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Microscopic origin of the electric Dzyaloshinskii-Moriya interaction
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The microscopic origin of the electric Dzyaloshinskii-Moriya interaction (eDMI) is unveiled and discussed
by analytical analysis and first-principles based calculations. As similar to the magnetic Dzyaloshinskii-Moriya
interaction (mDMI), eDMI also originates from the electron-mediated effect and more specifically from certain
electron hoppings that are being activated due to certain local inversion-symmetry breaking. However, the eDMI
energy is found to be at least a third-order interaction in atomic displacements instead of bilinear in magnetic
dipole moments for mDMI. Furthermore, the eDMI energy form is presented, and we find that novel electrical
topological defects (namely, chiral electric bobbers) can arise from this eDMI. Thus unraveling the microscopic
origin of eDMI has the potential to lead to, and explain, the discovery of novel polar topological phases.
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I. INTRODUCTION

The seminal works that addressed and explained the mag-
netic Dzyaloshinskii-Moriya interaction (DMI) were done in
1957 and 1960 by Dzyaloshinskii [1,2] and Moriya [3], and
named after them. Dzyaloshinskii first pointed out the exis-
tence of the antisymmetric form of interaction by symmetry
analysis. Moriya then derived the microscopic origin of the
magnetic Dzyaloshinskii-Moriya interaction (mDMI) by con-
sidering the spin-orbit coupling (SOC) and taking electron
hopping as perturbation. mDMI revolutionized magnetism,
since it, e.g., explains nontrivial noncollinear topological tex-
tures such as vortices [4,5], skyrmions [6–19], and domain
walls [20,21], which is intriguing for both fundamental theory
and potential applications.

Magnetic effects normally have their electric analog
counterpart which is deep-rooted in electromagnetic theory.
Strikingly, despite the fact that ferroelectric vortices and
skyrmions have been recently reported in superlattices made
of ferroelectric Pb(Zr,Ti)O3 or PbTiO3 sandwiched by ei-
ther paraelectric SrTiO3 dielectric layers [22–26] or SrRuO3

metallic layers [27], after having been predicted [28–30],
it was not clear until recently whether an electric analog
of mDMI exists. As a matter of fact, such exotic orders
of electric dipoles were typically explained by electrostatic
boundary conditions [31] rather than by considering the
electric Dzyaloshinskii-Moriya interaction (eDMI). Recent
symmetry analysis and ab initio calculations by Zhao et al.
[32] and the observation of helical textures of electric dipoles
[33] in bulk perovskites (which are systems for which there is
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no depolarization field) have changed such perception. The
discovery of eDMI not only should deepen our knowledge
of electromagnetic phenomena (e.g., magnetic noncollinear
spins versus electric noncollinear dipole patterns), but is also
of technological importance. For example, mDMI generally
plays an primordial role in generating magnetic topologi-
cal phases (e.g., helimagnets [34–36], skyrmions [6–19], and
merons [18,37,38]). These magnetic topological phases have
potential applications in designing logical/storage devices
based on magnetic fields or electric currents. However, chal-
lenges still exist for magnetic topological defects [39,40],
which are that (1) the size of these defects, such as magnetic
skyrmions, needs to be scaled down from micrometer (or
100 nm) to nanometers; (2) topological defects like magnetic
skyrmions usually need an external magnetic field to assist
their stability and the temperature at which they exist can
be rather low; and (3) the response velocity of the magnetic
topological phases under external field (especially electric
field/current) needs to be improved. The discovery of possible
electric topological phases (e.g., the electric counterpart of
mDMI-based helical electric polar structures [33], electric po-
lar skyrmions [24,30], and electric polar vorticies [22,23,25–
27]) has the potential to overcome these drawbacks, since
(i) the observed electric topological phases are in nanome-
ter scale and many have been reported at room temperature
[22–27,33]; (ii) an electric field control of dipole textures
would avoid the Joule heating (and thus leads to low-power
devices) [39]; and (iii) electric dipole textures normally have
a fast response to the electric field. Moreover, from a funda-
mental physical knowledge viewpoint, the discussion of an
intrinsic eDMI term that could stabilize the above-mentioned
topological defects has long been overlooked when studying
ferroelectric/polar materials, until recent ab initio calculations
[32] clearly indicated its existence.
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Let us recall that in Ref. [32], phenomenological models
revealed a sequence of trilinear couplings, which showcase
the existence of eDMI coming from oxygen octahedral rota-
tions. However, many important ferroelectric materials (such
as PbTiO3 and KNbO3) do not have any oxygen octahedral
tiltings and, as will be shown in this paper, they do possess
eDMI. One may thus wonder if there is a general theory to
explain the eDMI from a microscopic point of view and if the
previously found oxygen-octahedral-tiling-mediated eDMI is
only a special case. In this paper, we aim at addressing the
microscopic origin of such an eDMI and answering several
important open questions: (i) What is the microscopic origin
of eDMI energy which gives rise to a cross-product form of
ionic displacements ui and u j :

D(i, j) · (ui × u j ), (1)

where D(i, j) is the eDMI vector? (ii) Is eDMI a classi-
cal or quantum effect? (iii) What is the energy scale of the
eDMI? Practically, bulk PbTiO3 is selected as a study plat-
form. We first show that eDMI can be obtained by extracting
the antisymmetric part of the force constants. Then, a Green’s
function perturbation method in a tight-binding (TB) electron
Hamiltonian is adopted to study the origin of such antisym-
metric feature. By carefully looking into the forces coming
from different orbital hopping channels, we then find that a
similar mechanism that gives rise to mDMI also happens in
ferroelectric materials and thus induces eDMI. More specif-
ically, we discover that (1) certain local inversion-symmetry
breaking activates forbidden electron hopping channels on
adjacent atomic sites; and (2) it is the combination of the
orbitals following certain selection rules that results in the
antisymmetric form of forces and thus eDMI. We also provide
an analytical form of the eDMI energy in perovskite materials,
as well as compute its coefficient which is estimated to be only
one order smaller than that of the typical energy that favors
collinear polar texture. Consequently, noncollinear arrange-
ments resulting from this eDMI have the potential to occur
and be observed.

II. FORMALISM

A. Antisymmetric force constants and eDMI

The ferroelectric polarization can be characterized by a col-
lection of atomic displacements. Taking PbTiO3 as in Fig. 1(a)
for example, the first-principles calculated normalized polar
mode (which is soft in the cubic structure) consists of titanium
and lead cations displaced by 0.78 and 0.31 Å along the pos-
itive z direction, respectively; the oxygen anions that are on
the side of titanium ions within (001) planes being displaced
by 0.38 Å in the negative z direction; and the oxygen anions
that align with titanium ions along the z axis being vertically
displaced by 0.08 Å in the positive z direction. Considering
that the titanium cation has the largest displacement and is par-
allel to the total polarization, we use here the force constants
[41] between titanium sites to study qualitatively the force
constants of polarization [42] (note that experiments also use
atomic displacements, such as those of titanium and lead ions,
to visualize noncollinear dipolar configurations [22,24,25],
which is another reason we use the force constants of specific
ionic sites). In the purpose of studying eDMI, we extract

FIG. 1. (a) Tetragonal phase of PbTiO3, with titanium ions dis-
placed along the z direction. (b) Illustrative plot of some atomic
displacements under certain force constants Fαβ (i, j) between ti-
tanium pairs with i = Ti0 and j = Ti+1 along the x direction:
Fxz(Ti0, Ti+1) and Fzx (Ti0, Ti+1). Note that Fzx (Ti−1, Ti0) is equal to
Fzx (Ti0, Ti+1) due to the translational symmetry along the x direction.
The red vectors illustrate one possible set of the atomic displacement
pattern that could result from a negative Fxz(Ti0, Ti+1) and positive
Fzx (Ti0, Ti+1).

