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The leading superconducting instabilities of the two-dimensional extended repulsive one-band Hubbard model
within spin-fluctuation pairing theory depend sensitively on electron density, band, and interaction parameters.
We map out the phase diagrams within a random-phase-approximation spin- and charge-fluctuation approach,
and find that while B1g (dx2−y2 ) and B2g (dxy) pairing dominates in the absence of repulsive longer-range
Coulomb interactions VNN, the latter induces pairing in other symmetry channels, including, e.g., A2g (g-wave),
nodal A1g (extended s-wave), or nodal Eu (p-wave) spin-triplet superconductivity. At the lowest temperatures,
transition boundaries in the phase diagrams between symmetry-distinct spin-singlet orders generate complex
time-reversal symmetry broken superpositions. By contrast, we find that boundaries between singlet and triplet
regions are characterized by first-order transitions. Finally, motivated by recent photoemission experiments, we
have determined the influence of an additional explicitly attractive nearest-neighbor interaction, VNN < 0, on
the superconducting gap structure. Depending on the electronic filling, such an attraction boosts Eu (p-wave)
spin-triplet or B1g (dx2−y2 ) spin-singlet ordering.
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I. INTRODUCTION

The discovery of high-temperature superconductivity in
the cuprates inspired fundamental theoretical studies of the
origin of superconductivity from repulsive electron-electron
interactions. A common approach to investigating such un-
conventional superconductivity arising purely from repulsive
interactions starts from the one-band two-dimensional (2D)
Hubbard Hamiltonian defined on a square lattice. A large
number of theoretical works have explored superconducting
pairing within this model [1–31]. These studies include un-
biased exact methods on small clusters, and a wide range
of different approximate schemes to reach results for the
thermodynamic limit. The latter include, e.g., weak-coupling
methods and pairing driven by spin fluctuations. Such ap-
proaches to the problem generally find that while the B1g

(dx2−y2 ) regime of superconductivity occupies a substantial
region of the phase diagram close to half filling and mod-
erate next-nearest-neighbor hopping, a rich phase diagram
is exhibited for other doping levels and coupling strengths
[7,17,21,23,32]. Recently, it was found that the formal-
ism of spin-fluctuation-mediated pairing within the random
phase approximation (RPA) compares well to results obtained
within the dynamical cluster approximation (DCA) [28] and
diagrammatic quantum Monte Carlo simulations [23]. The lat-
ter approach includes dynamical self-energy effects, and can
access the interaction regime where the Coulomb repulsion
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becomes comparable to the bandwidth, a regime inaccessible
within RPA due to the magnetic Stoner instability.

Longer-range Coulomb interactions were not taken into
account in the pairing problem in the works referenced above.
Several other studies, however, have explored the resilience
of B1g (dx2−y2 ) superconductivity to longer-range Coulomb
repulsion from a wide range of different techniques [33–44].
For example, recent studies within DCA find that the dx2−y2

solution is robust towards inclusion of the nearest-neighbor
(NN) Coulomb repulsion, as long as it is smaller than 50%
of the on-site Coulomb repulsion [44]. Similar conclusions
were found in Refs. [34,38,41]. The resilience of dx2−y2 super-
conductivity is ascribed mainly to the retarded nature of the
pairing. The extended Hubbard model has also been treated
within the fluctuation exchange (FLEX) approximation [35],
where it was found that the B1g (dx2−y2 ) regime close to half
filling persists even in the regime of sizable NN repulsion. As
hole doping is increased, a region of triplet superconducting
order sets in, before the system is driven into a charge density
wave (CDW) phase. At even larger hole doping values, a dxy

superconducting solution is present at all strengths of NN
repulsion, VNN. Finally, the effect of longer-range Coulomb
repulsion on the superconducting instabilities has also been
addressed in the limit of weak coupling [37,42]. In Ref. [37],
for example, the superconducting instability was determined
by the asymptotically exact weak-coupling approach, and
it was found that the A2g (gxy(x2−y2 )) solution dominates a
large region around half filling. This poses an apparent con-
tradiction to the FLEX results of Ref. [35] which did not
find a g-wave solution in any parameter range. Below we
address this issue within the RPA spin-fluctuation approach
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by computing how the presence of longer-range interactions
alters the superconducting instability in different interaction
regimes.

Previous RPA spin-fluctuation approaches to pairing in
the Hubbard model including only on-site repulsion U have
mapped out the leading superconducting order as a function
of band structure and interaction strength [21]. The phase
diagram obtained agrees well with DCA and diagrammatic
Monte Carlo simulations [28]. All symmetry-allowed pairing
states can be stabilized when varying the electron density and
the band structure [e.g., by the next-nearest-neighbor (NNN)
hopping t ′] [21,32]. This includes a multinodal spin-triplet
order near the van Hove filling where the band structure under-
goes a Lifshitz transition. Thus, the expected role of including
longer-range Coulomb interactions is mainly to modify the
phase boundaries between distinct gap solutions, rather than
generating entirely new ones. In addition, the detailed gap
structure also changes due to the growing importance of
higher harmonics with increasing VNN.

