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Phonon decay in one-dimensional atomic Bose quasicondensates via Beliaev-Landau damping
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In a one-dimensional Bose gas, there is no nontrivial scattering channel involving three Bogoliubov quasipar-
ticles that conserves both energy and momentum. Nevertheless, we show that such three-wave mixing processes
(Beliaev and Landau damping) account for their decay via interactions with thermal fluctuations. Within an
appropriate time window where the Fermi golden rule is expected to apply, the occupation number of the initially
occupied mode decays exponentially and the rate takes a simple analytic form. The result is shown to compare
favorably with simulations based on the truncated Wigner approximation. It is also shown that the same processes
slow down the exponential growth of phonons induced by a parametric oscillation.
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I. INTRODUCTION

Ultracold gases have proved to be a fruitful arena for both
theoretical and experimental research. In particular, the prop-
agation of elementary excitations on top of a macroscopic
condensed background provides an accessible realization of
a quantum field in an effective curved spacetime [1,2]. This
can be exploited to, e.g., mimic a black-hole horizon so as to
induce the analog of Hawking radiation (as recently achieved
in [3]). It can also be used as a platform for realising an analog
of preheating, or the Dynamical Casimir Effect, which is a
topic of current interest [4–6]. The degree of experimental
control, combined with the intrinsically quantum nature of
ultracold gases, makes them well suited for such experiments.

In studies of this kind, an important issue concerns the
effect of dissipation on the expected signal. Dissipation
arises in closed systems as an effective phenomenon due
to quasiparticle interactions [7,8]. This entails the existence
of an intrinsic quasiparticle decay. In 3D Bose gases, the
principle mechanisms behind this decay are the three-wave
mixing processes of Beliaev and Landau damping [9,10].
However, in one-dimensional Bose gases with only two-
body contact interactions (i.e., of the Lieb-Liniger model
[11]), two objections have been raised against the possi-
bility of such processes. The first is that the integrability
of the model prevents quasiparticle decay in principle, and
that integrability-breaking perturbations must therefore be in-
cluded before damping can occur [12–14]. The second is
that quasiparticle decay requires the existence of nontrivial
scattering channels conserving both momentum and energy,
a criterion that has been routinely applied in many systems
of all dimensionalities [15–19]. As there are no such chan-
nels involving three collinear Bogoliubov excitations due to
their gapless and convex spectrum, it has been concluded
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that three-wave mixing in one dimension cannot induce decay
[12,18,20].

In this paper, we wish to push back a little against these
conclusions. First, integrability does not seem to prevent re-
laxation within a physical model, but only thermalization:
the system tends towards an equilibrium state with rather
more structure than a thermal state [21], described by a
generalized Gibbs ensemble [22], see [23] for a recent ap-
plication to the Lieb-Liniger gas. In addition, in the context
of one-dimensional Bose gases, this relaxation could even
be necessary in order to comply with the Mermin-Wagner-
Hohenberg theorem [24,25], as it provides a mechanism by
which the long-range order induced by a sufficiently narrow-
band excitation spectrum is washed away.

Second, we wish to show and emphasise that the apparent
absence of an elastic scattering channel does not necessarily
preclude any quasiparticle decay. In the Fermi golden rule
(FGR), the Dirac delta enforcing energy conservation is typi-
cally interpreted in a binary way: either an energy-conserving
channel exists and quasiparticle decay occurs, or there is no
such channel and the quasiparticle is stable. However, the
Dirac delta is an idealization of a narrow distribution with a
small but finite width, so we must consider those final states
that are in the vicinity of the exactly energy-conserving one.
In particular, in one-dimensional quasicondensates, the trivial
three-wave mixing channel involving the zero-energy mode
is not physical itself. Yet the divergent thermal population of
nearby infrared modes yields a well-defined contribution to
the FGR decay rate. As anticipated, this mechanism leads to
a broadening of the excitation spectrum and, within an appro-
priate time interval, the occupation of the initially occupied
mode decays exponentially at a constant rate. The calculation
of this rate is our main result.

The paper is organized as follows. In Sec. II, we recall the
Lieb-Liniger model of a one-dimensional Bose gas, includ-
ing its hydrodynamical description in the weakly-interacting
regime, and define the quasiparticles whose decay we are in-
terested in. In Sec. III, we present a derivation of the intrinsic
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quasiparticle decay rate, as well as the outline of a more
precise formulation that includes the main deviations from
exponential decay. In Sec. IV, we show that the decay rate
extracted from numerical simulations is in good agreement
with the prediction of Sec. III, both in the relaxation of an
initial injection of phonons and in the slowing of exponential
growth induced by a parametric oscillation (the latter example
being inspired by experiments [4]). We conclude and make
links with other papers in Sec. V, while some further details
are relegated to Appendices.

II. SETTINGS

Here we recall the necessary preliminaries for describing
a one-dimensional Bose gas. The quasicondensate nature,
and the appropriateness of the hydrodynamical description,
are introduced. The quasiparticles are defined in the hydro-
dynamical framework. A brief description of the numerical
procedure adopted for simulating the dynamics of the gas is
also given, and some preliminary numerical observations of
the quasiparticle decay are presented.

A. Quasicondensate description

Consider a one-dimensional gas of identical bosons of
mass m with only two-body contact interactions and no atom
losses, described by the Hamiltonian

Ĥ =
∫ L

0
dx

{
h̄2

2m
∂x�̂

† ∂x�̂ + g

2
�̂†2�̂2

}
, (1)

where �̂ is the atomic field and g is the one-dimensional
interaction constant. We impose periodic boundary condi-
tions, so that the gas effectively lives on a torus of length
L. The gas is “trapped” by the finiteness of the torus, but
its dynamics and statistics are completely homogeneous. This
allows an equivalent description using Fourier modes, each
characterized by a wave number k = 2πn/L for n ∈ Z. Each
Fourier amplitude �̂k is the annihilation operator for atoms of
momentum h̄k. The state of the system is fully characterized
by the expectation values of the �̂

(†)
k and all their products.

