α′
1ν1

R′
2α′

2ν2
, (C5)

∂�̃(0λ1, k1λ2,−k1λ3)

∂uμ1ν1

∣∣∣∣
q(0)=0,uμν=0

=
∑
{αμ′}

ε0λ1,α1μ
′
1√

Mα1

εk1λ2,α2μ
′
2√

Mα2

ε−k1λ3,α3μ
′
3√

Mα3

∑
R1R2

eik1·R2

×
∑
R′

1α
′
1

�
(0)
μ′

1μ
′
2μ

′
3μ1

(R1α1, R2α2, 0α3, R′
1α

′
1)R′

1α′
1ν1

. (C6)

For the cubic IFCs, it is enough to calculate the derivatives of the IFCs of the form �̃(0λ1, kλ2,−kλ3). The quartic IFCs are not
changed because the higher-order IFCs are truncated in the Taylor expansion. It should be noted that the fractional coordinates
of the k points in the Brillouin zone are kept fixed in these derivatives. This makes the k mesh adapt to the deformed Brillouin
zone, which is convenient for calculating the free energy per unit cell. In addition, this convention simplifies the formulas of the
IFC renormalization because it keeps the k · R terms invariant when the lattice vectors are changed.

Special care needs to be taken for the zeroth-order IFC (constant term of the potential energy surface) because the surface
effect must be properly considered to derive similar formulas [60], which is quite complicated. Therefore, we directly calculate
the second-order and third-order elastic constants by fitting the strain-energy relation. Although the elastic constants are usually
defined as quantities per unit volume, we define them as the quantities per unit cell as

Cμ1ν1,μ2ν2 = 1

N

∂2U0

∂ημ1ν1∂ημ2ν2

, (C7)

Cμ1ν1,μ2ν2,μ3ν3 = 1

N

∂2U0

∂ημ1ν1∂ημ2ν2∂ημ3ν3

, (C8)
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for later convenience. The strain tensor ημν is defined as

ημν = 1

2

( ∑
μ′

(δμμ′ + uμμ′ )(δνμ′ + uνμ′ ) − δμν

)
(C9)

= 1

2

(
uμν + uνμ +

∑
μ′

uμμ′uνμ′

)
. (C10)

There is one-to-one correspondence between uμν and ημν as long as we restrict uμν to be symmetric. The number of strain
modes to calculate can be decreased using the crystal symmetry [63,64]. Note that although the internal coordinates are relaxed
in calculations to reproduce experimentally observed elastic constants [63,64], we run the DFT calculations with fixed internal
coordinates because the internal coordinates are treated separately as independent degrees of freedom.

Therefore, the IFCs in the reciprocal space representation for the strained cell can be calculated by

1

N
U (q(0)=0,uμν )

0 = 1

2

∑
μ1ν1,μ2ν2

Cμ1ν1,μ2ν2ημ1ν1ημ2ν2 + 1

6

∑
μ1ν1,μ2ν2,μ3ν3

Cμ1ν1,μ2ν2,μ3ν3ημ1ν1ημ2ν2ημ3ν3 , (C11)

�̃(q(0)=0,uμν )(0λ) = �̃(q(0)=0,uμν=0)(0λ) +
∑
μ1ν1

∂�̃(0λ1)

∂uμ1ν1

uμ1ν1

+ 1

2

∑
{μ1ν}

∂2�̃(0λ1)

∂uμ1ν1∂uμ2ν2

uμ1ν1 uμ2ν2 + 1

6

∑
{μ1ν}

∂3�̃(0λ1)

∂uμ1ν1∂uμ2ν2∂uμ3ν3

uμ1ν1 uμ2ν2 uμ3ν3 ,

(C12)

�̃(q(0)=0,uμν )(k1λ1,−k1λ2) = �̃(q(0)=0,uμν=0)(k1λ1,−k1λ2) +
∑
μ1ν1

∂�̃(k1λ1,−k1λ2)

∂uμ1ν1

uμ1ν1

+ 1

2

∑
{μν}

∂�̃(k1λ1,−k1λ2)

∂uμ1ν1∂uμ2ν2

uμ1ν1 uμ2ν2 , (C13)

�̃(q(0)=0,uμν )(0λ1, k1λ2,−k1λ3) = �̃(q(0)=0,uμν=0)(0λ1, k1λ2,−k1λ3) +
∑
μ1ν1

∂�̃(0λ1, k1λ2,−k1λ3)

∂uμ1ν1

uμ1ν1 , (C14)

�̃(q(0)=0,uμν )(k1λ1,−k1λ2, k2λ3,−k2λ4) = �̃(q(0)=0,uμν=0)(k1λ1,−k1λ2, k2λ3,−k2λ4). (C15)