At the phase boundary regions, one expects linear superpo-
sitions of gap solutions at lower T . Below, we study several
boundary cases and determine the possible coexistence of
distinct gap solutions and the possibility of time-reversal sym-
metry breaking (TRSB). We note that longer-range Coulomb
repulsion may be expected to be particularly relevant in cases
of nearly degenerate pairing states, simply because it then
tips the balance and becomes the determining factor for the
preferred symmetry of the ground-state condensate. An ex-
ample of this scenario has been recently presented for a model
relevant for Sr2RuO4, where theory indeed predicts near de-
generacy between several symmetry-distinct superconducting
instabilities [45,46]. Specifically, B1g (dx2−y2 ) superconductiv-
ity gives way to B2g (dxy) pairing as a result of NN Coulomb
repulsion [47]. Another example is found in the kagome
lattice near its upper van Hove filling, where band struc-
ture effects “destructively interfere” for the on-site Coulomb
term, again rendering NN repulsion important in deciding
the basic pairing symmetry of the preferred superconducting
solution [48].

The role of NN interactions in the pairing problem of the
Hubbard model has been recently brought into the spotlight
by angle-resolved photoemission spectroscopy (ARPES) on
the doped cuprate chain material Ba2−xSrxCuO3+δ [49]. From
an analysis of the detailed dispersion of the measured spinon
and holon branches, it was inferred that this material ex-
hibits a significant NN Coulomb attraction, comparable to
the in-plane NN electron hopping integral. Such attraction
may be generated via coupling to a phonon mode [49,50].
The structural and chemical similarities between the cuprate
chain compound and the actual high-Tc cuprates has motivated
theoretical studies of the role of NN attraction on the super-
conducting ground state [51–55]. In general, it is found that
NN attraction tends to enhance superconducting correlations.

Here, we perform a systematic study of the effect
of NN and NNN Coulomb interactions on the leading

superconducting instabilities of the one-band square-lattice
Hubbard model. We focus on the role of the interaction param-
eters, and investigate also different band structures and a wide
range of electron filling concentrations. Initially, we focus on
the case where all bare Coulomb interactions are repulsive
and pairing is generated purely by effective attraction from
both spin and charge fluctuations. Next, motivated by the
recent ARPES results providing evidence for explicitly attrac-
tive NN coupling, we determine the leading superconducting
instabilities in the case where only on-site repulsion U is
included in the spin-fluctuation approach, while an additional
NN attraction VNN < 0 enters directly in the particle-particle
channel. In this framework, in addition to its ubiquitous on-
site repulsive core, U gives rise to an effective pairing in
higher-angular-momentum channels which coexists with the
bare attraction. Thus, this approach is different from the case
where both U and VNN enter as attractive channels at the bare
level [43,56,57].

II. MODEL AND METHOD

We consider the one-band Hubbard model defined on a 2D
square lattice given by

Ĥ = −
∑
i, j,σ

ti jc
†
iσ c jσ − μ

∑
i,σ

niσ + Ĥint. (1)

We include NN t and NNN t ′ < 0 hopping integrals. The NN
hopping t = 1 sets the energy scale. The operator c†

iσ (ciσ )
denotes creation (annihilation) of an electron with spin σ at
site i and niσ = c†

iσ ciσ . The interaction part of the Hamilto-
nian includes on-site U , NN VNN, and NNN VNNN Coulomb
interactions:

Ĥint = 1

2

∑
i,σ

Uniσ niσ + 1

2

∑
i,δ,σ,σ ′

V (δ)niσ ni+δ,σ ′ . (2)

The vectors δ ∈ {±x̂,±ŷ} ({±(x̂ ± ŷ)}) denote NN (NNN)
lattice vectors with lattice constant a = 1, and V (δ) corre-
sponds to either VNN or VNNN depending on δ. By Fourier
transformation we arrive at the free energy dispersion ξk =
−2t (cos(kx ) + cos(ky)) − 4t ′ cos(kx ) cos(ky) − μ, while the
(q = 0) interacting part of the Hamiltonian takes the form

Ĥint = U

2N

∑
k,k′,σ

c†
kσ c†

−kσ c−k′σ ck′σ (3)

+ 1

2N

∑
k,k′,δ,σ,σ ′

V (δ)e−iδ(k−k′ )c†
kσ c†

−kσ ′c−k′σ ′ck′σ .

We write the interaction Hamiltonian in the Cooper channel
in the general form

Ĥint =
∑

k,k′,{σi}
[V (k, k′)]σ1 σ2

σ3 σ4
c†

kσ1
c†
−kσ3

c−k′σ2 ck′σ4 , (4)

where V (k, k′) = V0(k, k′) + Veff (k, k′). The bare interaction
elements V0(k, k′) are given by

[V0(k, k′)]σ σ ′
σ ′σ = Uδσσ ′ + 2VNN[cos(kx − k′

x ) + cos(ky − k′
y)] + 4VNNN[cos(kx − k′

x ) cos(ky − k′
y)], (5)

[V0(k, k′)]σ σ
σ ′σ ′ = −Uδσσ ′ − 2VNN[cos(kx + k′

x ) + cos(ky + k′
y)] − 4VNNN[cos(kx + k′

x ) cos(ky + k′
y)], (6)
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where the second line is symmetry-imposed by the interaction Hamiltonian in Eq. (4). The effective interaction Veff (k, k′) due
to higher-order processes is given by