A condensate occurs when one of the states of the system
(typically the lowest-energy state k = 0) contains a macro-
scopic fraction of the total atom number Nat or, equivalently,
when the gas demonstrates long-range order: the one-particle
density matrix g1(x − x′) = 〈�̂†(x)�̂(x′)〉 has a finite limit
when |x − x′| → ∞ [26]. However, the Mermin-Wagner-
Hohenberg theorem [24,25] precludes the apparition of such
long-range order in a one-dimensional system, essentially be-
cause the excitations of the system induce large fluctuations
in the relative phase of �̂ between widely separated points.
The one-particle density matrix then decays exponentially,
g1(x − x′) ≈ exp(−|x − x′|/r0), where the coherence length
r0 is given by [25]

r0

ξ
=

(
kBT

mc2

)−1

2ρ0ξ . (2)

A quasicondensed state can however be achieved in a one-
dimensional Bose gas at sufficiently low temperature [27].
As indicated above, the quasicondensate is characterized by
large relative phase fluctuations over large distances, while the

density fluctuations remain small. It is therefore appropriate
to adopt these as the field variables. They are related to the
atomic field via the Madelung transformation, �̂ = eiθ̂√ρ̂.
The representation in terms of the density and phase fields
is known as the hydrodynamical description, since θ̂ acts like
a potential for the flow velocity, v̂ = h̄

m ∂x θ̂ . At the classical
level where these are all c numbers, this is an exact canonical
transformation, with ρ and θ being conjugate variables. At
the quantum level, this is approximately true as long as the
discreteness of the atoms can be neglected, which requires
a sufficiently weak interaction and coarse graining over sites
containing many atoms [28]. We may then write the hydrody-
namical version of Eq. (1), up to some irrelevant term coming
from normal ordering,

Ĥ =
∫ L

0
dx

{
h̄2

2m

∂θ̂

∂x
ρ̂

∂θ̂

∂x
+ h̄2

8mρ̂

(
∂ρ̂

∂x

)2

+ g

2
ρ̂2

}
, (3)

while imposing the canonical commutation relation

[ρ̂(x), θ̂ (x′)] = i δ(x − x′). (4)

B. Perturbative expansion of Hamiltonian

We wish to study elementary excitations, which requires a
well-defined splitting of the total field into a background plus
perturbations. The background is defined as the homogeneous
solution of the classical equation associated to the Hamilto-
nian (1) (i.e., the Gross-Pitaevskii equation [25]), working
in the rest frame of the gas. The density ρ0 is then constant
(the total number of atoms is Nat = ρ0L) and the phase θ0 =
−gρ0t/h̄. The density fluctuations δρ̂ around this background
are assumed small while only the spatial variation of the
phase fluctuations ∂xδθ̂ is assumed small. We then expand the
Hamiltonian in (δρ̂, ∂xδθ̂ ),

Ĥ = E01̂ + Ĥ2 + Ĥ3 +
∑
i�0

Ĥ4+i, (5)

where the zeroth-order term E0 = gρ2
0 L/2 is the energy of

the homogeneous background, before any fluctuations are
included. Since the background is an exact solution of the
classical equation of motion, the first-order term vanishes
identically. The higher orders are given by

Ĥ2 =
∫ L

0

[
h̄2ρ0

2m

(
∂δ̂θ

∂x

)2

+ h̄2

8mρ0

(
∂δρ̂

∂x

)2

+ g

2
δρ̂2

]
dx,

Ĥ3 =
∫ L

0

[
h̄2

2m

∂δθ̂

∂x
δρ̂

∂δθ̂

∂x
− h̄2

8mρ0

(
∂δρ̂

∂x

)2
δρ̂

ρ0

]
dx, (6)

Ĥ4+i = (−1)i
∫ L

0

h̄2

8mρ0

(
∂δρ̂

∂x

)2(
δρ̂

ρ0

)(2+i)

dx,

for i � 0.
A couple of remarks are in order here. Notice first that the

quasicondensate perturbative scheme clearly differs from the
standard Bogoliubov treatment since the standard nonlinear
term �̂† 2�̂2 is fully included in the quadratic Hamiltonian,
while the infinite series of perturbative corrections comes
entirely from the kinetic term. Second, Eq. (6) indicates that
each order is suppressed by an additional factor of δρ̂/ρ0,
which suggests that 〈δρ2〉/ρ2

0 can be used as a measure of
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the importance of taking these higher orders into account. For
the typical values of parameters used in this paper we have
〈δρ̂2〉/ρ2

0 ∼ 10−3 so that we will consider only the second-
order term Ĥ2 and the first perturbation Hamiltonian Ĥ3.

C. Quasiparticle definition

Working in the canonical ensemble, the atom number Nat is
a fixed parameter, and therefore so is the background density
ρ0. The zero mode of the density fluctuations thus vanishes
identically, δρ̂k=0 = 0. Consequently, the conjugate variable
δθ̂k=0 is nondynamical and can be ignored. The fluctuations
δρ̂ and δθ̂ on top of this background are then composed of the
nonzero Fourier modes δρ̂k and δθ̂k ,

δρ̂(x) =
√

ρ0

L

∑
k �=0

eikxδρ̂k, δθ̂ (x) = 1√
ρ0L

∑
k �=0

eikxδθ̂k .