the antisymmetric part of the force constant matrix between
different sites i and j via

‖F A(i, j)‖ = 1
2 (‖F (i, j)‖ − ‖F (i, j)‖T), (2)

where T is the matrix transpose operation, ‖F (i, j)‖ is the
force constant matrix between sites i and j, and the achieved
‖F A(i, j)‖ is antisymmetric as it satisfies ‖F A(i, j)‖ =
−‖F A(i, j)‖T. As detailed in Sec. I of the Supplemental Ma-
terial [43] (see, also, Refs. [44–55,55–57,57–65] therein), it is
the antisymmetric part of force constants that gives rise to the
energy as in Eq. (1) and defines the eDMI vector D(i, j) via

D(i, j) = (
F A

y,z, F A
z,x, F A

x,y

)
, (3)

where F A
y,z = (Fy,z − Fz,y )/2, F A

z,x = (Fz,x − Fx,z )/2, F A
x,y =

(Fx,y − Fy,x )/2, and the Cartesian directions of x, y, and z
are used here to indicate matrix entries of the force constant
matrix. Note also that, by the antisymmetric part of force
constants, we mean the force constant matrix between a pair of
ions rather than the overall force constant matrix that contains
all ions, since such latter force constant matrix is always
symmetric [41].

B. Orbital-resolved force constants

Normally, density functional perturbation theory (DFPT)
takes the variation of electron density with respect to the
ionic displacements and calculates the force constants in self-
consistent processes. Though higher-order corrections can be
included, the physical insight is missing. For example, it does
not reveal which orbital specifically contributes to the force
constants and how it results in an antisymmetric character.
Alternatively, we thus decided to use a perturbation method
derived from a tight-binding (TB) Hamiltonian to calculate
the antisymmetric part of the force constants, which allows
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us to analyze orbital-resolved force constants. The details of
this method can be found in Refs. [53,54] and have also been
summarized in Sec. IV of the Supplemental Material [43].
Interestingly, a similar formalization has been previously used
to calculate the magnetic exchange parameters [57,60,62]
Jαβ (i, j) which can be seen as “force constants” of spins and
whose antisymmetric part corresponds to mDMI. The only
difference between calculating Jαβ (i, j) and Fαβ (i, j) is that
instead of taking ionic displacement as perturbation, Jαβ (i, j)
takes spin rotations. Such formalism has also recently been
used to explain mDMI in the trihalides CrCl3 and CrI3 [66],
Mn3Sn [67], and clusters of 3d metals [68].

As detailed in Sec. IV of the Supplemental Material [43],
the force constants Fαβ (i, j) can be written as integration of
force constant density [53,54] fα,β (ε, i, j) as

Fαβ (i, j) =
∫ ε f

−∞
fα,β (ε, i, j)dε (4)

in which

fα,β (ε, i, j) =
∑
m,n

ξm,n
α,β (ε, i, j), (5)

where the orbital-resolved force constant density ξm,n
α,β can be

further written as

ξm,n
α,β (ε, i, j)

= − 1

2π
Im[〈m, i|Ui,αĜ0(ε)Uj,β |n, j〉〈n, j|Ĝ0(ε)|m, i〉],

(6)

where U are effective perturbation potentials as defined in
Sec. IV of the Supplemental Material [43] and in Ref. [53].
Note that Ui,α is taken here as a short notation of ∂U

∂τi,α
, where

τ is the ionic position of site i. The Green’s function oper-
ator Ĝ0(ε) is defined as

∑
p

|p〉〈p|
ε−εp+iη , where εp and |p〉 are

the energy and wave function in the unperturbed system H0;
Im is the operation to take the imaginary part. Since the
total force constants of Eq. (4) are calculated by integrating
fα,β (ε, i, j), these latter are called the force constants’ density
as a function of energy ε. Equation (5) defines ξm,n

α,β (ε, i, j) as
orbital-resolved force constant density from orbital m on site
i and orbital n on site j, and the summations of ξm,n

α,β (ε, i, j)
over orbitals m and n gives rise to force constant density
fα,β (ε, i, j) in see Eq. (5). Employing Eq. (4) in Eq. (3),
the D vector can be rewritten in force constant density
expressions as

D(i, j) =(Dx(i, j),Dy(i, j),Dz(i, j)), (7)

where

Dx(i, j) =1

2

∫ ε f

−∞
[ fy,z(ε, i, j) − fz,y(ε, i, j)]dε, (8)

Dy(i, j) =1

2

∫ ε f

−∞
[ fz,x(ε, i, j) − fx,z(ε, i, j)]dε, (9)

Dz(i, j) =1

2

∫ ε f

−∞
[ fx,y(ε, i, j) − fy,x(ε, i, j)]dε. (10)

Detailed derivations for reproducing the orbital-resolved force
constant density as in Refs. [53,54] can be found in Sec. IV
the Supplemental Material [43].

C. Numerical details

For the numerical calculation, we use the symmetry-
adapted Wannier basis [69] for the TB Hamiltonian. The
Wannierization is performed using Wannier90 [70] and Quan-
tum Espresso [71,72] to extract all the following orbitals
of Ti : 4s1, 3p3, 3d5, Pb : 6s1, 6p3, 5d5, and O : 2s1, 2p3, 30
Wannier functions in total. Note that each Wannier func-
tion is twofold degenerated since we are working with a
spin-nonpolarized situation. The core electrons are treated as
tightly bound to the nucleus by optimized norm-conserving
Vanderbilt pseudopotentials [73]. The Green’s function
G0(ε, k) is calculated by numerically inverting (ε + ε f )I −
H0(k), where H0 is the TB Hamiltonian of the unperturbed
structure, I is an identity matrix, ε f is the Fermi energy level
from the self-consistent first-principle calculation, and k is
the Bloch vector defined in the first Brillouin zone. Fourier
transformation can then be used to determine the Green’s
function in real space G0(ε, i, j). The bare potential V b,
Hartree potential Vh, and exchange correlation potential Vxc

are extracted from self-consistent first-principles calculations
in order to evaluate the Ũ and U b following the definitions in
Sec. IV of the Supplemental Material [43]. The perturbation
is induced by shifting both the ionic potentials and Wannier
functions by 0.15 Å, numerically. Since the Wannier functions
are predefined in real space on a coarse grid, the displacements
of Wannier functions need to be performed in reciprocal space
first and then transformed back. The finite-difference method
is used to obtain the partial derivatives ∂U

∂τi,α
. Furthermore, the

integration of the complex energy in Eq. (4) is performed over
a rectangular contour. The η in the Green’s function is chosen
to be 0.1 eV, such that the evaluation of − 1

π
ImTr[G0(ε, 0, 0)]

in the original crystal cell (i = 0 and j = 0) reproduces nicely
the same density of states as calculated from first-principles
calculations. The plane-wave energy cutoffs for wave func-
tion and electron density are 50 and 400 Ry, respectively,
in Quantum Espresso. A k mesh of 9 × 9 × 8 is used in the
first-principles self-consistent calculations and a q mesh of
4 × 4 × 4 is used in the DFPT force constant calculations.