[Veff (k, k′)]σ1 σ2
σ3 σ4

=
∑
δ,δ′

e−iδkeiδ′k′
[[W (k + k′, δ)][χRPA(k + k′, δ, δ′)][W (k + k′, δ′)]]σ1 σ2

σ3 σ4

− e−iδke−iδ′k′
[[W (k − k′, δ)][χRPA(k − k′, δ, δ′)][W (k − k′, δ′)]]σ1 σ4

σ3 σ2
, (7)

where the matrices for the bare Coulomb interaction entering Eq. (7) are

[W (q, δ = 0)]σ σ
σ ′σ ′ = −Uδσσ ′ − 2VNN[cos(qx ) + cos(qy)] − 4VNNN cos(qx ) cos(qy), (8)

[W (q, δ = 0)]σ σ
σ σ = U, [W (q, δ �= 0)]σ σ

σ σ = V (δ), [W (q, δ �= 0)]σ σ
σ σ = V (δ), (9)

where, e.g., V (x̂) = V (ŷ) = VNN and V (x̂ + ŷ) = V (x̂ − ŷ) =
VNNN. We return to the details of the effective pairing vertex
below.

In order to determine the leading superconducting instabil-
ities arising from spin and charge fluctuations, we solve the
linearized BCS gap equation

− 1

(2π )2

∫
FS

dk′
f

1

|v(k′
f )|�s/t (k f , k′

f )�(k′
f ) = λ�(k f ),

(10)
where

�s/t (k, k′) = [V0(k, k′) + Veff (k, k′)]σ σ
σ σ

∓ [V0(k, k′) + Veff (k, k′)]σ σ
σ σ (11)

is the spin-projected pairing kernel in the singlet (s) and triplet
(t) channel. The wave vectors at the Fermi surface (FS) are
denoted k f and v(k f ) is the Fermi velocity. The largest eigen-
value λ and its associated eigenvector (gap function) �(k f )
correspond to the leading superconducting instability at Tc,
but subleading superconducting solutions are also obtained by
this procedure.

In selected cases, we have also solved the full BCS gap
equation in order to determine the low-T gap structure near
accidental degeneracy lines of the phase diagrams. This allows
us to determine the order of the phase transition between
different solutions, and to probe for spontaneously broken
time-reversal symmetry. In the self-consistent solution of the
full gap equation the mean-field gaps are labeled by the spin
indices

[�k]σ1
σ3

=
∑

k′,σ2,σ4

[V (k, k′)]σ1 σ2
σ3 σ4

〈c−k′σ2 ck′σ4〉, (12)

where V (k, k′) = V0(k, k′) + Veff (k, k′). To classify the sym-
metries of the gap, we introduce the basis functions in the
point group of the square lattice (D4h). Therefore, we can
rewrite the previous equation in terms of the allowed solutions
for the gap depending on the form of the basis functions g�

k ,

[�k]σ1
σ3

=
∑
�∈IR

g�
k[��]σ1

σ3
, (13)

where � corresponds to the irreducible representations (IRs)
of the point group D4h and

[��]σ1
σ3

=
∑

k′,σ2,σ4

[Ṽ δ]σ1 σ2
σ3 σ4

g�
k′ 〈c−k′σ2 ck′σ4〉. (14)

In the equation above, [Ṽ δ]σ1 σ2
σ3 σ4

is the Fourier transform of
V (k, k′) in Eqs. (5)–(7) for the neighbor δ. As an example,
if we consider only nearest-neighbor interactions the pairing
is given by

[V (k, k′)]σ1 σ2
σ3 σ4

= [Ṽ NN]σ1 σ2
σ3 σ4

(cos(kx − k′
x ) + cos(ky − k′

y)),
(15)

and therefore in this case the gap in Eq. (13) can be written in
terms of the basis functions

g
A1g

k = cos kx + cos ky, gEx
u

k = √
2 sin kx,

g
B1g

k = cos kx − cos ky, gEy
u

k = √
2 sin ky. (16)

Following this procedure, we include interactions with up to
24 neighbors, as well as the on-site term.

The expression for the effective pairing, Eq. (7), obtained
by evaluation of all bubble and ladder diagrams, is a matrix
equation. The interaction matrices as well as the susceptibility
become 22 · 5 × 22 · 5 (22 · 9 × 22 · 9) matrices for NN inter-
actions (NN and NNN) interactions, due to the spin degrees
of freedom and the relevant range of the bare Coulomb inter-
actions. We introduce the generalized bare susceptibility by

χ0(iωn, q, δ, δ′)= 1

N

∑
k

eik(δ−δ′ ) f (ξk ) − f (ξk−q)

iωn + ξk−q − ξk
, (17)

which includes the lattice vectors δ, δ′. This construction is
similar to previous treatments of the pairing problem in the
presence of longer-range Coulomb interactions [58,59]. The
spin structure is included by construction of a susceptibil-

ity matrix [χ0(iωn, q, δ, δ′)]
σ σ ′

σ ′ σ = χ0(iωn, q, δ, δ′), including
σ = σ ′ and σ = −σ ′. The RPA susceptibility entering Eq. (7)
takes the form

χRPA(ωn, q, δ, δ′) = [1 − χ0(ωn, q)W (q)]−1χ0(ωn, q, δ, δ′),
(18)

where summation in spin and δ indices is implicit. We evaluate
the RPA susceptibility at zero energy, ωn = 0, and tempera-
ture kBT = 0.015. This constitutes the main ingredient in the
effective (static) pairing interaction, as seen from Eq. (7).