(7)
With this writing δρ̂k and δθ̂k are dimensionless, and they
satisfy [δρ̂k, δθ̂k′ ] = i δk,−k′ . Since δρ̂(x) and δθ̂ (x) are Her-
mitian operators, the Fourier components satisfy δρ̂−k = δρ̂

†
k

and δθ̂−k = δθ̂
†
k . Ĥ2 can be diagonalized into normal modes,

called phonons [29], represented by operators ϕ̂
(†)
k such that

Ĥ2 =
∑
k �=0

h̄ωk

(
ϕ̂

†
k ϕ̂k + 1

2

)
, (8)

where the phonon frequency

ωk = c|k|
√

1 + 1
4 k2ξ 2, (9)

with c = √
gρ0/m the speed of sound and ξ = h̄/mc the

healing length. In the limit kξ −→ 0, we have an exactly lin-
ear dispersion relation like that of the Luttinger liquid. The
phononic operators are related to the density and phase fluc-
tuations by

ϕ̂k = 1√
2

(
C−1

k δρ̂k + i Ck δθ̂k
)
, (10)

where C2
k = h̄k2/(2mωk ). The use of inverse coefficients Ck

and C−1
k ensures that the transformation is canonical and

hence that the phonon operators satisfy the bosonic commuta-
tion relation [ϕ̂k, ϕ̂

†
k′ ] = δk,k′ .

ξ and the associated healing time tξ = ξ/c provide natural
units in which to express quantities adimensionally. There
are three dimensionless parameters describing the system:
the one-dimensional density ρ0ξ , the length L/ξ , and the
temperature kBT/mc2 (where mc2 = h̄/tξ is the chemical po-
tential ∂E0/∂Nat). The interaction strength is characterized
by γLL = 1/(ρ0ξ )2, the dimensionless Lieb-Liniger constant
[11,27]. Numerical simulations presented in this paper typ-
ically have γLL ∼ 10−5 − 10−3, placing us firmly in the
weakly-interacting regime. We also choose a grid spacing �x
such that ρ0�x ∼ 20 atoms per site, justifying our use of the
hydrodynamical description.

Just as for the atom operators �̂k , the phonon operators
ϕ̂k provide a complete description of the system, whose state
is fully characterized by the expectation values of the ϕ̂

(†)
k and

all their products. Since the ϕ̂k come close to diagonalizing the
full Hamiltonian Ĥ , the phonons are close to the exact normal

modes of the system and their mutual interactions are rela-
tively weak. The phonons therefore provide the most natural
basis in which to examine the state of the system and interpret
its dynamical behavior. However, the simplicity of the full
Hamiltonian (1) makes the atom basis more convenient for
numerical treatments of the evolution.

D. Quasiparticle interactions

Turning now to Ĥ3, and neglecting terms of the form
ϕ†ϕ̂†ϕ̂† (ϕ̂ϕ̂ϕ̂), which cause the unbalanced appearance (dis-
appearance) of three phonons typically associated with strong
violation of energy conservation, the relevant part of the inter-
action Hamiltonian takes the form

V̂3 = 1√
Nat

∑
p,q �=0
p+q �=0

h̄V3(p, q){ϕ̂†
pϕ̂

†
q ϕ̂p+q + ϕ̂

†
p+qϕ̂pϕ̂q}, (11)

where

V3(p, q) =
√

h̄

32m

√
|pq(p + q)|
v

ph
p v

ph
q v

ph
p+q

{
−

(
h̄

2m

)2

[p2 + pq + q2]

+ vph
p vph

q + vph
q v

ph
p+q + vph

p v
ph
p+q

}
, (12)

and v
ph
k = ωk/k is the phase velocity at k.

V̂3 describes the decomposition of a single phonon into two
phonons, as well as the inverse process where two phonons
combine into one. Note that it is momentum conserving, re-
flecting the homogeneity of the system, and that if p is held
fixed and q → 0, V3(p, q) vanishes as

√
q. A similar writing

of V̂3 can be found in [13], in a form that is equivalent to the
one given here.

E. Numerical simulations

The system is modeled numerically using the truncated
Wigner approximation (TWA) [30] (see Appendix C for more
details). The operators �̂ are replaced by classical variables
�, and products of these variables are identified with the cor-
responding fully symmetrized quantum operators. A series of
ab initio Monte Carlo simulations are performed, with quan-
tum indeterminacy appearing through the statistical ensemble
describing the initial state. The field is then evolved according
to the dynamics of Hamiltonian (1). This is repeated for a large
number of independent initial realizations, so as to get good
statistics when computing averages.

The phenomenon of interest is illustrated in Fig. 1, which
shows the typical evolution observed in numerical simula-
tions. Starting from a thermal state, the occupation number
of a mode is increased by δn, to be considered as the initial
number of phonons in the probe. Indeed, throughout this paper
we shall adopt the following decomposition:

nk = nth
k + δnk, (13)

where nk = 〈ϕ̂†
k ϕ̂k〉 is the full phonon spectrum and nth

k is the
(thermal) spectrum in the absence of any probe. Further de-
tails of the simulations are given in Sec. IV. The figure shows
nk at a series of different times. We see that nprobe

k , the popu-
lation of the initially occupied mode, decays. The observed
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FIG. 1. Snapshots of the phonon number spectrum at times
t/tξ = 0, 5, 10 assuming an initial thermal state at temperature
kBT/mc2 = 2 on top of which an additional δn = 1 (top) or δn = 10
(bottom) phonons are added in the mode kξ = 3.1. The size of
the system is L/ξ = 90.5 and its atomic density ρ0ξ = 49.9. The
averages are calculated from an ensemble of 400 independent real-
izations, while the error bars represent the standard deviation. There
are 256 points on the grid. The inset shows a more time-resolved
evolution of the population in the probe mode. The total number of
phonons within the vertical dotted lines is given for the initial and
final times, and is seen to be conserved.

behavior is essentially linear, in the sense that the relative
change δnk (t )/δn is independent of δn, the number of phonons
injected in the probe. Moreover, it is clear that the spectrum of
the probe has broadened. Summing over nearby modes (those
within the vertical-dotted lines), the total n is found to be
constant in time. The phonons seem not to have been lost, but
rather to have been kicked into neighboring modes. Note that
the broadening is essentially symmetric: the phonons are just
as likely to be kicked towards a higher momentum as a lower
one. The small shifts in momentum suggest that the evolution
is primarily driven by interactions with infrared phonons from
the thermal bath.