III. THE EXISTENCE OF eDMI

Note that eDMI was not thought to exist until the recent
work [32] by Zhao et al. that changed such perception by
demonstrating that it is allowed by symmetry. Note also that
the phenomenological mechanism discussed by Zhao et al. in-
cludes oxygen octahedral tiltings and complex energy forms.
However, the eDMI should exist even in systems that do not
have oxygen octahedral tiltings, such as PbTiO3. Such fact
suggests that there could exist other and possibly simpler
microscopic explanations of eDMI.

A. Intrinsic eDMI in bulk

When performing DFPT calculations on the PbTiO3 tetrag-
onal phase [as depicted in Fig. 1(a) in which the polarization
is along the z direction], we found that the antisymmetric part
of the force constants between titanium sites being nearest
neighbors along the x direction is a matrix ‖F A(i, j)‖ having
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the following elements:

‖F A(i, j)‖ =
⎛
⎝ 0 0 −0.73

0 0 0
0.73 0 0

⎞
⎠, (11)

where the matrix entries go through the Cartesian {x, y, z} di-
rections, and i and j are used to indicate the nearest-neighbor
pair of the titanium sites along the x direction, such as between
Ti−1 and Ti0 or Ti0 and Ti+1 in Fig. 1(b). Consequently, the
D(i, j) vector, according to Eq. (3), involving first nearest
neighbors along the x axis of PbTiO3 is equal to (0,0.73,0)
which favors titanium atoms to be displaced anticlockwise,
as shown in Fig. 1(b). On the other hand, when calculating
the ‖F A(i, j)‖ in the case of the polarization direction being
reversed, the calculated D(i, j) vector is found to reverse to
(0,−0.73, 0), which favors titanium atoms to be displaced
clockwise. Note that the off-diagonal value 0.73 eV/Å2 is
only one-quarter of the largest component of the symmetric
part of force constants ‖F S (i, j)‖x,x = −2.84 and even a little
bit larger in the absolute value than ‖F S (i, j)‖y,y = −0.64 and
‖F S (i, j)‖z,z = −0.66, which suggests a strong competition
between the collinear coupling decided by the symmetric part
of the force constants and the noncollinear coupling decided
by the antisymmetric part of the force constants. Note also
that in the famous bulk/interfacial mDMI pictures [74], the
magnetic interaction between two neighboring ions and a
single third ion (ligand) is the minimal model [40,75,76] to
discuss the mDMI. For example, in ABO3 perovskites, the
mDMI is usually rooted in neighboring B-O-B pairs (e.g.,
the mDMI of Fe-O-Fe pairs in BiFeO3). To understand the
microscopic origin of eDMI in a way resembling the situation
of the mDMI, we start from the B-B pairs (e.g., Ti-Ti pairs
in our model system PbTiO3). Noteworthy is that such an
eDMI is not limited to Ti-Ti pairs, but is also valid for Pb-Pb
pairs. The calculated eDMI for the nearest-neighboring Pb-Pb
pair, given by the D(i, j), is (0,0.075,0), which favors A-site
Pb to be displaced anticlockwise looking from the positive y
direction. Moreover, when calculating the D(i, j) vector for
polar modes that contain contributions from all atoms (Pb, Ti,
and O), a unitary transformation was performed on the whole
force constant matrix [77].

B. Coupling form and scale of eDMI

In order to determine the energetic coupling form that can
give rise to the eDMI vector, we take the centrosymmetric
Pm3̄m phase as reference and look for the energy invariants
written in terms of the displacements u. The third-order terms
are found to be the lowest order that can give rise to anti-
symmetric force constants. Actually, the derived energy term
associated with the polar modes on the nearest-neighbor sites
should always be in odd number of orders and the third order
is therefore the minimal requirement. This is because all ui,
u j , and ei j (vector that is pointing from site i to j) reverse
sign under inversion operation, which means that at least an
extra odd order of ui or u j needs to be included to make the
energy term invariant under inversion symmetry [78]. Thus
a bilinear form as in Eq. (1) with respect to polar modes is
forbidden by symmetry, if D(i, j) does not depend on the u
displacements. Assuming the eDMI to adopt the same form

as the second-order mDMI [79] may not be valid in some
materials. In fact, by symmetry analysis, we find there exists
only one third-order eDMI energy and it can be written in
compact form:

Edmi = A−[(ui + u j ) × ei j] · (ui × u j ), (12)

where A− is constant and A−(ui + u j ) × ei j is the eDMI
D(i, j) vector. Note that we numerically found from DFT
calculations on the ferroelectric tetragonal phase of PbTiO3

that the magnitude of the eDMI vector A−(ui + ui ) × ei j is
7.65 × 106 Nm2/C2. Note that Eq. (12) is the pure chiral
part (giving rise to antisymmetric forces) of the energy that
is itself derived from two energy invariants (that can be found
in Sec. VI of the Supplemental Material [43]). An equivalent
expression that is written in atomistic displacement basis is
also presented in Secs. VI B and C of the Supplemental
Material [43], in order to see the roles from individual atoms.

It is also interesting to realize that the spin current model
[80,81] gives a mDMI for which the energy is proportional to
(ui × ei j ) · (mi × m j ), and thus for which the mDMI vector
is proportional to (ui × ei j ). Such latter vector is very similar
to the eDMI vector A−(ui + u j ) × ei j [see Eq. (12)], which
shows again an essential connection between magnetism and
electricity. Note that the spin current model assumes homoge-
neous dipole moments; thus ui there is equal to (ui + u j )/2.
On the other hand, Eq. (12) emphasizes that eDMI energy
is third order with respect to the ionic displacements, while
mDMI in the spin-current model is bilinear with respect to
magnetic moments and linear with respect to the ionic dis-
placement.

The calculated nonzero D(i, j) vector in bulk PbTiO3

suggests that, in addition to the depolarization field, another
intrinsic mechanism involving now this kind of force con-
stant can also contribute to the formation of polar vortices
observed, e.g., in PbTiO3/SrTiO3 superlattices [22,24,25] and
especially in PbTiO3/SrRuO3 superlattices [27] (because the
metallic SrRuO3 layers can result in much weaker depolariza-
tion field).

C. Chiral electric bobbers from eDMI

It is interesting and important to know what type of dipo-
lar structures one should expect from Eq. (12). Thus we
took the traditional effective Hamiltonian model for PbTiO3

(see Supplemental Material [43] Sec. VII for details) and
additionally considered the eDMI energy in Eq. (12) to ex-
plore such possible electric defects. When we increase the
magnitude of coefficient A−

nn (nearest neighbor) and A−
nnn

(next-nearest neighbor) in front of Eq. (12) from −0.001021
hartrees/bohr3 and −0.000353 hartrees/bohr3 (fitted for
PTO) to values larger than −0.001813 hartrees/bohr3 and
−0.000544 hartrees/bohr3, respectively, chiral electric bob-
bers (the electric counterpart of the ones in magnetic systems
[82–86]) emerge, as depicted in Figs. 2(a) and 2(b). The elec-
tric bobber survives only on the top surface of a monodomain
with polarization pointing downward, and its chirality is de-
cided by the sign of the coefficient A− of Eq. (12). As can
be seen from Fig. 2(b), the up dipoles (on the edge of the
blue region) rotate clockwise on the surface layer along the
y direction, due to a negative eDMI vector with respect to
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FIG. 2. (a) Top view of the surface bubble defect achieved with
negative eDMI. (b) Cross-section view of the (top) surface bubble
defect from negative eDMI. (c) Cross-section view of the (bottom)
surface bubble defect from positive eDMI. (d) Schematic illustration
to show the charge and chirality of the surface bubble defects with
respect to the sign of eDMI; the black arrow is to indicate the
depolarization field (Ed ) direction. In addition, the red domains have
polarization along the negative z direction, and the blue domains
(defects) have polarization along the positive z direction.