The construction of the generalized susceptibility enables
us to handle ladder diagrams in which some of the inter-
action vertices are longer-range Coulomb interactions. The
bubble diagrams, on the other hand, are straightforward to
sum up. Here, a direct summation in the real-space vector
δ associated with each interaction line is possible because
the momentum transfer is independent of the internal mo-
mentum label p of the two propagators, as can be seen by
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(a)

(b)

FIG. 1. (a) Second-order bubble and (b) ladder diagram. The
real-space vector δ labels the range of the bare Coulomb interaction.
In the bubble diagram (a), the δ summation can be performed inde-
pendently of the p sum in the bare susceptibility, while the ladder
diagram (b) requires a summation in δ, δ′ which also involves the
internal momentum label p.

inspection of the second-order diagram in Fig. 1(a). We note
that, as a result of the sign convention in Eq. (8), the bubble
diagrams including only NN Coulomb repulsion VNN give
rise to an interaction proportional to the charge susceptibil-
ity: χ0(q)/[1 + 2VNN(cos(qx ) + cos(qy))χ0(q)]. At the same
time, the spin structure of the matrix in Eq. (8) ensures that
only an even number of bubbles is included in the case of
on-site Coulomb interactions when the effective pairing for
opposite-spin electrons is considered.

Returning to the ladder diagrams, it can be seen from
the second-order diagram of Fig. 1(b) that the interaction
lines carry explicit reference to the internal momentum p of
the fermion propagators, as opposed to the bubble diagrams,
where the transferred momentum for each interaction line is
simply given by k′ − k. This is why the additional structure
of the bare susceptibility including phase factors stated in
Eq. (17) is required in order to sum up all the ladder diagrams.

The physical spin and charge susceptibilities are
obtained by

[
χαβ

sp (q, iωn)
] = 1

N

∫ β

0
dτeiωnτ 〈Tτ Sα (−q, τ )Sβ (q, 0)〉

= 1

4

∑
{σi}

σα
σ1,σ2

σβ
σ3,σ4

[χ (q, δ = 0, δ′ = 0)]σ1;σ2
σ3;σ4

,

[
χch(q, iωn)

] = 1

N

∫ β

0
dτeiωnτ 〈Tτ n(−q, τ )n(q, 0)〉

= 1

4

∑
σ1,σ2

[χ (q, δ = 0, δ′ = 0)]σ1;σ1
σ2;σ2

, (19)

where the same result is obtained for the different spin chan-
nels αβ ∈ {xx, yy, zz} since we consider neither magnetic
order nor spin-orbit coupling [45,60,61].

It is worth noticing that the interaction vertex also includes
vertex corrections which are enabled by the presence of NN
interactions. In the formalism where only the on-site inter-
action is nonzero such vertex corrections are absent due to
the spin constraint. The presence of longer-range Coulomb
interaction relieves this constraint and allows for additional
diagrams of the form of vertex corrections, similar to the
multiorbital RPA formalism as discussed in, e.g., Ref. [62].

Finally, for a classification of the different allowed gap
solutions one needs to consider the irreducible representations
(irreps) with two-dimensional basis functions of the relevant
point group. In the present case, the point group of the square
lattice is D4h, which includes the irreps A1g, A2g, B1g, and
B2g in the singlet channel, and the two-dimensional irrep
Eu in the spin-triplet channel. Since we are considering a
two-dimensional square lattice and a single-band model, all
solutions of the gap equation can be classified according to
these irreps. Note, however, that a given solution may have
contributions from several lattice harmonics, which is im-
portant for the total number of gap nodes. For example, the
B1g irrep may correspond to a standard dx2−y2 cupratelike gap
structure with 4 nodes on a �-centered Fermi surface, or it
may involve contributions from an ix2(x2−3y2 )2−y2(3x2−y2 )2 -wave
gap leading to 12 nodes on the Fermi surface. Both dx2−y2 and
ix2(x2−3y2 )2−y2(3x2−y2 )2 -wave orders transform according to the
B1g irrep under the symmetry operations of D4h [21,42].

III. RESULTS

A. Basic effect of longer-range Coulomb repulsion on pairing

Before proceeding with a discussion of the superconduct-
ing phase diagrams obtained, it is instructive to consider
the basic consequences of including longer-range repulsive
Coulomb interactions in the pairing calculation. The long-
range nature of the interaction is visualized as a function
of intersite spacing �r = (�rx,�ry) in Fig. 2, providing
an intuitive presentation of the extension of spin-fluctuation-
mediated pairing and the main effects of the longer-range
Coulomb interaction. In the case of repulsive interactions,
the longer-range terms act to “push out” the attractive sites,
leading to pairing in higher-angular-momentum channels. To
demonstrate this explicitly, we Fourier-transform the pairing
interaction V (k, k′), and analyze the pairing structure of the
corresponding real-space Hamiltonian,

Ĥint =
∑

i,�r,σ,σ ′
V (�r)c†

iσ c†
i+�rσ ′ci+�rσ ′ciσ . (20)