The first-order term is not included in Eq. (C11) because the stress tensor is assumed to vanish in the reference structure,

which assumption can be relaxed straightforwardly. We also set U (q(0)=0,uμν=0)
0 = 0 without loss of generality. Substituting the

�̃(q(0)=0,uμν ) obtained in the above formulas to the RHS of Eq. (11), we get the IFCs in arbitrary structures �̃(q(0),uμν ).
Similarly, the derivatives of the even-order IFCs with respect to the structural degrees of freedom are calculated as

1

N

∂U (q(0),uμν )
0

∂uμν

=
∑
μ′ν ′

∂ημ′ν ′

∂uμν

( ∑
μ1ν1

Cμ1ν1,μ′ν ′ημ1ν1 + 1

3

∑
μ1ν1,μ2ν2

Cμ1ν1,μ2ν2,μ′ν ′ημ1ν1ημ2ν2

)

+
3∑

m=1

1

m!

∑
{λ}

∂�̃(q(0)=0,uμν )(0λ1, · · · , 0λm)

∂uμν

q(0)
λ1

· · · q(0)
λm

, (C16)

∂�̃(q(0),uμν )(k1λ1,−k1λ2)

∂uμν

= ∂�̃(k1λ1,−k1λ2)

∂uμν

+
∑
μ′ν ′

∂2�̃(k1λ1,−k1λ2)

∂uμν∂uμ′ν ′
uμ′ν ′ +

∑
ρ1

∂�̃(k1λ1,−k1λ2, 0ρ1)

∂uμν

q(0)
ρ1

, (C17)

which are used in the calculation of the gradient of the SCP free energy.

APPENDIX D: SUM RULES, SYMMETRIES, AND MIRROR
IMAGE CONVENTIONS IN IFC CALCULATIONS

The IFCs need to satisfy several constraints to obtain
physically reasonable results in phonon calculations. The

permutation symmetry

�···μi···μ j ···(· · · , Riαi, · · · , R jα j, · · · )

= �···μ j ···μi···(· · · , R jα j, · · · , Riαi, · · · ), (D1)
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FIG. 11. Schematic figure of a two-dimensional monatomic 2 ×
2 supercell. The shaded part is the supercell considered in the calcu-
lation, which includes four primitive cells denoted R1, · · · , R4. We
consider that an atom in the supercell, which is colored orange, is
displaced, which corresponds to displacing all the atoms in the real
space, which are colored orange.

the acoustic sum rule (ASR)∑
Rnαn

�μ1···μn−1μn (R1α1, · · · , Rn−1αn−1, Rnαn) = 0, (D2)

and the space group symmetry are considered as they are
especially important. The permutation symmetry is essential
for the Hermiticity of the dynamical matrix. The acoustic sum
rule must be satisfied to make the potential energy invariant
under rigid translation of the whole system.

In first-principles phonon calculations, the size of the su-
percell is usually taken to be comparable to the interaction
range because using larger supercells drastically increases
the computational cost. Thus, the IFCs in the finite supercell
and those in the infinite real space needs to be carefully dis-
tinguished in implementing a phonon calculation code. This
distinction also plays an important role in considering the
constraints on IFCs because they should be imposed in infi-
nite real space, not in the finite supercell model, which have
been frequently overlooked. In this research, we implement a
program to the ALAMODE package [37,55] to obtain IFCs
that satisfy the permutation symmetry, ASR, and the space
group symmetry in the infinite real space.

We begin with the definition and the relation of the IFCs
in the supercell and those in the infinite real space. Consider
that an atom in a two-dimensional 2 × 2 monatomic supercell
(shaded area) is displaced, as shown in Fig. 11. In infinite
real space, this situation corresponds to displacing all the
mirror images of the atom, which are colored orange. Here, we
temporarily assume that the potential is harmonic to discuss
the relation between IFCs in the supercell and those in the
infinite real space. The force that acts on the atom at R1 = 0

in Fig. 11 (lower-left corner in the supercell) is

f0αμ = −
∑

ν

�supercell
μν (0α, R3α)uR3αν

= −
∑

J

∑
ν

�μν (0α, R3(J )α)uR3αν, (D3)

where �supercell are the IFCs in the supercell, and � are the
IFCs in the infinite real space. In this Appendix, we specify
atoms in the infinite space by the combination (R(J ), α). R is
the position of the primitive cell in the considering supercell.
The infinite space consists of periodically aligning supercells.
J specifies the supercell which includes the considering atom.
α is the atom number in the primitive cell. J for the first atom
in IFCs is abbreviated because it can be fixed to the original
supercell due to the translational invariance. From the above
discussion, the relation between the harmonic IFCs in the real
space and those in the supercell is