the x axis. When we rather use a positive A− (i.e., reverse
its sign), the electric bobber now only exists on the bot-
tom surface of the monodomain. Anticlockwise-rotated down
dipoles can be seen from Fig. 2(c) (on the edge of the blue
region) along the y direction, due to a positive eDMI vector
with respect to the x axis. Similarly to the chiral magnetic
bobbers, singularities (head-to-head and tail-to-tail dipoles)
exist; however, chiral electric bobbers are rather small and
are surface-dependent. As illustrated in Fig. 2(d), negative
eDMI always gives a clockwise rotation of dipoles on the top
surface, while positive eDMI favors the anticlockwise rotation
of dipoles on the bottom surface; because of the existence of
depolarization field in ferroelectric materials, the electric bob-
bers are surface-dependent; say bobbers with upward dipoles
will locate only on the top surface and bobbers with downward
dipoles will locate only on the bottom surface in a ferroelectric
monodomain with polarization downward.

Note the strength of eDMI needs to be increased by 78%
with respect to its ab initio value to achieve such electric
defects in PTO, but such resulting larger value may be found
in other systems. We also find that such defects do not exist
when the film is too thin, e.g., less than 10 unit cells. In
addition, though the eDMI is necessary to stabilize electric
bobbers, other intrinsic interactions, such as j5 and j7, are also
found to be important to stabilize such a metastable phase on
the surface. We have also found that eDMI is responsible for

the formation of the mixed Ising-Néel type domain walls [87]
(see Supplemental Material [43] Fig. 8 for details). Thus it
can be seen that the effect of eDMI can result in novel and/or
complex textures and, due to the strong dipole-dipole interac-
tion, mainly survives near the surface and domain walls.

IV. MICROSCOPIC ORIGIN OF eDMI

As is well known, mDMI originates from SOC [3]. In
contrast, the origin of the calculated eDMI (the antisymmetric
force constants) is currently unknown and thus needs to be
unsealed. In the following, we will explain the origin of the
antisymmetric feature of force constants as shown in Eq. (11)
via electron hoppings, which will thus further explain the
microscopic origin of eDMI vector Di j and its dependency
on the polarization orientation as in Eq. (12).

A. eDMI as an electron-mediated quantum effect

To determine the origin of eDMI, we decided to look in
detail at the microscopic full Hamiltonian [59] (involving both
electrons and ions) and derive the potential energy surface and
its Hessian matrix. By following the textbook derivation as
described in Sec. III of the Supplemental Material [43], the
force constant expression from the DFPT can be written as
[59]

Fαβ (i, j) = ∂2
(τ)

∂τi,α∂τ j,β
(13a)

= ∂2Vii(τ)

∂τi,α∂τ j,β
+

∫
dr

∂Vie(r; τ )

∂τi,α

∂n(r; τ)

∂τ j,β
. (13b)

It thus involves the second derivative of the potential energy
surface 
(τ) with respect to ionic positions τ i and τ j (i �= j)
(e.g., Ti0 and Ti+1 in Fig. 1) along α and β Cartesian direc-
tions, respectively. Note that n(r; τ ) is the electronic density,
while the contribution to the force constant Fαβ is divided into
two parts: (1) the energy potential of ion-ion interaction Vii(τ)
that includes the nucleus and inner core electrons that rigidly
follow the ionic displacements, and (2) ion-electron interac-
tion Vie(r; τ) that includes both the ions (nucleus combined
with inner core electrons) and valence electrons n(r; τ ). Since
Vii is a sum of repulsive ion-ion Coulomb interactions, the
first term of the right side of Eq. (13b) only contributes to
the symmetric part of the force constants (see proofs in Sec. II
of the Supplemental Material [43]). Thus the antisymmetric
form in Eq. (11) has to come from the second term of the
right side of Eq. (13b), which in fact can be seen as the
electron-density-mediated ion-ion indirect interaction. More
specifically, Eq. (13b) indicates that (i) the change of the ionic
position τi,α induces a variation of electron-ion energy ∂Vie(r;τ )

∂τi,α

at site i, (ii) which couples to the change of ionic position τ j,β

on site j through the electron density fluctuation ∂n(r;τ)
∂τ j,β

. Thus,
though eDMI is mostly associated with ionic dipoles, Eq. (13)
tells us that eDMI is not included in the dipole-dipole interac-
tion and, instead of treating electrons as point charges, treating
electrons as wave functions is important to obtain eDMI. Thus
eDMI originates from an electron-mediated quantum effect.
Note that the dipole-dipole interaction that takes consideration
of the Born effective charges in a full tensor form should
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FIG. 3. (a) Diagram plot of orbital-resolved force constant density ξm,n
α,β defined as

∑
m′,n′ 〈m, i|Ui,α|m′, i〉〈m′, i|Ĝ0(ε)|n′, j〉〈n′, j|Uj,β |n, j〉

〈n, j|Ĝ0|m, i〉 (see Eq. (6) and Eq. (32) in Sec. IV of the Supplemental Material [43]). Panels (b), (c), (d), and (e) are plots of orbital-resolved
force constant density (ξm,n

x,z in blue line and ξ n,m
z,x in red line) and total force constant density [ fx,z(ε, i, j) in blue area and fz,x (ε, i, j) in red

area], as defined in Eqs. (4) and (5). More specifically, panel (c) contains ξm,n
x,z and ξ n,m

z,x where m = dxz and n = dxz; panel (d) contains ξm,n
x,z

and ξ n,m
z,x where m = dx2−y2 and n = dxz; panel (e) contains ξm,n

x,z and ξ n,m
z,x where m = dxz and n = dz2 ; panel (f) contains ξm,n

x,z and ξ n,m
z,x where

m = dx2−y2 and n = dz2 ; and panel (b) contains the sum of all the ξm,n
x,z and ξ n,m

z,x plotted in panels (c), (d), (e), and (f). Panels (g) and (h) are
density of states (DOS) projected on the titanium atom (blue ball in the subset) and oxygen atom (red ball in the inset). Note that the Fermi
level is set at the zero of energy in all the plots.

include the eDMI energy because the Born effective changes
are associated with the electronic responses to the atomic
displacements, which can be seen as another perspective to
understand the electrons’ role in the eDMI.

In order to further understand the role of the electrons in
the eDMI, the orbital-resolved force constants [53,54] need
to be calculated. The second-order perturbation is performed
to calculate the orbital-resolved force constant density in
Eq. (6) and the perturbation process can be summarized as
in Fig. 3(a): (i) an atomic displacement ui,α first induces an
effective perturbation energy potential change Ui,α on site i
(left gray ball) and scatters state |m, i〉 (lower level on the
left) to |m′, i〉 (top level on the left); (ii) such scattering is
propagated by the Green’s function G0

m′,n′ (ε, i, j) from site i to
site j (gray arrow on the top); and (iii) couples to the atomic
displacement uj,β on site j (right gray ball) by alternating
the effective perturbation potential Uj,β and scattering state
|n, j〉 (lower level on the right) to |n′, j〉 (top level on the
right); (iv) another Green’s function G0

n,m(ε, j, i) (gray arrow
in the bottom) closes the “loop” by propagating the scattered
state n from site j back to state m on site i. The specific
mathematical expression of such loop can be found in Eq. (32)
of the Supplemental Material [43] and the more detailed math-
ematical definitions of Ui,α , Uj,β , and the Green’s functions
G0

m′,n′ (ε, j, i) and G0
n,m(ε, j, i) can be found in Sec. IV of the

Supplemental Material [43]. Note that the orbital scatterings
in Fig. 3(a) as well as Eq. (6) show that the forces between
atoms need a quantum treatment by the Hellman-Feynman
theorem [47,51]. The eDMI should therefore be a quantum
effect since the antisymmetric forces can only come from the
interactions between (quantum) electrons and (classical) ions.
It is worth mentioning that such loop is physically equivalent
to the DFPT process when calculating the force constants
from Eq. (13a).