Figure 2(a) displays V (�r) in the case of on-site Coulomb
repulsion only. Attraction occurs at NN sites which near half
filling produces a B1g (dx2−y2 ) superconducting instability, a
well-known result for the standard one-band Hubbard model
[2,7,21,28]. To visualize the effect of longer-range interac-
tions we calculate the total pairing interaction of Eqs. (5)–(7)
when including either NN or NNN repulsion. Repulsion be-
tween NN sites induces leading attractive couplings for NNN
sites, and �r = (±2, 0) and (0,±2), as shown in Fig. 2(b).
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FIG. 2. Pairing interaction shown in real space for opposite-spin
electrons in the singlet channel in the case of 〈n〉 = 0.8 and t ′ = 0
obtained from Eqs. (5)–(7) with (a) only on-site U repulsion (U =
0.5), (b) same as (a) but including VNN = 0.25, and (c) same as (a) but
including VNNN = 0.125. (d) The full pairing interaction vertex for
the same parameters, i.e., U = 0.5, VNN = 0.25, and VNNN = 0.125.

NNN repulsion obviously disfavors attraction at NNN sites,
and prefers attractive effective couplings at �r = (±2, 0) and
(0,±2), and �r = (±2,±2) [see Fig. 2(c)]. In Fig. 2(d) the
full interaction as stated in Eqs. (7)–(9) is shown. It includes
all possible bubble and ladder diagrams, and also mixed ones.

As seen from Fig. 2(d), the bare interactions lead to an ex-
tended repulsive halo consisting of the closest eight neighbors.
Thus, quantitatively even a modest longer-range Coulomb
repulsion is enough to overwhelm the attraction generated by
U . Overall attractive interactions generated by spin and charge
fluctuations emerge beyond the closest eight neighbors. For
the case shown in Fig. 2(d), the largest attractive sites are at
�r = (±2, 0), and �r = (±2, 1) and symmetry-related sites.
The latter tend to support an A2g (g-wave) solution whereas the
former sites generate multinodal B1g, A1g, or Eu spin-triplet
solutions. As discussed in detail below, small differences
in the pairing pattern become decisive for which supercon-
ducting instability is preferred at a given filling and band
structure.

B. Phase diagrams

Figure 3 displays an overview of the superconducting
phase diagrams obtained within the current framework. More
specifically, the phase diagrams shown in Fig. 3 indicate the
leading solution to the linearized gap equation, Eq. (10), for
different electron filling 〈n〉, band structure, and interaction
parameters VNN and VNNN. Figures 3(a)–3(d) and 3(e)–3(h)
refer to cases with t ′ = 0 and t ′ = −0.35, respectively.
Figures 3(a) and 3(e) display the superconducting phases in
the absence of NNN Coulomb repulsion (VNNN = 0), while
Figs. 3(b)–3(d) and 3(f)–3(h) show the results for increasing
values of VNNN. Note that since the band is particle-hole
symmetric at t ′ = 0, the phase diagrams of Figs. 3(a)–3(d)
are symmetric with respect to electron and hole doping. For
all results shown in Fig. 3 we have fixed U = 0.5. Generally,
this value of U is considerably below the critical interaction
strength Uc necessary for entering nonsuperconducting insta-
bilities. The exception is the perfectly nested band with t ′ = 0
close to half filling. Thus, Uc varies considerably throughout
the phase diagrams in Fig. 3, with, e.g., Uc = 2.6 at half
filling for the band with t ′ = −0.35. In the low-U regime,
the hierarchy of superconducting solutions has been shown to
display overall agreement with DCA close to half filling in the

A1g

A2g

B1g

B2g

FIG. 3. Phase diagrams of the leading superconducting order as a function of the filling 〈n〉 and NN repulsion VNN/U , where U = 0.5
is the on-site Coulomb repulsion. The color code indicates the irrep of the leading solution and the center of each dot marks the actual
parameter values of the computations. [(a)–(d)] The NNN hopping is t ′ = 0 and the system is thus symmetric with respect to electron and hole
doping. [(e)–(h)] The same as (a)–(d) except for a finite t ′ = −0.35. The NNN repulsion is zero in (a) and (e), while in (b)–(d) and (f)–(h)
VNNN = 0.1VNN, 0.3VNN, and 0.5VNN, respectively. The gray color in the upper row indicates regions in which the spin or charge susceptibility
has diverged, causing a nonsuperconducting instability. The latter can be avoided by lowering U or enhancing T , but for simplicity we have
kept these parameters fixed throughout the phase diagrams. The black crosses in (f) indicate the parameters used in Fig. 4.
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FIG. 4. [(a)–(e)] Momentum structure of the leading superconducting gap for electron fillings 〈n〉 = 0.2, 0.4, 0.5, 1.2, and 1.5 in the case
U = 0.5, VNN/U = 0.2, VNNN/VNN = 0.1, with t ′ = −0.35 [see also Fig. 3(f)]. [(f)–(j)] The real-space pairing interactions corresponding to
the gap structures shown in (a)–(e). [(k)–(o)] Normal state RPA spin and charge susceptibilities shown by blue dashed lines and red solid
lines, respectively, calculated using Eq. (19) for the same parameters as the respective above panels. In the insets we show the full momentum
dependence of the real part of the static spin susceptibility.

case of inclusion of onsite interactions U only, as discussed in
Ref. [28]. In this regime different values of U mainly shift
the overall amplitudes of the eigenvalues and while moderate
changes in U modify the phase boundaries slightly, it does not
lead to significant changes to the phase diagrams of Fig. 3 and
is unimportant for the subsequent discussion.