III. THEORETICAL DERIVATION

In this section, we provide an analytical description of the
dissipative process at play. In Sec. III A, we derive the decay
rate using the FGR; as this applies to a discrete eigenstate

in interaction with a continuum, we expect it to describe the
decay of the population of a singularly occupied mode (i.e.,
when the spectrum is sufficiently narrow). In Sec. III B, we
sketch a formalism, which takes us beyond such an approx-
imation, using response functions to model the dynamics of
the spectrum more accurately and to describe the deviations
from purely exponential behavior. A fuller treatment of this
formalism is given in Appendix A, while a comprehensive
analysis of the main deviations observed numerically is given
in Appendix B.

A. Using the Fermi golden rule

Given an initial eigenstate |i〉 that couples to a continuum
of final eigenstates |ν f 〉 via a time-independent weak pertur-
bation Hamiltonian Ĥ ′, the FGR gives the transition rate into
the continuum [31],

dWi→ f = 2π

h̄
|〈ν f |Ĥ ′|i〉|2δ(E f − Ei ) dν f , (14)

where Ei and E f are the energies of the initial and final
states, the latter being labeled by the dimensionless number
ν f . The Dirac delta imposes energy conservation, i.e., the rate
is evaluated as a matrix element between states with the same
(unperturbed) energy. The total rate is found by integrating
over ν f .

Consider a singularly occupied phonon mode k, which
decays due to interactions with the thermal population of
phonons. Each available momentum is a multiple of 2π/L.
For sufficiently large kL the thermal distribution of phonons,
as well as the states available to decay to, can be approximated
as a continuum from the point of view of the mode k. We thus
expect the FGR (14) to be applicable. We need only determine
the relevant perturbation and corresponding initial and final
states.

In the phonon basis, the role of the perturbation entering
the FGR is played by V̂3 of Eq. (11). It describes two distinct
processes involving the annihilation of a probe phonon at
wave number k:

(i) Phonons of wave numbers k and q combine to produce
a single phonon with wave number k + q. The relevant term
is ϕ̂

†
k+qϕ̂qϕ̂k , taking |i〉 = |nq, nk, nk+q〉 to | f 〉 = |nq − 1, nk −

1, nk+q + 1〉, and the corresponding squared matrix element is
1

Nat
h̄2|2V3(k, q)|2 × nknq(nk+q + 1). The factor 2 comes from

the p ↔ q symmetry of the sum in Eq. (11). The factors of n
come from the action of the phonon operators on the state
|i〉, with the “n” and “+1” terms encoding stimulated and
spontaneous processes, respectively. The energy difference is
E f − Ei = h̄ δωL = h̄(ωk+q − ωq − ωk ); at small q, this gives
δωL ≈ v

gr
k q − c|q| = q(vgr

k ∓ c), where v
gr
k = dωk/dk is the

group velocity at k.
(ii) k decays to two phonons, with wave numbers k −

q and q. The relevant term is ϕ̂
†
k−qϕ̂

†
q ϕ̂k , taking |i〉 =

|nq, nk−q, nk〉 to | f 〉 = |nq + 1, nk−q + 1, nk − 1〉, and the
corresponding squared matrix element is 1

Nat
h̄2|2V3(k −

q, q)|2 × nk (nq + 1)(nk−q + 1). The energy difference is
E f − Ei = h̄ δωB = h̄(ωk−q + ωq − ωk ). At small q, this gives
δωB ≈ −q(vgr

k ∓ c) = −δωL.
The two scattering processes described above lead to the

well-known Landau and Beliaev damping of phonons in
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BECs: the former is associated with the absorption of a ther-
mal phonon, the latter with a splitting into two phonons [32].
The associated frequency differences are thus labeled δωL and
δωB.

Imposing also energy conservation δωL,B(q; k) = 0, as de-
manded by the Dirac delta in Eq. (14), we encounter the
problem anticipated above: the only exact solution respecting
both momentum and energy conservation is the trivial one,
q = 0 [33]. In the vicinity of this channel, the interaction
vanishes as |V3(k, q)|2 ∝ q. However, the frequency ωq also
vanishes as ωq → c|q|, and therefore the thermal population
nq ≈ kBT/h̄ωq simultaneously diverges. It therefore makes
sense to refer to the product |V3(k, q)|2nq as an effective inter-
action strength for the corresponding channel, as it has a finite
limit as q → 0, and it is this finite limit that is picked up by the
Dirac delta in Eq. (14). Although the delta is centered at q =
0, it does not actually matter that the trivial elastic channel
is unphysical and thus removed from the dynamics: the Dirac
delta is a placeholder for a steadily narrowing distribution of
final states in the vicinity of this channel (see Appendix A). As
long as there are sufficiently many modes within this distribu-
tion, the single removed mode at q = 0 has a relative measure
of zero. This allows the application of the FGR, as if the
limiting processes at q → 0± were physically allowed [34].

The Dirac delta in Eq. (14) also serves to multiply by the
density of available states with respect to the energy. Since
the available states are evenly spaced in momentum, in a win-
dow of size �q the number of states is �N = L/2π × �q ≈
L/2π h̄ × |dq/d (δωL/B)| × �E . Recalling from above that,
for small q, we have δωL ≈ −δωB ≈ q(vgr

k ∓ c), this gives the
following density of states:

ρE (k) ≡ dN

dE
= 1

2π h̄

L

v
gr
k ∓ c

. (15)

For ease of notation we restrict to k > 0, so that v
gr
k ∓ c is

always positive. Due to isotropy, −k will behave in exactly the
same way as k. We recall that the sign in the denominator is
related to the sign of q, the momentum of the infrared phonons
with which the interaction takes place. The abrupt change
in the velocity as q crosses zero means that there are two
distinct limits to be taken: q → 0 from above and from below.
Putting everything together, we thus derive two decay rates,
corresponding to the coupling with positive and negative q,

�±(k) = limq→0±
[

L
Nat

|2V3(k, q)|2nq
]

(
v

gr
k ∓ c

) . (16)

Inserting the explicit form of V3(k, q) yields

�±tξ = kBT

mc2

1

ρ0ξ
f±(kξ ) (17)

where

f±(kξ ) = 1

2

(kξ )2(
v

ph
k /c

)2

(
v

ph
k /c ± 1/2

)2

v
gr
k /c ∓ 1

. (18)

The total decay rate presented in the figures is �k = �+ + �−.
Equation (17) constitutes our main result: an explicit ex-

pression for the rate at which the population of a singularly
populated mode will decay, due to interactions with thermal
phonons.