�supercell
μ1μ2

(0α1, Rα2) =
∑

J

�μ1μ2 (0α1, R(J )α2). (D4)

Similar formula can be derived for the anharmonic IFCs,

�supercell
μ1···μn

(0α1, R2α2 · · · Rnαn)

=
∑

J2···Jn

�μ1μ2···μn (0α1, R2(J2)α2, · · · , Rn(Jn)αn). (D5)

These formulas show that the IFCs calculated in the supercell
need to be distributed to the mirror images in infinite space.
It is crucial to choose a proper convention when distributing
IFCs because the reciprocal-space IFCs at incommensurate
k points are dependent on how to treat the mirror images.
For the harmonic IFCs, equal values are usually assigned to
the nearest mirror images, but the definition of nearest mirror
images is not straightforward for anharmonic IFCs.

We then consider the physical constraints on the IFCs in
the supercell and in the real space. We denote the distribution
of IFCs to the mirror images as

�μ1···μn (0α1, · · · Rn(Jn)αn)

= cJ2···Jn
R2···Rn,α1···αn,μ1···μn

�supercell
μ1···μn

(0α1, · · · Rnαn), (D6)

where ∑
{J}

cJ2···Jn
R2···Rn,α1···αn,μ1···μn

= 1. (D7)

We start with the discussion on the permutation symmetry.
The permutation symmetry of the IFCs in the supercell is

�supercell
μ1···μn

(0α1, · · · Rnαn) = �
supercell
μ′

1···μ′
n

(0α′
1, · · · R′

nα
′
n) (D8)

where (0α′
1μ

′
1, · · · R′

nα
′
nμ

′
n) is a combination of the atoms and

the xyz components such that (0α1μ1, · · · Rnαnμn) is per-
muted and translated to bring the first atom to the original
primitive cell 0. On the other hand, the permutation symmetry
of the IFCs in the real space is

�μ1···μn (0α1, · · · Rn(Jn)αn) = �μ′
1···μ′

n
(0α′

1, · · · R′
n(J ′

n)α′
n),
(D9)

where (0α′
1μ

′
1, · · · R′

n(J ′
n)α′

nμ
′
n) is a combination of the atoms

and xyz components such that (0α1μ1, · · · Rn(Jn)αnμn) is per-
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muted and translated to bring the first atom to the original
primitive cell in the original supercell R(J ) = 0(0). Thus, in
addition to Eq. (D9), the c coefficients need to satisfy

cJ2···Jn
R2···Rn,α1···αn,μ1···μn

= c
J ′

2···J ′
n

R′
2···R′

n,α
′
1···α′

n,μ
′
1···μ′

n
(D10)

for the IFCs to satisfy permutation symmetry in the infinite
space.

The acoustic sum rule in the supercell is

∑
Rnαn

�supercell
μ1···μn−1μn

(0α1, · · · , Rn−1αn−1, Rnαn) =
∑

RnαnJn

( ∑
J2···Jn−1

�μ1···μn−1μn (0α1, · · · , Rn−1(Jn−1)αn−1, Rn(Jn)αn)
)

= 0, (D11)

for all μ1, · · · , μn, α1, · · · , αn−1, R2, · · · , Rn−1, which is a
weaker condition than ASR in the real space,

∑
RnJnαn

�μ1···μn−1μn (0α1, · · · , Rn−1(Jn−1)αn−1, Rn(Jn)αn)

=
∑

RnJnαn

cJ2···Jn
R2···Rn,α1···αn,μ1···μn

�supercell
μ1···μn

(0α1, · · · Rnαn)

= 0, (D12)

for all μ1, · · · , μn, α1, · · · , αn−1, R2(J2), · · · , Rn−1(Jn−1). In
general, the coefficients cJ2···Jn

R2···Rn,α1···αn,μ1···μn
need to be deter-

mined before calculating the IFCs in the supercell to impose
the constraint of Eq. (D12). For the IFCs to satisfy the
space group symmetry in the real space, the coefficients
cJ2···Jn

R2···Rn,α1···αn,μ1···μn
needs to be compatible with the symme-

try operations, like the above discussion on the permutation
symmetry.