Focusing first on the case with t ′ = 0 displayed in
Figs. 3(a)–3(d), we see that for on-site interactions only, the
leading instability is either B2g (dxy) at small to intermedi-
ate electron and hole fillings (〈n〉 � 0.5, 〈n〉 � 1.5) or B1g

(dx2−y2 ) for the other fillings (0.5 � 〈n〉 � 1.5), as seen from
the VNN = 0 line in Figs. 3(a)–3(d). This is in agreement with
previous results in the weak-coupling regime [23,32,37,42].
The momentum structures of these B1g and B2g solutions are
well described by the basic lowest harmonics, i.e., cos(kx ) −
cos(ky) and sin(kx ) sin(ky), respectively [see also insets of
Fig. 5(a)]. Note that in the limit of very small U (not shown),
a spin-triplet solution may be present at the crossing point
between the B1g and B2g solutions [23,32]. We have checked
that indeed this triplet phase is there for very weak U also
within the present approach.

As longer-range repulsive interactions are included in the
calculation of the effective pairing, very rich superconducting
phase diagrams emerge as seen from the different panels in
Fig. 3. In the vicinity of half filling 〈n〉 	 1, B1g (dx2−y2 ),
superconductivity is rapidly destroyed by NN repulsion since
the scale of VNN is large compared to the effective NN at-
traction induced only by U . As seen from Figs. 3(a)–3(d),
a transition to A2g (g-wave) order occurs irrespective of the
size of VNNN. When VNNN/U � 0.1, a second transition from
A2g (g-wave) to Eu (p-wave) spin-triplet superconductivity is
induced as the NN repulsion is increased beyond VNN/U 	

0.15. Figures 3(c) and 3(d) and Figs. 3(g) and 3(h) re-
veal that the inclusion of sizable NNN repulsion promotes
the A2g (g-wave) solution which dominates large regions of
the phase diagram. However, a region of mainly B2g (dxy)
superconductivity persists for the case of t ′ = 0 whereas the
band structure relevant for t ′ = −0.35 favors also the Eu

(p-wave) order in the hole-doped regime as seen from
Figs. 3(g) and 3(h). Overall the results shown in Fig. 3
agree qualitatively with previous studies even though a direct
comparison is not possible due to differences in the applied
method or parameter values [23,32,37,42].

C. Momentum-dependent gap structures

Next, we turn to a discussion of the detailed gap structures
exhibited by the different solutions shown in Fig. 3. In gen-
eral, as discussed in relation to Fig. 2, longer-range repulsion
pushes attractive regions outward and creates an extended
pairing structure in real space, thereby equivalently generat-
ing significant contributions of higher harmonics within each
irrep. Thus, longer-range Coulomb repulsion naturally gen-
erates additional nodes. In Fig. 4 we display the different
gap properties of typical solutions in Fig. 3. Specifically, the
cases in Fig. 4 correspond to 〈n〉 = 0.2, 0.4, 0.5, 1.2, and
1.5 with U = 0.5, VNN/U = 0.2, VNNN/VNN = 0.1, and t ′ =
−0.35. This parameter choice corresponds to a cut along the
VNN/U = 0.2 line in Fig. 3(f) [see highlighted crosses]. Fig-
ures 4(a)–4(e) display the gap structure on the Fermi surface,
whereas Figs. 4(f)–4(j) show the corresponding real-space
pairing interactions. In Figs. 4(k)–4(o) we show the related
static spin and charge susceptibilities in momentum space.
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FIG. 5. Order parameters for (a) B1g and B2g and (b) B1g and
A2g symmetry channels as a function of filling (a), or NN repulsion
VNN/U (b), with U = 0.5. In (a) VNN = VNNN = 0 and t ′ = 0, and in
(b) VNNN = 0.5VNN at filling 〈n〉 = 1.0, with t ′ = −0.35. The real and
imaginary parts of the gaps are displayed in the insets at 〈n〉 = 0.573
(a) and at VNN/U = 0.0126 (b). Panels (c) and (d) display the current
patterns induced around a nonmagnetic impurity placed at the center
site (red cross) in the TRSB coexistence regions in (a) and (b),
respectively. The currents are displayed in units of et/h̄a2.

Starting from the low-electron-density region 〈n〉 = 0.2,
we see from Figs. 4(f) and 4(k) that the spin and charge
susceptibilities, in conjunction with the repulsive bare inter-
action parameters, produce leading attractive sites with �r =
(±2, 1) and symmetry-related points. The lattice harmonic
corresponding to these sites generates gxy(x2−y2 )-wave (A2g)
superconductivity, in agreement with the momentum structure
of the gap shown in Fig. 4(a). At the larger electron concentra-
tion of 〈n〉 = 0.4 the leading solution is a spin-triplet Eu state.
In this case, the Fermi surface and the interaction parameters
conspire to produce the largest attractions on �r = (±2, 0)
and symmetry-related sites as seen from Fig. 4(g), essentially
leading to a sin(2kx )/ sin(2ky) Eu gap structure in agreement
with Fig. 4(b). From the susceptibilities in Fig. 4(l), one