Since at small q we have δωL ≈ −δωB ≈ v
gr
k q − c|q|, at

fixed |q| the magnitude of the frequency difference is smaller
when q has the same sign as k. We therefore expect that
such modes provide the dominant contribution to the decay,
while the coupling to modes of the opposite sign induces a
subdominant correction. So the Landau channel tends to kick
a phonon at k into a higher-energy mode, while the Beliaev
channel acts in the opposite direction. Since the two channels
contribute equally, there is no preference for a phonon at k
to be kicked towards either a higher or lower momentum.
This explains the approximate symmetry of the broadening
observed in Fig. 1.

B. Using response functions

Here, we give the outline of a more precise description
of how a perturbation to the phonon number spectrum δnk

evolves. For brevity, we shall avoid details here, though they
can be found in Appendix A. However, the writing will allow
us to point out significant deviations from the exponential
decay rate of Eq. (17), which are studied in more detail in
Appendix B.

The time derivative of δnk depends both on δnk and on
phonon correlations, the most important of which are the
three-point correlations induced by the Beliaev and Landau
processes described above, C(3)

p,q = 〈ϕ̂†
pϕ̂

†
q ϕ̂p+q〉. Neglecting

other connected correlation functions, the equations of motion
can be written entirely in terms of nk , although they become
integro-differential equations that include response functions,
which encode how the system “remembers” and responds
to its past behavior. Neglecting any self-interaction of the
perturbation, we linearize the equations in δnk+q,

∂t (δnk ) = −
∫ t

0
dt ′ Dk (t − t ′) δnk (t ′)

+
∫ t

0
dt ′ ∑

q �=−k

Mk,k+q(t − t ′) δnk+q(t ′). (19)

The first term on the right-hand side of (19), governed
by Dk , describes the essential behavior of δnk , when back-
reaction from its near neighbors can be neglected and
finite-size effects can also be ignored (see below). Dk (t − t ′)
decays to zero within a timescale tcrit , and its integral ap-
proaches �k of Eq. (17). As long as t � tcrit and δnk does
not vary much on timescales of order tcrit , its value at t can be
taken outside the integral, and the first term becomes −�k δnk .
This is the regime in which the analysis of the previous sub-
section applies. We can thus expect deviations when δnk varies
significantly over times of order tcrit . This can happen either
when ∂t (δnk ) is particularly large, or for a time tcrit after a
sudden injection of phonons. The latter case will be relevant
for some of our numerical simulations.

The second term of Eq. (19), governed by Mk,k+q, describes
the influence of other modes on the evolution of nk . These
typically act to slow down the decay of nk , because some of
the phonons in neighboring modes will be kicked into the
mode of interest. This is particularly relevant in situations
where k is at the center of a peak with a finite width, and in
such a scenario we expect the net decay rate to be smaller than
that predicted by Eq. (17). Note that this is not in contradiction

214528-5



AMAURY MICHELI AND SCOTT ROBERTSON PHYSICAL REVIEW B 106, 214528 (2022)

with the FGR, which applies when a single discrete mode
loses energy to a continuum of modes; this picture becomes
less applicable when the mode losing energy is itself part of
a continuum. Generally, the effect of this back-reaction term
is difficult to take fully into account, but in certain situations
(particularly in the case of parametric resonance) we can make
approximations and derive the expected qualitative behavior
for the decay rate as a function of the peak width.

C. Suppression due to finite size of system

The second term of Eq. (19) includes a contribution from
q = 0, which will be present even when neighboring modes
are not significantly populated. This q = 0 term slows down
the decay, but it is proportional to 1/L and vanishes entirely
in the limit L → ∞ where we have a continuum in k space.
The primary function of this term is to account for the finite
resolution in k by keeping track of those phonons, which, in
the continuum limit, would be lost to nearby modes within
1/L of the main decaying mode. With the finite resolution in-
duced by the finiteness of L, these phonons remain in the same
bin as the decaying mode. Therefore, their contribution to the
variation of nk is removed, and the net decay is effectively
slowed down.

In Appendix B we derive the slowing down of the de-
cay rate induced by this contribution. On sufficiently short
timescales, it enters as a quadratic correction to the exponen-
tial decay,

δnk ≈ δnk (0) e−�kt+ 1
2 γkt2

, (20)

where

γkt2
ξ = kBT

mc2

1

ρ0L
g(kξ ) (21)

and where we have defined

g(kξ ) = (kξ )2

v2
ph(k)/c2

{(
vph(k)

c
− 1

2

)2

+
(

vph(k)

c
+ 1

2

)2}
.

(22)

The finite-size effect grows in importance as time progresses,
on a timescale tfs such that γkt2

fs = �ktfs [where the decay in
Eq. (20) slows to zero]. Its relevance therefore depends on
how tfs compares to the typical timescale of decay �−1

k , i.e.,
the relevant quantity is

�ktfs = �2
k

γk
= 2L

r0

f 2(kξ )

g(kξ )

≈ L

r0
when kξ � 1. (23)

In the second line we have taken the large wavenumber limit,
where our exponential prediction for the decay is most ac-
curate (see Sec. IV below). r0 is the (one-body) coherence
length of the quasicondensate defined in Eq. (2). So, when
L/r0 � 1, the decay proceeds hardly at all before it is stopped
by the finite-size effect. On the other hand, when L/r0 � 1,
the decay is significant before the slowing-down kicks in, and
the finite-size effect becomes irrelevant.