Each loop as in Fig. 3(a) is one contribution to the force
constants from a set of orbitals m, m′, n′, and n. The sum-

mation of all the possible loops defined by m, m′, n′, and
n orbitals gives rise to the force constants and can also be
calculated by other methods such as DFPT. In our calcu-
lations, there are in total 6561 (sum over m, m′, n′, and n)
loops that contribute to the force constants. For the sim-
plicity of further analysis, we define orbital-resolved force
constant density ξm,n

α,β (ε, i, j) by summing out the m′ and n′
in the loops, see Eq. (6), which represents the force con-
stant density contribution from one orbital m on site i and
another orbital n on site j to the force constants, where α

and β are elements of Cartesian {x, y, z} directions, m and
n range among all the orbitals on site i and j, respectively,
and ε is the energy. The sum of the orbital-resolved force
constant density ξm,n

α,β (ε, i, j) over m and n is defined as the
force constant density fα,β (ε, i, j), as formulated in Eq. (5).
Thus the total force constants, according to Eq. (4), can be
obtained by integrating fα,β (ε, i, j) from negative infinite to
the Fermi energy at the highest occupied energy level. Fx,z and
Fz,x in Eq. (11) are calculated to be −0.58 and 0.58 eV/Å2

according to our TB model, respectively, which are compa-
rable to the aforementioned DFPT results of −0.73 eV/Å2

and 0.73 eV/Å2. We also calculated the next-nearest neighbor
Fx,z and Fz,x which are −0.16 eV/Å2 and 0.16 eV/Å2 accord-
ing to our TB model, once again in good agreement with
DFPT results of −0.14 eV/Å2 and 0.14 eV/Å2. Note that
the slight discrepancy between TB and DFPT results likely
comes from the facts that our TB perturbation drops second-
and higher-order electron density fluctuation and assumes a
rigid Wannier orbital displacements, while the DFPT includes
both the displacement of orbitals and the change of the orbital
shapes during the self-consistent process of the electron den-
sity response.

So far three quantities are defined and will be used in
the future analysis: the summation of (1) the orbital-resolved
force constants density ξm,n

α,β (ε, i, j) [see Eq. (6)] over or-
bital m on site i and n on site j gives rise to (2) the force
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constants density fα,β (ε, i, j) [see Eq. (5)], whose integration
over energy ε is (3) the force constants Fα,β (i, j) [see Eq. (4)]
between sites i and j.

B. Origin of the antisymmetric feature

The orbital-resolved force constant density ξm,n
α,β allows us

to analyze the force constant contributions from different or-
bital combinations between sites i and j. As in Eq. (5), the
summation of the orbital-resolved force constant density over
all possible m and n orbitals gives rise to the force constant
density fα,β (ε, i, j) which is plotted in Fig. 3(b) represented
by the colored areas with dashed outline [the same quantity
is also plotted in panels (c), (d), (e), and (f)]. As can be
seen, fx,z(ε, i, j) is equal to − fz,x (ε, i, j) at any given energy
within the numerical round up of 0.01 Å−2. The y component
of eDMI vector D(i, j) is thus derived from the nonzero
antisymmetric force constants density fz,x − fx,z �= 0 [defined
in Eq. (9)] that is corresponding to the numerical results
in Eq. (11). We are going to use the orbital-resolved force
constant density ξm,n

α,β to understand the microscopic orbital
origin of such eDMI vector. More specifically, it is going to
be seen that the commutation between orbitals m and n on
sites i and j gives rise to the inverse off-diagonal force con-
stant density component, ξm,n

x,z = −ξ n,m
z,x , which is symmetry

protected. The relation of fx,z = − fz,x in Fig. 3(b) can thus
be understood since fx,z = ∑

m,n ξm,n
x,z and fz,x = ∑

n,m ξ n,m
z,x

according to Eq. (5), which explains the microscopic origin of
the existence of the eDMI vector along the y axis [see Eq. (9)].

Considering two PbTiO3 unit cells as depicted in Fig. 4(a),
the two titanium atoms (blue balls on sites i and j) and their
intermediate oxygen atom (red ball on site k) are displaced
along the negative and positive z direction, respectively. Or-
bitals m and n of the two titanium sites are chosen from
the 4s1, 3p3, and 3d5 orbitals as listed in Fig. 4(b) to cal-
culate the orbital-resolved force constant density ξm,n

α,β . (Note
that the inner core electrons such as 1s, 2s, 3s, and 2p or-
bitals are treated as tightly bond to the nucleus and thus
only give rise to the symmetric part of the force constants.)
More specifically, according to Eq. (6), the expression of
ξm,n

x,z can be written as 〈m, i|Ui,xĜ0Uj,z|n, j〉 [illustrated in
Fig. 4(c1)] times 〈n, j|Ĝ0|m, i〉 [illustrated in Fig. 4(c2)]. In
both Figs. 4(c1) and 4(c2), mirror myz [vertical lines as also
indicated in (a) as vertical blue plane] operations are per-
formed. Consequently, in Fig. 4(c1), the following functions
are transformed: (1) orbital m on site i (left yellow circle) and
orbital n on site j (right yellow square) are transformed to, in
Fig. 4(d1), site j on the right and site i on the left, respectively;
(2) effective perturbation potential Ui,x on site i (left black
arrow) and Uj,z on site j (right black arrow) are transformed
to, in Fig. 4(d1), −Uj,x on site j (right red arrow) and Ui,z on
site i (left black arrow), respectively; (3) G0 (green triangle)
is unchanged since it is defined by the eigenfunctions of the
unperturbed H0 and follows the same crystalline symmetry,
P4mm, as in the case of PbTiO3 in Fig. 4(a). Note that sym-
metry operations should never alternate the integration values;
thus we have proved that 〈m, i|Ui,xĜ0Uj,z|n, j〉 [illustrated in
Fig. 4(c1)] is equal to −〈n, i|Ui,zĜ0Uj,x|m, j〉 [illustrated in
Fig. 4(d1)]. Employing the same three transformation rules
of the functions to panels (c2) and (d2), the following rela-

FIG. 4. (a) Two PbTiO3 (P4mm phase) unit cells along the x
direction. The two blue balls on sites i and j are titanium atoms,
and their intermediate oxygen atom is indicated by a red ball on
site k. The vertical and horizontal blue planes represent mirrors myz

and mxy, respectively. A green triangle is used to indicate the relative
displacements between the two titanium atoms and their intermediate
oxygen atom. Panel (b) shows all the orbitals m and n in the orbital-
resolved force constant expression. Expression of ξm,n

x,z is sketched by
a multiplication between the expressions in (c1) and (c2). The blue
vertical lines in (c1) and (c2) are mirror myz operations and transform
the expressions in (c1) and (c2) to the expressions in (d1) and (d2),
respectively, and whose multiplication gives rise to −ξ n,m

z,x . In all
the expression sketches, the yellow circles and squares represent
orbital m and n, respectively, the arrows are used to indicate effective
perturbation potentials, and the green triangles [as also indicated in
(a) among sites i, j, and k] are for Green’s function Ĝ0.