identifies a main nesting peak near (π, 0.2π ) which connects
same-sign regions in Fig. 4(b) due to the attractive sign of
the pairing interaction in the spin-triplet sector. As discussed
recently for UTe2 [63], however, this imposes additional
nodes and thus the gap structure is dominated by higher-order
harmonics. The solution of the full BCS gap equation reveals
that the triplet Eu phase always prefers the p + ip state at
lower temperatures, leading to the fully gapped time-reversal
symmetry broken phase. Such chiral states can be probed,
e.g., by muon spin relaxation measurements or through Kerr
rotation experiments. At 〈n〉 = 0.5, as seen from Fig. 4(h), the
main attractive sites are exhibited at the diagonal NNN posi-
tions �r = (±1,±1). Thus, the modest bare NNN repulsion
does not completely screen out attraction at these sites. This
results in a leading spin-singlet B2g solution [see Fig. 4(c)],
where the additional longer-range attractions at (±2,±2) seen
from Fig. 4(h) generate a higher-order nodal structure. At
〈n〉 = 1.2, where the Fermi surface resembles the cuprates,
the main nesting is seen from Fig. 4(n) to be located close
to the (π, π ) region, producing a B1g state. However, since
the longer-range Coulomb repulsion has pushed the attractive
sites beyond the NN sites, we find that the gap structure in
Fig. 4(d) displays large contributions for higher-order har-
monics in the B1g channel. This produces additional nodes
compared to the usual four symmetry-imposed nodes along
the diagonal lines originating from the lowest harmonics.
Finally, for an even larger filling factor of 〈n〉 = 1.5, we show
in Fig. 4(e) an example of an A1g gap solution with very
extended Cooper pairing evident from the real-space pairing
interaction shown in Fig. 4(j). We note that while we have
discussed the gap structures obtained along a particular cut
in Fig. 3(f), the gap structures shown in Figs. 4(a)–4(e) are
representative of their symmetry-equivalent partners in the
other panels of Fig. 3, except for cases with vanishing VNN

and VNNN.
The additional nodal structure generated by the longer-

range Coulomb interaction as seen from Fig. 4 can be detected
by most experimental probes sensitive to the lowest energy
quasiparticles. A direct test of the predicted gap structure
would be obtained by high-resolution momentum-resolved
spectroscopic probes, including, e.g., ARPES and scanning
tunneling quasiparticle interference measurements.

D. Time-reversal symmetry breaking near degeneracy regions

From Fig. 3 it is evident that the phase diagrams feature
substantial areas of accidentally degenerate solutions to the
linearized BCS gap equation. This poses the question: What is
the nature of the superconducting condensates near these tran-
sition regions? To answer this question we have solved the full
BCS gap equation along selected parameter cuts, crossing two
symmetry-distinct solutions. All cases of transitions between
spin-singlet and -triplet regions are found to be first order.
By contrast, Fig. 5 shows two examples where we zoom in
on the transition between the two spin-singlet phases B1g and
B2g (B1g and A2g). The transitions correspond to increasing
the filling for VNN/U = 0 in Fig. 3(a) [increasing VNN/U for
〈n〉 = 1 in Fig. 3(h)]. As seen both transitions are second order
with a coexistence region in the crossover regime where the
system stabilizes a complex TRSB phase, i.e., B1g + iB2g and
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B1g + iA2g, respectively. The complex combination is verified
explicitly from the solutions of the full BCS gap equation. In
the insets of Fig. 5 we display the real and imaginary parts of
the respective solutions.

TRSB in nonchiral superconductors can be exposed,
for example, near inhomogeneities. Specifically, pointlike
disorder directly brings out the symmetry of the complex or-
der parameter in localized supercurrents bound to the disorder
sites [64–67]. To determine the impact of a single nonmag-
netic impurity near the accidental degeneracy lines, we have
solved the related real-space Bogoliubov–de Gennes equa-
tions and computed the resulting current densities between all
NN and NNN bonds:〈 
J NN

r

〉 =
∑

σ

it[x̂〈c†
r+x̂σ crσ 〉 + ŷ〈c†

r+ŷσ crσ 〉 − H.c.],

〈 
J NNN
r

〉 =
∑

σ

i
t ′

√
2

[(x̂ + ŷ)〈c†
r+(x̂+ŷ)σ crσ 〉

+ (x̂ − ŷ)〈c†
r+(x̂−ŷ)σ crσ 〉 − H.c.]. (21)

Figures 5(c) and 5(d) show the resulting current patterns
around a single impurity site (red cross). In agreement with
earlier studies, loops of supercurrents are induced by the
perturbation [64–67]. As seen, the induced pattern directly
reflects the symmetries of the condensate since Fig. 5(c)
[Fig. 5(d)] corresponds to the cross product B1g ⊗ B2g = A2g

(B1g ⊗ A2g = B2g). Therefore, the current pattern exhibits the
symmetries of the A2g (B2g) irreducible representation. Thus,
direct imaging of these current patterns allows for detailed
exposure of the symmetries of the underlying condensate [68].
We stress that the emergent TRSB studied here is distinct from
TRSB arising from impurity-induced spin freezing caused by
nonmagnetic disorder in correlated superconductors [69–79].
By including standard on-site Hubbard correlations in the
particle-hole channel at the mean-field level, we have verified
numerically that these two mechanisms of local TRSB com-
pete; i.e., local magnetic moments induced by U suppress the
impurity-induced local supercurrents.