Two conventions had been implemented in the ALAM-
ODE package to distribute IFCs to the mirror images, which
we discuss in relation with constraints on IFCs in the infinite
real space. Both conventions distribute IFCs to the mirror
images after calculating the IFCs in the supercell, which
made it impossible to satisfy the permutation symmetry and
the acoustic sum rule at the same time. In one convention,
the IFCs are distributed to the mirror images that the sum of
the distance between all pairs

∑
i �= j

dRi (Ji )αi,R j (Jj )α j (D13)

is minimum. dRi (Ji )αi,R j (Jj )α j is the distance between the
atoms Ri(Ji )αi and R j (Jj )α j . This way of determining
cJ2···Jn

R2···Rn,α1···αn,μ1···μn
is compatible with the permutation sym-

metry and the space group symmetry. The IFCs made in this
convention satisfies the permutation symmetry and the space
group symmetry in infinite space. However, ASR is broken
in the infinite real space because Eq. (D12) is not imposed.
In the other convention, the IFCs are distributed to the mirror
images in which the distances between the first atom and each
of the other atoms (d0(0)α1,Ri (Ji )αi for i �= 1) are the minimum.
The distance between atoms but the first atom (dRi (Ji )αi,R j (Jj )α j

for i, j �= 1) are not considered. This convention breaks the
permutation symmetry in the infinite space because the first
atom is treated differently. However, it satisfies ASR in the
real space because the choice of J2, · · · , Jn are uncorrelated
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FIG. 12. The harmonic phonon dispersions of silicon in different
lattice constants. ±2% means that lattice constant is expanded by
±2% from the reference structure. The calculation results of the IFC
renormalization (renormalized IFCs) are compared with the results
of DFT calculations at each lattice constant (IFCs extracted from
DFT).

so that∑
RnJnαn

�μ1···μn−1μn (0α1, · · · , Rn−1(Jn−1)αn−1, Rn(Jn)αn)

(D14)

is independent of J2, · · · , Jn−1.
In this research, we implement a program to the ALAM-

ODE package to calculate IFCs, which satisfy the permutation
symmetry, ASR, and the space group symmetry in the infinite
space. We first calculate cJ2···Jn

R2···Rn,α1···αn,μ1···μn
to distribute equal

values to the mirror images that the sum of the distance be-
tween all pairs is minimum. Then the IFCs in the supercell is
calculated to satisfy the permutation symmetry and the space
group symmetry in the supercell and the ASR in the real space
[Eq. (D12)].

APPENDIX E: TEST OF THE IFC RENORMALIZATION BY
THE STRAIN

The IFC renormalization associated with the change of
internal coordinates does not affect the fitting accuracy of
the potential energy surface. This is because it does not
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FIG. 13. Harmonic phonon dispersions of cubic BaTiO3 in lat-
tice constants expanded by 1% and 2% from the reference structure.
The calculation results of the IFC renormalization (renormalized
IFCs) are compared with the results of DFT calculations at each
lattice constant (IFCs extracted from DFT).

alter the functional form of the potential energy surface. How-
ever, the IFC renormalization by the strain estimates the set of
IFCs in deformed unit cells from the IFCs in the reference
structure. Therefore, thorough tests are necessary to confirm
the accuracy of the method.

We first consider the harmonic IFCs of silicon. The har-
monic phonon dispersions of silicon are calculated for lattice
constants expanded by ±2% from the reference structure.
As shown in Fig. 12, the phonon dispersions calculated by
the IFC renormalization (renormalized IFCs) correctly repro-
duce the results of DFT calculations at each lattice constant
(IFCs extracted from DFT). In conjunction with the success
of the IFC renormalization in calculating the thermal ex-
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FIG. 14. Harmonic phonon dispersions of cubic BaTiO3 in lat-
tice constants expanded by 1% and 2% from the reference structure.
The calculation results of the IFC renormalization (renormalized
IFCs) are compared with the results of DFT calculations at each lat-
tice constant (IFCs extracted from DFT). The strain-mode coupling
constants are given as independent inputs in IFC renormalization.
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FIG. 15. Temperature dependence of the SCP frequency 
kλ of
cubic BaTiO3 with the lattice constant expanded by 1% from the ref-
erence structure. For the calculation of the solid lines, the harmonic
IFCs for the expanded lattice constant and the quartic IFCs in the
reference lattice constant are used. This corresponds to calculating
quartic IFCs with IFC renormalization because the quartic IFCs are
kept fixed in our calculation. For the calculation of dotted lines, the
IFCs at the expanded lattice constant are used.
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FIG. 16. Comparison of the T -dependent crystal structure of
BaTiO3 in its cubic-tetragonal phase transition with different settings
in the IFC calculation. The pairs (cutoff radius, Nmax) are (cutoff = 9
Bohr, Nmax = 3) for the solid line, (cutoff = 12 Bohr, Nmax = 3) for
the dashed line, (cutoff = 15 Bohr, Nmax = 3) for the dotted line, and
(cutoff = 9 Bohr, Nmax = 4) for the chain line. The nuclear quantum
effect is taken into account in the calculations.
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FIG. 17. The comparison of the T -dependent crystal structure of
BaTiO3 in the virtual cubic-orthorhombic phase transition with dif-
ferent settings in the IFC calculation. The pairs (cutoff radius, Nmax)
are (cutoff = 9 Bohr, Nmax = 3) for the solid line, (cutoff = 12 Bohr,
Nmax = 3) for the dashed line, (cutoff = 15 Bohr, Nmax = 3) for the
dotted line, and (cutoff = 9 Bohr, Nmax = 4) for the chain line. The
nuclear quantum effect is taken into account in the calculations.