As mentioned in Sec. II A, when considering a quasicon-
densate over distances larger than r0 the long-range order

characterising condensation is lost due to large thermal fluc-
tuations in the phase. Conversely, if we restrict attention to
distances much shorter than r0, the one-body correlation is
preserved and the gas looks like a “true” condensate. Equa-
tion (23) then shows that if we consider a small enough
system that appears as a true condensate, the decay will be
strongly suppressed by finite-size effects. In effect, the decay
processes we have identified manifest in position space as an
x-dependent drift in the phase of the excited phonon, whose
variance becomes significant only over distances larger than
r0. Therefore, the decay is only effective when we reach the
quasicondensate regime L � r0.

This correspondence is further explored in Appendix B,
where it is also shown that binning modes in momentum space
yields an evolution that is very similar to that on a shorter
torus. We thus conclude that the system size L appearing in
Eq. (23) can be generalized to the size of any subsection of
a larger system. If this size is small compared to r0, local
measurements will be insensitive to the decay.

IV. NUMERICAL CONFIRMATION

We have run several numerical simulations in order to
test our prediction for the phonon damping rate. The essen-
tials of the numerical method have already been described in
Sec. II E, and more details can be found in Appendix C.

The simulations fall into two types. First, we perform a
series of simulations like that of Fig. 1, where a number of
phonons is injected into a single mode k, and the evolution
of the phonon number spectrum is followed in time. This
setup allows us to study the response of a thermal system to
a single perturbation, the addition of phonons in the mode k.
We use it to demonstrate that the thermal processes discussed
in the previous section are indeed the main culprit involved
in the scattering of injected phonons, and to check that the
scaling properties of the decay rate match those predicted
by Eq. (17). Moreover, this controlled scenario enables us to
track precisely how phonons scatter to other modes (as shown
in Fig. 1), informing our study of the decay process and its
generalization to a peak of finite width (see Sec. IV B below,
and Appendix B).

The second series of simulations is inspired by the para-
metric resonance experiments of [4] and theoretically studied
in [8,35]: starting from a thermal state, a sinusoidal mod-
ulation of the one-dimensional atomic interaction strength
is applied, inducing exponential growth of the phonon oc-
cupation number within a resonance window. (This can be
achieved experimentally by modulating the transverse stiff-
ness of the trap [4,7,8].) The phonon damping is then observed
as a reduction in the rate of exponential growth. As suggested
above, the finite width of the resonant peak induces a deviation
from the decay rate (17), which strictly speaking is only ap-
plicable in the limit of a singularly occupied mode. However,
this deviation occurs in a controlled fashion, and is found to be
consistent with the back-reaction term appearing in Eq. (19).

A. Initial injection of phonons

In the first run of simulations, the initial state is taken to
be a thermal state for the quadratic Hamiltonian Ĥ2, with
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FIG. 2. Best-fit values for h̄�k extracted from the TWA simu-
lations, as a function of kBT/ρ0ξ . All points are extracted from
simulations performed using an addition of δn = 3 phonons on av-
erage. We used 400 realizations, a grid spacing �x/ξ = 0.35, and
a time window t/tξ ∈ [0, 10] with 140 time steps. For the grey and
blue points the temperature varies kBT/mc2 ∈ [0.25, 3], while for the
red points the density varies in ρ0ξ ∈ [33, 399]. The parameters that
are fixed in each run are listed in the legend.

the possible addition of a probe in a single phonon mode
of wave vector k. When the probe is present, it is given an
initial occupation number δn on top of the thermal distribution
by simply multiplying the amplitude of the relevant mode
by a constant factor. This ensures that the phonon modes
are initially independent of each other, and separately exhibit
Gaussian statistics. Each realization is then evolved twice,
with and without the probe, to take account of the slight
degree of time dependence that occurs even when the probe is
absent. The spectra are calculated independently at different
times in the interval t/tξ ∈ [0, 10], and the probe spectrum
δnk (t ) is defined as the difference between the two, in ac-
cordance with Eq. (13). δnk (t ) is then fitted to the template
A exp(−�t + γ t2/2) of Eq. (20), the fitted value of � being
the extracted decay rate. As mentioned in Sec. III C above,
the t2 correction is related to the limited resolution in k space
induced by the finite length of the condensate, coming from
the q = 0 term in the second line of Eq. (19). It is included
here as it makes a small but noticeable difference to the fit.
More details on the extraction of the γ term are given in
Appendix B.

In Fig. 2 we demonstrate the linearity of the best-fit values
of � in the overall prefactor in Eq. (17), at fixed kξ . The
numerical results are in good agreement with the prediction.
We illustrate that varying T at fixed ρξ (and vice versa) yields
the expected behavior, and moreover that the fitted decay rate
is unaffected by a change in L, as expected from prediction
(17). Any L dependence of the observed behavior would then
appear in the other fitting parameters like γ .

In Fig. 3 we show instead the dependence of these best-fit
values for � on the probe mode kξ , with the prefactor in
Eq. (17) fixed. The numerical observations agree well with
the predicted behavior at modestly high kξ � 2.5. At lower
kξ , we expect significant deviations, for as noted in Sec. III B,
the FGR becomes valid only after a critical time tcrit (see

FIG. 3. Best-fit values for h̄�k extracted from the TWA simula-
tions, as a function of kξ . All other physical parameters are fixed
at the values shown, while numerical parameters are the same as in
Fig. 2. Numerically extracted values are shown only for kξ � 2.5.
For lower kξ , significant deviations appear due to the longer response
time. (A fuller treatment of this regime is given in Appendix B.)

also [31,36]). We show in Appendix B that tcrit diverges
like 1/(kξ )3 as kξ → 0, and for kξ � 2.5 it is not reached
within the sampled time frame. In this regime, the decay pro-
ceeds quadratically in time rather than exponentially, with a
lifetime that is significantly longer than predicted by (17).
This early-time behavior at small kξ is examined in more
detail in Appendix B.