tions can also be proved: 〈n, j|Ĝ0|m, i〉 in Fig. 4(c2) is equal
to 〈m, j|Ĝ0|n, i〉 in Fig. 4(d2). Interestingly, the transformed
expression, as illustrated in Figs. 4(d1) and 4(d2), is exactly
the expression of −ξ n,m

z,x , which means that ξm,n
x,z = −ξ n,m

z,x and
fx,z = − fz,x are constrained by the existence of the symmetry
operation myz. One should notice that both orbitals m and n
can be odd functions under the mirror operation myz and give
rise to minus signs; e.g., px can be transformed to −px, dxz

can be transformed to −dxz, and dxy can be transformed to
−dxy. However, there are always two m orbitals and two n
orbitals in the multiplication between 〈m, i|Ui,αĜ0Uj,β |n, j〉
and 〈n, j|Ĝ0|m, i〉, which means no minus sign in total can
be given to ξm,n

α,β due to the transformation of orbitals m
and n. Moreover, not all the orbitals m and n can contribute
to nonzero orbital-resolved force constant density ξm,n

α,β and
eDMI vector. The symmetry of orbitals m and n decides if
certain electron hopping channels are allowed to give rise to
nonzero eDMI vector. Taking the structure in Fig. 4(a) for
example, if one orbital is even (e.g., m = dx2−y2 ) and the
other is odd (e.g., n = dxy) under the operation of mirror
mxz, the orbital-resolved force constant density will be zero
(ξm,n

x,z = ξ n,m
z,x = 0) (see Sec. V of the Supplemental Material

[43] for the proof from symmetry analysis and Fig. 1 of the
Supplemental Material [43] for the numerical results).

The antisymmetric feature from the symmetry anal-
ysis is consistent with the numerical results as in
Figs. 3(c)–3(f), where the red curve and blue curve are always
in inverse sign. More specifically, Fig. 3(c) shows ξ

dxz,dxz
x,z =
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FIG. 5. If sites i, j, and k in Fig. 4(a) are collinear, expression
of ξm,n

x,z is sketched by a multiplication between expressions in (a1)
and (a2). The blue horizontal lines in (a1) and (a2) are mirror mxy

operations and transform the expressions in (a1) and (a2) to the
expressions in (b1) and (b2), respectively, and whose multiplication
gives rise to −ξm,n

x,z . When site k is on top of sites i and j in the
triangle, the expression of ξ up,m,n

x,z for such case is sketched by a
multiplication between (c1) and (c2) which can be transformed by
mirror mxy (blue horizontal lines) to the expressions in (d1) and (d2)
whose multiplication gives rise to −ξ dn,m,n

x,z which is for the case that
site k is below sites i and j. In all the expression sketches, the yellow
circles and squares represent orbital m and n, respectively, the arrows
are used to indicate effective perturbation potentials, and the green
dots and triangles are for Green’s function Ĝ0.

−ξ
dxz,dxz
z,x , Fig. 3(d) shows ξ

dx2−y2 ,dxz

x,z = −ξ
dxz,dx2−y2

z,x , Fig. 3(e)

shows ξ
dxz,dz2
x,z = −ξ

dz2 ,dxz
z,x , and Fig. 3(f) shows ξ

dx2−y2 ,dz2

x,z =
−ξ

dz2 ,dx2−y2

z,x . Figure 3(b) sums up the orbital-resolved force
constant densities ξm,n

x,z and ξ n,m
z,x that are in Figs. 3(c)–3(f) (red

and blue solid lines). We can see that the total force constant
densities fx,z and fz,x (colored area with dashed outline) are
relatively well reproduced in Fig. 3(b). Contributions from
other orbitals are relatively small or zero and can be found in
Fig. 1 of the Supplemental Material [43]. Figure 3(g) explains
why the d orbitals contribute most of the force constants.
We can see that the DOS projected on the titanium atom is
in the same energy region as nonzero force constant density
[colored areas in Fig. 3(b)] and some peaks are also consistent,
e.g., peaks at −3.5, −5.5, and −7.2 eV. The reason that
the unoccupied titanium d orbitals have contributed to DOS
under the Fermi level is due to the p-d interactions between
titanium atoms [blue balls in the inset of panel (g)] and their
intermediate oxygen atom [red ball in the inset of panel (g)],
which can be seen in Fig. 3(h) where the DOS projected on
the intermediate oxygen atom roughly has the same shapes as
the DOS projected on the titanium atom in Fig. 3(g).

C. Local inversion-symmetry breaking and eDMI

The intermediate oxygen plays an essential role in the
indirect interaction between the nearest-neighbor titanium
atoms and so in the eDMI. For instance, in Fig. 5(a), when
the intermediate oxygen (site k) is collinear with the two
nearest-neighbor titanium atoms (sites i and j), the orbital-
resolved force constant density ξm,n

x,z can be proved to be
always zero. Following similar transformation rules to those
in Fig. 4, a mirror operation mxy [blue horizontal line in

Figs. 5(a1) and 5(a2)] reverses only the sign in the front
of the Uj,z (black vertical arrow on site j) in (a1) and re-
sults in −〈m, i|Ui,xĜ0Uj,z|n, j〉 in (b1), which indicates that
ξm,n

x,z = −ξm,n
x,z and ξm,n

x,z has to be zero. Thus we have proved
that breaking such mirror symmetry (by forming a triangle
among sites i, j, and k) decides if eDMI exists, which is
going to be another important rule in the “orbital selection
rules” section. Note that such mirror-symmetry breaking (by
forming a triangle) will result in a local-inversion-symmetry
breaking (inversion center on the middle point between sites
i and j) automatically. However, breaking such local inver-
sion symmetry does not always give rise to mirror-symmetry
breaking. For example, site k can be displaced along the line
that connects sites i and j and away from the middle point
between sites i and j, but eDMI is still forbidden because of
the existence of mirror mxy (see Fig. 5).

More importantly, Fig. 5 has also proved that the direction
of the displacement of the site k with respect to sites i and j de-
cides the direction of the eDMI vector. For instance, Figs. 5(c)
and 5(d) prove that ξ

up,m,n
x,z = −ξ dn,m,n

x,z , where ξ
up,m,n
x,z is the

orbital-resolved force constants density for the case that the
site k is displaced along the positive z direction [green trian-
gles in panels (c1) and (c2)] and ξ dn,m,n

x,z is the orbital-resolved
force constant density for the case that the site k is displaced
along the negative z direction [green triangles in panels (d1)
and (d2)]. More specifically, in Figs. 5(c1) and 5(c2), the
mirror mxy (horizontal blue lines) (1) transforms the Ĝ0

up
(corresponding the P4mm phase of PbTiO3 with polarization
along negative z direction) into the Ĝ0

dn (corresponding to the
P4mm phase of PbTiO3 with polarization along positive z
direction) in (d1) and (d2), (2) transforms the Uj,z in (c1) (ver-
tical black arrow on site i) into the −Uj,z in (d1) (vertical red
arrow on site j), and (3) changes no other functions. Thus the
ξ

up,m,n
x,z defined by the multiplication between the expression

in (c1) and (c2) is proved to be equal to −ξ dn,m,n
x,z defined by

the multiplication between the expression in (d1) and (d2). In
addition to ξ

up,m,n
x,z = −ξ dn,m,n

x,z , we have already known that
(1) the D(i, j) vector in the P4mm phase of PbTiO3 is pro-
portional to (0,−Fxz, 0) and (2) Fxz = ∑

m,n

∫
ξm,n

x,z (ε, i, j)dε.
Thus Dup(i, j) = −Ddn(i, j) can be proved, where Dup is
eDMI vector in the case that the intermediate oxygen site dis-
placed along the positive z direction and Ddn is eDMI vector
in the case that intermediate oxygen site displaced along the
negative z direction. Such conclusion explains why the D(i, j)
vector is not homogeneous in some perovskite oxides [32],
for example, with oxygen octahedral tilting where the oxygen
atoms are displaced alternatively along positive and negative
z direction.