pansion(Fig. 2 in Sec. IV A), we can conclude that the IFC
renormalization is accurate for weakly anharmonic materials,
in which the low-order Taylor expansion accurately describes
the potential energy surface.

On the contrary, as shown in Fig. 13, the IFC renormaliza-
tion by Eq. (13) overestimates the frequency shift of the soft
mode of BaTiO3. This can be because the up-to-quartic IFCs
does not perfectly reproduce every detail of the complicated
potential energy surface. Thus, the calculated IFCs cannot
be extended for deformed cells, which is not included in the
training data for the IFC calculation.

To avoid the error in the IFC renormalization,
we directly calculate the strain-mode coupling
∂�̃μ1μ2 (R1α1, R2α2)

∂uμ′
1ν

′
1

|q(0)=0,uμν=0 by fitting the relation

between the strain and the harmonic IFCs. These coupling
constants are given as inputs independent from the IFCs. The
harmonic IFCs are expected to change smoothly with cell
deformation because the number of independent degrees of
freedom is small and nonanalytic regularization terms are not
used in the calculation. Replacing the strain-mode coupling
in the RHS of Eq. (C13), we get Fig. 14, in which the change
of harmonic dispersion is accurately reproduced with the IFC
renormalization.

300 400 500 600 700
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

st
ra
in
u
μ
ν

uxx = uyy = uzz

uxy = uyz = uzx

300 400 500 600 700
Temperature [K]

−0.08
−0.06
−0.04
−0.02
0.00

0.02

0.04

0.06

at
om
ic
d
is
p
la
ce
m
en
t
u
[Å
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FIG. 18. The comparison of the T -dependent crystal structure of
BaTiO3 in the virtual cubic-rhombohedral phase transition with dif-
ferent settings in the IFC calculation. The pairs (cutoff radius, Nmax)
are (cutoff = 9 Bohr, Nmax = 3) for the solid line, (cutoff = 12 Bohr,
Nmax = 3) for the dashed line, (cutoff = 15 Bohr, Nmax = 3) for the
dotted line, and (cutoff = 9 Bohr, Nmax = 4) for the chain line. The
nuclear quantum effect is taken into account in the calculations.

Besides, we check the accuracy of the renormalized an-
harmonic IFCs in BaTiO3. Because it is difficult to directly
visualize the anharmonic IFCs, we investigate the temperature
dependence of the SCP frequency 
kλ, which reflects the
significance of the quartic IFCs. The quartic IFCs are fixed
in our calculation of IFC renormalization because the Taylor
expansion is truncated at fourth order. As shown in Fig. 15, us-
ing fixed quartic IFCs has little effect on the SCP frequencies,
which indicates that the IFC renormalization works accurately
for the anharmonic IFCs of BaTiO3.

APPENDIX F: TEST OF CONVERGENCE WITH RESPECT
TO THE CUTOFF RADIUS AND Nmax IN THE IFC

CALCULATION

The cutoff radius and the maximum number of distinct
atoms Nmax involved in each IFC are adjustable parameters
in the IFC calculation. The cutoff radius sets the maximum
distance between the atoms. The IFCs are automatically set
to zero for the combination of atoms that contains a pair
whose distance is larger than the cutoff radius. Setting a larger
cutoff enables more accurate fitting, but it also leads to higher
computational costs.
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[Å
]

Ba uz

Ti uz

O(x,y) uz

O(z) uz

FIG. 19. The comparison of the T -dependent crystal structure of
BaTiO3 in the cubic-tetragonal phase transition with different num-
ber of k points in the SCP calculation. The k point mesh is 8 × 8 × 8
for the solid line, 12 × 12 × 12 for the dashed line, and 16 × 16 × 16
for the dotted line. The dotted line (16 × 16 × 16) almost completely
overlaps with the dashed line (12 × 12 × 12). The nuclear quantum
effect is taken into account in the calculations.