B. Slowing of exponential growth

In our second set of simulations, the initial state is simply
a thermal state for the quadratic Hamiltonian Ĥ2, with no
additional component added by hand. Instead, during the evo-
lution, parametric resonance is induced by a sinusoidal mod-
ulation of the one-dimensional atomic interaction parameter

g(t ) = g(1 + a sin(ωpt )). (24)

As c2(t ) ∝ g(t ), this translates into a sinusoidal modulation
of the squared phonon frequencies,

ω2
k (t ) = c2k2

[
1 + a sin(ωpt ) + 1

4 k2ξ 2
]

= ω2
k (1 + Ak sin(ωpt )), (25)

where Ak = a/(1 + k2ξ 2/4). This is exactly the situation
modeled in [35]. The result is an exponential growth of the
number of phonons within a resonant frequency window
centered at ωp/2. In the absence of any damping mechanism,
the analysis in Appendix A of [35] shows that, for the exactly
resonant mode at ωk = ωp/2, the occupation number is
parametrically amplified according to

nk (t ) ≈ nin
k + (

2nin
k + 1

)
sinh2

(
1
2 Gkt

)
, (26)

where the growth rate Gk = Akωk/2. Since the initial state
is thermal, the initial occupation number nin

k is simply the
thermal population of the mode.

When including the effects of phonon interactions, the
Beliaev-Landau scattering with the thermal population acts
simultaneously with the parametric amplification, kicking
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FIG. 4. Mean occupation of the resonant mode as a function of
time, as extracted from TWA simulations. We take an initial thermal
state at temperature kBT/mc2 = 2, and a modulation of amplitude
a = 0.5 at frequency ωp = 2ωk where kξ = 3.1 (so that the modula-
tion of ω2

k has amplitude Ak = 0.15) lasting 24 periods, i.e., 13.5 tξ .
The size of the system is L/ξ = 90.5 and its atomic density is
ρ0ξ = 399 for the red dots and ρ0ξ = 133 for the green ones. The
dashed-black line is the estimate Eq. (26), where nin has been set
to the thermal value. The solid lines correspond to the corrected
estimate Eq. (27), with �k as predicted by Eq. (17). Each data point
is calculated independently, averaged over 400 realizations.

phonons out of the resonant mode as they are being produced.
The damping mechanism thus acts much like the phenomeno-
logical damping introduced in [35], and is therefore expected
to reduce the growth rate. This is illustrated in Fig. 4, where
nk (t ) of the exactly resonant mode is extracted from the nu-
merical simulations and shown for two different values of ρ0ξ .
We clearly see that the exponential growth rate is lower than
predicted by Eq. (26), and that it is further reduced as ρ0ξ is
reduced, so that �k of Eq. (17) is accordingly increased.

We may use the difference between the observed growth
rate and the “pure” growth rate of Eq. (26) as a measure of
the damping [37]. Assuming that the damping acts straight-
forwardly as a reduction of the growth rate, we make a slight
generalization of Eq. (26) and propose the following ansatz
for the occupation number of the resonant mode:

nk (t ) = nin
k + (

2nin
k + 1

)
sinh2

[
1
2 (Gk − �k

)
t
]
. (27)

Figure 4 shows that this ansatz, taken together with the as-
sumption that �k is as predicted by Eq. (17), accounts very
well for the reduced growth observed in TWA simulations
with respect to that of Eq. (26). We stress that this reduction
rapidly leads to a sizable change in the number of produced
phonons. For example, considering the red data points in
Fig. 4 (corresponding to kξ = 3.1, kBT/mc2 = 2, and ρ0ξ =
399), the relative damping is �k/Gk = 5%, yet the reduction
with respect to the nondamped case is very clear, and we are
thus able to extract quite precise values for the damping rate.

FIG. 5. Best-fit values for h̄�k extracted from the TWA simu-
lations as a function of kBT/ρ0ξ . (We divide by mc2 to adimen-
sionalize.) The temperature is kept fixed to kBT/mc2 = 2 and only
the density is varied ρ0ξ ∈ [33, 399]. The parameters that are fixed
in each run are listed in the legend. All points are extracted from
simulations performed using a continuous modulation of amplitude
a = 0.5 at frequency ωp = 2ωk where kξ = 3.1 (top) and kξ = 1.0
(bottom); the corresponding amplitudes for the modulation of ω2

k are
Ak = 0.15 (top) and Ak = 0.39 (bottom). We use nr = 400 realiza-
tions, a spatial grid with spacing �x/ξ = 0.35. The fit is performed
using the template Eq. (27) over a time window t/tξ ∈ [0, 13.5] (top)
and t/tξ ∈ [0, 22.5] (bottom) with 224 (top) and 280 (bottom) time
steps. The green-dashed line represents the FGR prediction Eq. (17)
while the blue dots are the corrected predictions taking into account
the effect of a finite width of the resonant peak, see Appendix B. The
peak is assumed to be of Lorentzian shape and its parameters are
extracted by a procedure described in Fig. 6.