In Fig. 4(c1), we have also noticed that the inverse feature
between the off-diagonal components of the force constant
density (antisymmetric in force constants) fx,z = − fz,x is due
to the fact that under the myz operation one effective perturba-
tion potential, Ui,x (black arrow), that is perpendicular to myz

on site i changes sign and the other Uj,z (black arrow) that
is parallel to myz on site j does not. Such condition seems
also satisfied by Ui,x (vector perpendicular to myz) and Uj,y

(vector parallel to myz), which is corresponding to the the
antisymmetric feature between force constants density fx,y =
− fy,x. However, fx,y = − fy,x = 0 can be further proved by the
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symmetry operation of mirror mxz that goes through sites i,
j, and k (see Sec. V of the Supplemental Material [43]).
This is also consistent with the results of the force constant
calculations in Eq. (11). On the other hand, neither Ui,y (vector
parallel to myz) and Uj,z (vector parallel to myz) nor Ui,z (vec-
tor parallel to myz) and Uj,y (vector parallel to myz) change
sign under mirror myz; thus the off-diagonal components (in
the y and z directions) of the force constant density is only
symmetric, fy,z = fz,y, and thus does not give rise to any
eDMI. Taking consideration of fyz = fzy = 0, fzx = − fxz, and
fxy = fyx into Eq. (7), we can see that the only nonzero eDMI
vector component is along the y axis which is perpendicular
to the (i, j, k) plane. This is going to be one important rule in
the “orbital selection rules” section to be discussed below.

D. eDMI with tiltings

So far we have noticed one important fact about eDMI:
it comes from the indirect interaction between the nearest-
neighbor titanium sites through the displaced intermediate
oxygen site in PbTiO3, which suggests that eDMI is at least a
three-body (indirect) interaction. As a matter of fact and as can
be seen from Fig. 4(a) and Fig. 5, the relative displacement of
the intermediate site k along the z direction is critical to give
nonzero antisymmetric force constants. It is consistent with
the phenomenological model in Eq. (12), in which the ui + u j

includes the relative displacement of the intermediate oxygen
with respect to titanium sites i and j. Such relative displace-
ment can be seen from an equivalent expression in Eq. (44) of
the Supplemental Material [43] which is written in an atom-
istic displacement basis which can be seen as expanding the
polar mode u with the displacements (μB) of titanium cations
and their surrounding oxygen anions (O(X) in [100], O(Y) in
[010], and O(Z) in [001] directions with respect to the titanium
cations in Fig. 5(b) of the Supplemental Material [43]). [As
indicated in Fig. 1(a), the polar mode u consists of titanium
cations moving in one direction with respect to the oxygen
anions that are on the side of titanium ions within (001) planes
being moved toward the opposite direction.] Equation (44) of
the Supplemental Material [43] tells us that the displacements
of intermediate oxygen (μX , μY , and μZ in Eq. (44) of
the Supplemental Material [43]) or equivalently polar modes
ui + u j [in Eq. (12) of the main text] that are normal to ei j will
give rise to a nonzero contribution to the eDMI energy. On the
other hand, if the local inversion-symmetry breaking is from
the intermediate oxygen that is displaced parallel to the line
that connects sites i and j or equivalently (ui + u j ) × ei j = 0,
the eDMI vector is always zero, as has been proven by Fig. 5.

Interestingly, such displacement of the intermediate oxy-
gen site can also be associated with oxygen octahedral
rotations in some perovskite materials, which is therefore
consistent with a recent finding that the eDMI vector can
be related to such rotations [32]. More specifically, in a
case with the oxygen octahedra tilting pattern as in Fig. 6,
the intermediate oxygen O1(X) that locates at position
r1 = R1 + (0.5, 0, 0) between titanium atoms in cells R1 =
(−1, 0, 0) and R2 = (0, 0, 0) is displaced relatively upward
[μX (r1) > 0] and the intermediate oxygen O2(X) that locates
at position r2 = R2 + (0.5, 0, 0) between titanium atoms in
cells R2 = (0, 0, 0) and R3 = (1, 0, 0) is displaced relatively

FIG. 6. Illustration plot of the crystal structure with oxygen octa-
hedral tiltings. Three 5-atom cells along [100] direction are plotted.
The cell indexes are marked on the titanium atoms (blue ball) as R1 =
(−1, 0, 0), R2 = (0, 0, 0), and R3 = (1, 0, 0), respectively. Note that
the atomistic basis is defined in a unit cell in which the titanium
atom locates at the origin (0,0,0) (see Fig. 5(a) of the Supplemental
Material [43]). Thus the oxygen atoms O1(X) and O2(X) site at
positions r1 = R1 + (0.5, 0, 0) and r2 = R2 + (0.5, 0, 0) before the
octahedra tilting displacements, respectively. The oxygen octahedra
tiltings around titanium atoms in cells R1, R2, and R3 are anti-
clockwise, clockwise, and anticlockwise, respectively. Note that the
atomic displacement variables for titanium atom (μB) and oxygen
atom along [100] directions (μX ) are labeled and their definition in
unit cell can be found in Fig. 5(a) of the Supplemental Material [43].
Note also that we use R for cell index and r for atom position in this
paper.

downward [μX (r2) < 0]. Thus two triangles (green in Fig. 6)
are formed: (1) an upward-oriented triangle among the tita-
nium atom in cell R1 = (−1, 0, 0), titanium atom in R2 =
(0, 0, 0), and oxygen atom O1(X) at position r1 = R1 +
(0.5, 0, 0), and (2) a downward-oriented triangle among
the titanium atom in cell R2 = (0, 0, 0), titanium atom in
R3 = (1, 0, 0), and oxygen atom O2(X) at position r2 =
R2 + (0.5, 0, 0). According to Eq. (44) of the Supplemen-
tal Material [43] [which is the equivalent expression of
Eq. (12) of the main text but written in atomistic basis],
the eDMI vector D(1, 2) between R1 = (−1, 0, 0) and R2 =
(0, 0, 0) (up-triangle case) is proportional to μX (r1) × ei j =
(0, μXz(r1),−μXy(r1)) and the eDMI vector D(2, 3) between
R2 = (0, 0, 0) and R3 = (1, 0, 0) (down-triangle case) is
proportional to μX (r2) × ei j = (0, μXz(r2),−μXy(r2)). Thus
D(1, 2) is along the [010] direction and D(2, 3) is along the
[0-10] direction, considering that μXz(r1) > 0, μXz(r2) < 0,
and μXy(r1) = μXy(r2) = 0 in the tilting motions in Fig. 6,
which is consistent with our discussion in Figs. 5(c) and 5(d)
and, more importantly, reproduces the alternatively changed
D vectors due to oxygen octahedral tiltings as in Ref. [32].