Correspondingly, larger Nmax means more degrees of free-
dom in fitting the displacement-force data. It makes the fitting
more accurate but calculating the IFCs become more costly.

We change the cutoff radius and Nmax of the quartic IFCs
of BaTiO3 to check the convergence of the calculation results,
which results are shown in Figs. 16–18. The cutoff radius for
the cubic IFCs is fixed to 15.0 Bohr, which is comparable to
the size of the supercell. No cutoff radius is set for harmonic
IFCs. Nmax = 2, 3 for harmonic and cubic IFCs, respectively,
is employed, which does not impose any restrictions on these
IFCs. Later in this Appendix, the cutoff and Nmax refers to
those for the quartic IFCs. We calculate the transitions be-
tween the cubic phase and each of the other three phases to
take full advantage of crystal symmetry because the symmetry
groups of rhombohedral and orthorhombic phases are not
subgroups of that of orthorhombic and tetragonal phases re-
spectively. The results in Figs. 16–18 are obtained by heating
calculations, which is explained in Sec. IV B. In Figs. 16–
18, the IFCs calculated by setting cutoff = 9 Bohr, Nmax =
3 (solid line) and cutoff = 9 Bohr, Nmax = 4 (chain line)
produces almost the same result. This indicates that restrict-
ing the quartic IFCs to three-body ones (Nmax = 3) does not
affect the calculation result, which is fortunate because setting
Nmax = 4 with larger cutoff makes the calculation expensive.
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FIG. 20. The comparison of the T -dependent crystal structure
of BaTiO3 in the virtual cubic-orthorhombic phase transition with
different number of k points in the SCP calculation. The k point
mesh is 8 × 8 × 8 for the solid line, 12 × 12 × 12 for the dashed line,
and 16 × 16 × 16 for the dotted line. The dotted line (16 × 16 × 16)
almost completely overlaps with the dashed line (12 × 12 × 12). The
nuclear quantum effect is taken into account in the calculations.

Comparing the results of different cutoff radii, we can see
that the calculation results are convergent when cutoff = 12
Bohr. This also implies that the supercell is large enough be-
cause the calculation result converges with a cutoff, which is
smaller than the size of the supercell. Note that the length of
a side of the 2 × 2 × 2 supercell of BaTiO3 is 7.9711 Å =
15.063 Bohr. We use the IFCs calculated with cutoff = 15
Bohr, Nmax = 3 in the main part of this paper.

APPENDIX G: TEST OF CONVERGENCE WITH RESPECT
TO THE NUMBER OF k-POINTS IN THE SCP

CALCULATION

In this Appendix, we check the convergence of the calcula-
tion results with respect to the number of k points in the SCP
calculation. We calculate the temperature-dependent crystal
structure of BaTiO3 in the transitions between the cubic phase
and each of the other three phases, as in Appendix F. We
compare the result of heating calculations to check the conver-
gence in low-symmetry phases in a wider temperature range.
As depicted in Figs. 19–21, the calculation results is conver-
gent with the 8 × 8 × 8 k mesh except in the very vicinity of
the structural phase transition. We use 8 × 8 × 8 k mesh in the
main text because the SCP calculation did not always show
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FIG. 21. The comparison of the T -dependent crystal structure
of BaTiO3 in the virtual cubic-rhombohedral phase transition with
different number of k points in the SCP calculation. The k point
mesh is 8 × 8 × 8 for the solid line, 12 × 12 × 12 for the dashed line,
and 16 × 16 × 16 for the dotted line. The dotted line (16 × 16 × 16)
almost completely overlaps with the dashed line (12 × 12 × 12). The
nuclear quantum effect is taken into account in the calculations.

robust convergence when increasing the number of k-points.
Improving the SCP solver to achieve more robust and efficient
convergence is a topic of future research.

APPENDIX H: TEST ON THE EFFECT OF THE
NONANALYTIC CORRECTION TO THE DYNAMICAL

MATRIX

In the main text, we do not add the nonanalytic correc-
tion to the dynamical matrix in SCP calculations to enhance
the convergence of the SCP calculations. Here, we check
the effect of nonanalytic contribution by comparing the cal-
culation results of the cubic-tetragonal transition, in which

TABLE III. The fractional coordinates of each atom in the prim-
itive cell of BaTiO3 in the cubic phase. The lattice constant of the
reference cubic structure is 3.9855 Å.