E. Consequences of additional nearest-neighbor attraction

Finally, we turn to a discussion of the role of additional
explicit (bare) attraction on the gap structures. This issue is
motivated by the recent ARPES studies discussed in the Intro-
duction, finding evidence for NN attraction possibly generated
by appropriate phonon modes [49,50]. We have mimicked this
situation by calculation of the spin- and charge-fluctuation-
generated pairing vertex from on-site U repulsion only, and
then added by hand an attractive NN coupling, i.e., imposed
VNN < 0 at the bare level of the pairing. In Fig. 6 we show the
leading eigenvalues of the linearized BCS gap equation as a
function of electron concentration 〈n〉 and for increasing NN
attraction. Figure 6(a) corresponds to a cut along the bottom
edge (VNN = 0) of Fig. 3(e). Figures 6(b) and 6(c) display the
same evolution of the eigenvalues as Fig. 6(a), but including
negative VNN in the pairing kernel. As seen, this simply raises
the Eu spin-triplet and B1g singlet irreps, which rapidly split
off from the other solutions. Qualitatively, this is the expected
behavior since attraction at the NN sites directly supports
those irreps with a gap structure dominated by the correspond-

FIG. 6. Evolution of eigenvalues in distinct symmetry channels
as a function of the electronic concentration 〈n〉 in the case of (a)
VNN/U = 0, (b) VNN/U = −0.01, and (c) VNN/U = −0.03, where
U = 0.5 is the on-site Coulomb repulsion and t ′ = −0.35. Here, the
attractive NN interaction is included at the bare level. For compari-
son, the effective NN attraction generated solely by U [see (a)] is of
order −0.01.

ing lowest-order harmonics. Quantitatively, however, Fig. 6
reveals (1) the crossover density of these two leading irreps,
and (2) the significant eigenvalue enhancement already for
relatively small explicit NN attraction. It is unclear to what
extent these results directly relate to high-Tc cuprate supercon-
ductivity, but the calculations do show that B1g (dx2−y2 -wave)
superconductivity anchored by repulsive local Coulomb inter-
actions may get its critical transition temperature significantly
boosted by modest additional NN attraction.

IV. DISCUSSION AND CONCLUSIONS

We have determined the superconducting phase diagram
of the repulsive one-band 2D Hubbard model within spin-
fluctuation-mediated superconductivity in the presence of
longer-ranged Coulomb interactions. We have focused on
how NN and NNN repulsive interactions alter the hierar-
chy of the leading superconducting solutions. Our results
align reasonably well with earlier works [23,32,37,42], even
though direct comparison is not possible due to the specific
mechanism of spin and charge fluctuations mediating the
pairing assumed here, incorporated via RPA summation of
all bubble and ladder diagrams. The calculations reveal that
longer-range interactions may strongly reshuffle the hierar-
chy of the leading pairing solutions. For example, as seen
from the obtained phase diagrams [e.g., Fig. 3(e)], the am-
plitude of longer-range Coulomb repulsion alone may tune
the ground-state order from B1g → A2g → Eu → B2g. In ad-
dition, the resulting gap structures tend to exhibit additional
nodes due to the importance of higher-order lattice harmonics
arising from the repulsive halo generated by the longer-range
interactions. We have explored selected phase boundaries of
the phase diagrams and determined the composite TRSB su-
perconducting order near these regions. Transitions between
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symmetry-distinct spin-singlet order are found to be second
order whereas spin-triplet–spin-singlet transitions are first or-
der. We stress that these results are obtained in the static
limit of the pairing kernel. Including retardation effects makes
short-range pairing more resilient to VNN Coulomb repulsion
[34,38,41,44]. This may be important for dx2−y2 cuprate super-
conductivity where calculations estimate VNN/U ∼ 0.2 [80].
Within the current framework, B1g (dx2−y2 ) superconductivity
is stable for similar VNN/U ratios without retardation, but
at interaction strengths U close to the critical value Uc (not
shown explicitly here).

Finally, we have also determined the influence of an ex-
plicitly attractive NN interaction in the pairing kernel, in
addition to the (on-site) Coulomb-interaction-generated ef-
fective vertex. Depending on the electronic concentration,
the NN attraction boosts Eu spin-triplet or B1g spin-singlet
order, in both cases dominated by the lowest-order harmonic
as a result of the main attractive interaction residing on the
NN sites.

Our work highlights the richness of spin- and charge-
fluctuation-mediated pairing in the 2D Hubbard model
regarding the underlying band structure, but in particular as

a function of changes in longer-range bare interaction param-
eters. We expect that the results presented here will be of use
to identify the possible states in new candidate unconventional
superconductors with extended-Hubbard-type correlations. It
is interesting to note that the large number of phase boundaries
present in the phase diagram provides many options for exotic
TRSB condensates, where two symmetry-distinct orders of
spin-singlet character combine into a complex order parame-
ter. The symmetry of the combined order parameter is directly
reflected in the locally induced currents around nonmagnetic
disorder sites.
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