Thus our microscopic description presents a general expla-
nation of the eDMI that is suitable to ferroelectric materials
with or without oxygen octahedral tiltings. Note that Eq. (12)
further implies that the eDMI vector can be induced by other
effects, such as polar motions. In fact, we perform DFT calcu-
lations that show that there can be noncollinear polar texture
without the help of oxygen octahedral tiltings (see Sec. VII of
the Supplemental Material [43]).

E. Orbital selection rules of eDMI

Based on the conclusions we made by the symmetry anal-
ysis as we derived the microscopic origin of eDMI in Figs. 4
and 5, selection rules can be summarized in order to determine
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TABLE I. Orbital selection rules of the electric Dzyaloshinskii-
Moriya interaction in the case of three sites. The two rules are shown
in the bottom of the table. In the sketch of rule 1, the i, j, and k
are used to indicate the three ionic sites, m1 is a mirror that goes
through k site and is perpendicular to the line connecting i and j
sites, and m3 is a mirror that goes through all i, j, and k sites. The
table includes the results when such three rules are applied when both
orbitals m and n range over all s, p, and d orbitals. The check marks in
the table indicate the nonzero orbital-resolved force constant density
is in antisymmetric form ξm,n

x,z = −ξ n,m
z,x �= 0 and gives rise to the y

component of eDMI vector.

s pz px py dz2 dxz dyz dxy dx2−y2

s � � � � � �
pz � � � � � �
px � � � � � �
py � �
dz2 � � � � � �
dxz � � � �c �a �
dyz � �
dxy � � �
dx2−y2 � � � �d �b �

eDMI orbital selection rules

rule 1: noncollinear three orbitals

, D(i, j) ⊥ m3

rule 2: mirror m3

the orbitals on sites i and j should be either
both even or both odd with respect to
the operation of mirror m3.

aPlotted in Fig. 3(c).
bPlotted in Fig. 3(d).
cPlotted in Fig. 3(e).
dPlotted in Fig. 3(f).

what kind of orbital combinations can give rise to eDMI (see
details in Sec. V of the Supplemental Material [43]). With
such orbital selection rules together with the DOS of the
material, we can address which orbitals are allowed and which
orbitals possibly give rise to a quantitatively large eDMI,
which makes engineering of eDMI possible. Two rules are
summarized in Table I, assuming a three-site model in which
i and j characterize cation sites (e.g., titanium atoms) and k is
associated with the intermediate anion site (e.g., oxygen atom)
located in the middle of sites i and j: (1) the local inversion
symmetry should be broken by the k-site displacement that
is off the line that goes through i and j sites, and thus a
triangle is formed; (2) the orbitals on sites i and j should
be either both even or both odd with respect to the mirror
that goes through all three sites. Satisfying the two rules,
the eDMI D vector will exist and has to be perpendicular
to the triangle formed by sites i, j, and k. In rule (1), not all
the local inversion-symmetry breakings give rise to an eDMI
vector. As a matter of fact, while there are two ways to break
the local inversion symmetry, namely (i) site k is displaced
away from the line that connects sites i and j, and (ii) site
k is displaced along the line that connects sites i and j, the

second way does not give rise to eDMI because, as proven in
Figs. 5(a) and 5(b), the orbital-resolved force constant density
ξm,n
α,β vanishes due to the existence of mirror mxy. Extended

tables that explain all the symmetry analysis (that are needed
for summarizing Table I) are indicated in Appendix A of the
Supplemental Material [43]. Following eDMI orbital selection
rules, all eDMI activated orbital combinations that involve s,
p, and d orbitals are derived and listed in Table I. For instance,
the main contributions to eDMI of PbTiO3 from ξm,n

x,z and ξ n,m
z,x

as discussed in Figs. 3(c)–3(f) can also be found in Table I, the
check marks labeled by c, d, e, and f, respectively. Note that
Table I is also confirmed by our numerical results involving
these s, p, and d orbitals (see Secs. IV and V and Fig. 1 of the
Supplemental Material [43]).

V. FURTHER REMARKS

In this work, we discuss an overlooked intrinsic dipolar
interaction (eDMI) that could give chiral polar structures.
However, there are other energy terms and extrinsic conditions
that compete with such kind of coupling term, which could
result in that (1) noncollinear textures are metastable high-
energy phases, such as the Bloch component in the domain
walls (high-energy defects) [30,88–90]; (2) only a narrow re-
gion in the phase diagram (with respect to temperature, strain,
and even external electric field) shows nontrivial topological
polar texture, also similar to the magnetic situations [14,91];
and (3) hidden phases corresponding to such kind of coupling
could exist under external probes [92], such as laser pulses.

Based on the arguments provided in this paper, the eDMI
should have no direct relation to the origin of the polar insta-
bility. Consequently, eDMI may also exist in different types of
ferroelectrics (e.g., hyperferroelectrics, geometric/steric fer-
roelectrics, and even ferroelectric metals) if there are no other
mechanisms/constraints forbidding it.

Note that the original effective Hamiltonian method [58]
considers up to the second order for polar-polar interaction
between cells, which gives rise to only a symmetric force
constant matrix, unlike what the DFPT calculations tell us.
The Ginzburg term in the phase field model [65] (Ginzburg-
Landau-Devonshire theory [44–46]) obviously cannot repro-
duce antisymmetric force constants either which can be easily
seen by realizing that the Ginzburg term is only the power of
the gradient of polar modes. Consequently, our work should
lead to revisiting currently used models.

It is also worth mentioning that our proposed microscopic
theory for eDMI can be linked to several previous theoretical
works. For example, the three-site model discussed in the
present paper bears some analogy with the “triple-dipole-
interaction” problem [93–95] among three neutral atoms
(van der Waals–type interaction). Interestingly, the proposed
Axilrod-Teller potential for this “triple-dipole interaction” can
also give a nonzero antisymmetric part of the force constants,
though the influence of the covalent bonding on the force
constants was omitted (only polarization fluctuations were
taken into account). In contrast, the study of the vibronic
instability [96–98] of some crystals discussed the effects of
covalent bonding but did not pay attention to the antisymmet-
ric part of the force constants. We are also aware of a simple
three-site LCAO model developed by Prosandeev et al. [99]
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discussing the correlation of the local atomic displacements
in perovskites. Such kind of correlations were earlier experi-
mentally discovered from the diffuse scattering of neutrons in
KNbO3 [100,101].

VI. CONCLUSION

In conclusion, the microscopic origin of the electric
Dzyaloshinskii-Moriya interaction is unveiled and discussed
thanks to analytical analysis of the orbital-resolved force con-
stant calculations. Our present study, therefore, emphasizes
that eDMI exists and sheds some light onto its origin, which
is that eDMI is an electron-mediated quantum effect in which
(1) the local inversion-symmetry breaking activates previ-
ously forbidden electron hopping channels on adjacent atomic
sites; and (2) the combination of the orbitals with particular
symmetry (following eDMI orbital selection rules detailed in
Table I) results in the electric Dzyaloshinskii-Moriya interac-
tion. Though both eDMI and mDMI need electron hopping
channels and local-inversion-symmetry breaking to occur,

mDMI needs spin-orbit coupling to connect spin up and down,
unlike eDMI. Thus eDMI naturally exists in polar materials
because of the general existence of local-inversion-symmetry
breaking. Moreover, eDMI energy is found to be at least
third order in ionic displacements while mDMI energy “only”
involves a second order in magnetic moments. Such differ-
ences may result in the formation of some exotic dipole
textures that can differ from the extensively explored magnetic
arrangements.
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