Ba 0.0 0.0 0.0
Ti 0.5 0.5 0.5
O(1) 0.0 0.5 0.5
O(2) 0.5 0.0 0.5
O(3) 0.5 0.5 0.0
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FIG. 22. The comparison of the T -dependent crystal structure of
BaTiO3 in the cubic-tetragonal phase transition with (the solid line)
and without (the dashed line) nonanalytic correction to the dynamical
matrix in SCP calculations. The nonanalytic correction is considered
in the mixed-space approach [85]. The nuclear quantum effect is
taken into account in the calculations.

the calculation converged the most robustly. The nonanalytic
contribution makes the calculation more unstable, presumably
because the mixed-space approach [85] causes unreasonable
curves in the low-energy harmonic dispersions. As shown

TABLE IV. The Born effective charges of BaTiO3 in the refer-
ence cubic structure. The unit is the elementary charge e.

2.725 0.000 0.000
Ba 0.000 2.725 0.000

0.000 0.000 2.725

7.068 0.000 0.000
Ti 0.000 7.068 0.000

0.000 0.000 7.068

−5.576 0.000 0.000
O(1) 0.000 −2.109 0.000

0.000 0.000 −2.109

−2.109 0.000 0.000
O(2) 0.000 −5.576 0.000

0.000 0.000 −2.109

−2.109 0.000 0.000
O(3) 0.000 −2.109 0.000

0.000 0.000 −5.576
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FIG. 23. The comparison of the T -dependent crystal structure of
BaTiO3 in the cubic-tetragonal phase transition using IFCs calculated
in different supercells. The solid line and the dashed lines represent
the cooling and heating calculation with harmonic IFCs calculated in
the 2 × 2 × 2 supercell, respectively. The dotted line and the chain
line are the cooling and heating calculations with harmonic IFCs
calculated in the 4 × 4 × 4 supercell. The nuclear quantum effect is
taken into account in the calculations.

in Fig. 22, the nonanalytic contribution makes a small dif-
ference when the calculation converges, which validates
the calculations without nonanalytic correction in the main
text.

APPENDIX I: TEST OF CONVERGENCE WITH RESPECT
TO THE SIZE OF THE SIZE OF THE SUPERCELL IN IFC

CALCULATION

In order to check the convergence of the calculation results
with respect to the size of the supercell in IFC calculation,
we obtain the harmonic IFCs using the 4 × 4 × 4 supercell
and use them in the structural optimization. We use the an-
harmonic IFCs calculated in the 2 × 2 × 2 supercell since
the higher-order IFCs are more short-ranged in general. In
addition, as discussed in Appendix F, the calculation results
are fairly converged on the cutoff radius, which indirectly
demonstrates the convergence on the supercell size for the
anharmonic IFCs.

The comparison of the calculation results are shown in
Figs. 23–25. Although the transition temperatures are shifted
when changing the supercell size, the T dependence of the
crystal structure agrees well except in the vicinity of the
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FIG. 24. The comparison of the T -dependent crystal structure
of BaTiO3 in the virtual cubic-orthorhombic phase transition using
IFCs calculated in different supercells. The solid line and the dashed
lines represent the cooling and heating calculation with harmonic
IFCs calculated in the 2 × 2 × 2 supercell, respectively. The dotted
line and the chain line are the cooling and heating calculations with
harmonic IFCs calculated in the 4 × 4 × 4 supercell. The nuclear
quantum effect is taken into account in the calculations.

structural phase transitions. The differences in the transition
temperatures are nearly 100 K, which is comparable to the
error from the PBEsol functional. Note that the dependence on
the DFT functionals will be much more prominent in general
because the calculated transition temperatures are susceptible
to the accuracy of the lattice constants.

TABLE V. The crystal structure of BaTiO3 in the tetragonal
phase calculated by the structural optimization at zero-temperature
based on DFT.

Lattice vectors [Å]

a1 3.9709 0.0000 0.0000
a2 0.0000 3.9709 0.0000
a3 0.0000 0.0000 4.0472

Atomic displacements [Å]

uBa 0.0000 0.0000 0.0382
uTi 0.0000 0.0000 0.0993
uO(1) 0.0000 0.0000 −0.0235
uO(2) 0.0000 0.0000 −0.0235
uO(3) 0.0000 0.0000 −0.0702
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FIG. 25. The comparison of the T -dependent crystal structure
of BaTiO3 in the virtual cubic-rhombohedral phase transition using
IFCs calculated in different supercells. The solid line and the dashed
lines represent the cooling and heating calculation with harmonic
IFCs calculated in the 2 × 2 × 2 supercell, respectively. The dotted
line and the chain line are the cooling and heating calculations with
harmonic IFCs calculated in the 4 × 4 × 4 supercell. The nuclear
quantum effect is taken into account in the calculations.

TABLE VI. The Born effective charges of BaTiO3 in the tetrag-
onal structure in Table V. The unit is the elementary charge e.

2.726 0.000 0.000
Ba 0.000 2.726 0.000

0.000 0.000 2.804

7.021 0.000 0.000
Ti 0.000 7.021 0.000

0.000 0.000 5.823

−5.606 0.000 0.000
O(1) 0.000 −2.098 0.000

0.000 0.000 −1.983

−2.098 0.000 0.000
O(2) 0.000 −5.606 0.000

0.000 0.000 −1.983

−2.043 0.000 0.000
O(3) 0.000 −2.043 0.000

0.000 0.000 −4.661

TABLE VII. The crystal structure of BaTiO3 in the orthorhombic
phase calculated by the structural optimization at zero-temperature
based on DFT.

Lattice vectors [Å]

a1 4.0170 0.0062 0.0000
a2 0.0062 4.0170 0.0000
a3 0.0000 0.0000 3.9658

Atomic displacements [Å]

uBa 0.0297 0.0297 0.0000
uTi 0.0809 0.0809 0.0000
uO(1) −0.0533 −0.0146 0.0000
uO(2) −0.0146 −0.0533 0.0000
uO(3) −0.0225 −0.0225 0.0000

APPENDIX J: TEST ON USING THE FIXED BORN
EFFECTIVE CHARGES IN CALCULATING THE

SPONTANEOUS POLARIZATION

In Sec. IV B 1, the spontaneous polarization is calculated
with Eq. (25). Here, the Born effective charges Z∗

α,μν are
fixed to the values at the reference cubic structure. In this
Appendix, we check the change of the Born effective charges
at different phases and estimate the error of the spontaneous
polarization.

We calculate the crystal structure in the three low-
temperature phases of BaTiO3 by the structural optimization
of DFT and calculate the Born effective charges at each
phase (see Tables III–X). The optimum crystal structure in
the tetragonal, orthorhombic, and rhombohedral phases are
shown in Tables V, VII, and IX respectively. Note that the
high-symmetry position of each atom is shown in Table III.
Compared to the crystal structures at finite temperatures,
we can see that the deviations from the cubic structure are
about twice as large. The Born effective charges in the low-
temperature phases are shown in Tables VI, VIII, and X.
Compared to those in the reference cubic structure shown

TABLE VIII. The Born effective charges of BaTiO3 in the or-
thorhombic structure in Table VII. The unit is the elementary charge
e.

2.776 −0.016 0.000
Ba −0.016 2.776 0.000

0.000 0.000 2.728

6.180 −0.319 0.000
Ti −0.319 6.180 0.000

0.000 0.000 7.018

−4.954 0.088 0.000
O(1) 0.266 −1.991 0.000

0.000 0.000 −2.058

−1.991 0.266 0.000
O(2) 0.088 −4.954 0.000

0.000 0.000 −2.058

−2.010 −0.020 0.000
O(3) −0.020 −2.010 0.000

0.000 0.000 −5.629
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TABLE IX. The crystal structure of BaTiO3 in the rhombohedral
phase calculated by the structural optimization at zero-temperature
based on DFT.

Lattice vectors [Å]

a1 4.0009 0.0041 0.0041
a2 0.0041 4.0009 0.0041
a3 0.0041 0.0041 4.0009

Atomic displacements [Å]

uBa 0.0249 0.0249 0.0249
uTi 0.0690 0.0690 0.0690
uO(1) −0.0435 −0.0151 −0.0151
uO(2) −0.0151 −0.0435 −0.0151
uO(3) −0.0151 −0.0151 −0.0435

in Table IV, the Born effective charges in the direction of
polarization gets smaller by about 20% in the low-temperature
phases. Thus, we estimate that the Born effective charges
at the finite-temperature crystal structures are deviated by
around 20/2 = 10% from those in the reference cubic struc-
ture. Since the spontaneous polarization is the integral of Born

TABLE X. The Born effective charges of BaTiO3 in the rhombo-
hedral structure in Table IX. The unit is the elementary charge e.

2.763 −0.011 −0.011
Ba −0.011 2.763 −0.011

−0.011 -0.011 2.763

6.400 −0.244 −0.244
Ti −0.244 6.400 −0.244

−0.244 −0.244 6.400

−5.135 0.072 0.072
O(1) 0.199 −2.014 −0.016

0.199 −0.016 −2.014

−2.014 0.199 −0.016
O(2) 0.072 −5.135 0.072

−0.016 0.199 −2.014

−2.014 −0.016 0.199
O(3) −0.016 −2.014 0.199

0.072 0.072 −5.135

effective charges with respect to the structural changes, the
error of the spontaneous polarization by using the fixed Born
effective charge is around 5%, which does not significantly
affect the calculation results.
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