We now perform a more systematic examination of the
numerically observed reduction of the growth rate. Proceeding
as for the first set of simulations, we fit nk (t ) for the exactly
resonant mode to Eq. (27), where �k is now treated as a fitting
parameter. This is done for two different wave vectors, one
in the high-k regime (kξ = 3.1) where the first set of simula-
tions worked reasonable well, and one in the low-k regime
(kξ = 1.0) where they did not. The temperature is fixed at
kBT/mc2 = 2, and the one-dimensional density ρ0ξ is varied.
The extracted values of �k are shown in Fig. 5 alongside the
prediction of Eq. (17).
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A few remarks are in order concerning these results. We
begin by focusing on the high-k mode (kξ = 3.1), the first
and third data points of which correspond to the simulations
shown in Fig. 4. While the extracted decay rate tends towards
prediction (17) at large ρ0ξ , there is a clear trend for it to
fall further away from this prediction as ρ0ξ is decreased.
We attempt to explain this behavior by appealing to the finite
width of the resonant peak. Examining the evolution of the
number spectrum shows that, to a good approximation, the
shape of the resonant peak saturates such that nk ∼ RkeGt at
sufficiently late time, for some profile Rk and some growth
rate G. This is in contrast to the results of the “pure” paramet-
ric resonance with no phonon interactions, where the growth
rate is k dependent and largest at exact resonance [35], so
that the width of the peak approaches zero as t → ∞. In the
present case, in addition to the saturation of the profile, we
observe that larger interaction strengths are associated with
wider peaks, see Fig. 6. It thus seems likely that nk is also
being fed by phonons in neighboring modes through the last
term on the right-hand side of Eq. (19). We investigate this
effect by adopting a Lorentzian ansatz for the profile of δnk .
Figure 6 shows how our ansatz compares with the numerically
observed number spectrum. Under this assumption, we solve
Eq. (19) self-consistently to extract the net growth rate. The
details of this calculation are given in Appendix B, but the
corrected predictions for the decay rate are shown by the blue
dots in Fig. 5. For kξ = 3.1 this corrected prediction is found
to be in very good agreement with the extracted rate.

For the low-k mode (kξ = 1.0) there remains a clear dis-
crepancy even when accounting for the finite width of the
peak. Part of the explanation lies in the non-Lorentzianity of
the profile visible in Fig. 6, making the correction less valid.
However, note that the extracted decay rate does not tend well
to prediction (17) at large ρ0ξ , as it seems to approach a line
with a different slope. We believe this to be a consequence
of the large critical time in the low-k regime: in effect, the
occupation number is growing a little too fast for the system
to have time to react, and the amount of damping is thus lower
than expected.

The parametric resonance simulations described here yield
results that corroborate and complement those found using
straightforward phonon injection. In the high-k regime where
the critical response time is sufficiently short, the observed
deviations from prediction (17) are well described via correc-
tions due to the finite width of the peak, which only appear
in the case of parametric resonance. On the other hand, at
low k where the critical time is long, the phonon injection
method yields a nonexponential behavior that has not been
shown here (see instead Appendix B), whereas the parametric
resonance approach still gives a damping rate that has the
same qualitative behavior as in the high-k regime (see the
near-linear behavior of the red dots in the lower panel of
Fig. 5). Moreover, the method of parametric resonance for
exciting phonons has some interesting advantages over that
of phonon injection. Most notably, the damping mechanism
manifests in a rather more dramatic way, as is evident from
the difference in the final phonon numbers shown in Fig. 4.
It is also of considerable experimental relevance: while the
injection of phonons is conceptually simple, it is not very
practical, whereas parametric resonance is a way of exciting

FIG. 6. Snapshots of the ratio Rq = δnq

δnk
as a function of qξ at

time t/tξ = 13.5 (top) and t/tξ = 22.5 (bottom). The spectrum is
plotted for ρ0ξ = 399 (red) and ρ0ξ = 33 (green). They are obtained
by a continuous modulation of the type Eq. (24) with a = 0.5 and
at the appropriate frequency so that kξ = 3.1 (top) or kξ = 3.1
(bottom) are exactly at the resonance. A Lorentzian is fitted to the
distribution taking into account the first five neighbors on each side
of the central resonant mode letting the overall amplitude, width
and center be free fitting parameters. The best-fit value of the width
is then used to correct the prediction of the decay rate, blue dots
in Fig. 5. The averages are calculated from an ensemble of 400
independent realizations, while the error bars represent the standard
deviation. There are 256 points on the grid.

phonons that has already been implemented in experiments
[4]. On the conceptual side, the method of parametric reso-
nance bypasses the finite-size effect. In Sec. IV A, it arises due
to the discretization of a time-dependent continuous profile,
the “binned” mode of interest containing both the exponen-
tially decaying mode and the nearby modes within π/L that
are growing in time. Here, the profile is fixed (the only time
dependence being an overall exponential factor eGt ), and the
discretization is therefore irrelevant.

V. CONCLUDING REMARKS

We have identified a mechanism whereby interactions with
a thermal bath of phonons, through Landau and Beliaev damp-
ing mechanisms, yields exponential decay of a singularly
occupied phonon mode. It is effectively described by an appli-
cation of the FGR with the resonant channel being the trivial
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one, in the limit q → 0. The result was numerically verified
using TWA simulations, following both the decay of a mode
excited “by hand” and the reduced growth of a parametrically
resonant mode. The prediction works particularly well in the
higher-k regime, where the critical response time is relatively
short and the discreteness of the thermal population is invis-
ible to the mode in question. We also observe a reduction of
the damping rate due to the finite width of the peak.

While this limit yields a nonvanishing rate only in one
dimension (since in higher dimensions the IR divergence of
the thermal population is tamed by the volume element in
k space), it seems generally applicable to one-dimensional
systems with an approximately linear excitation spectrum in
the limit of small k. We thus believe that it could appear as
an additional contribution to the decay of excitations in such
systems, such as the one-dimensional dipolar gas considered
in [19].

Comparing with higher dimensionality D [38], there are
some clear similarities: Prediction (17) exhibits an increasing
dependence on kξ , is proportional to γ

D/2
LL , and is linear in T

(as found in higher dimensions when kBT/mc2 � 1).
The experimental relevance of this decay mechanism was

exemplified by numerically studying the parametric growth of
phonons in the gas, as experimentally tested in [4]. We have
demonstrated that the numerically observed reduction of the
growth rate can be quantitatively explained assuming that the
phonons generated by the parametric process simultaneously
decay by thermal Landau-Beliaev processes.

These thermal scatterings of phonons are expected to occur
generally in one-dimensional quasicondensate experiments.
They can produce important deviations to the dynamics of
phonons and should therefore be taken into account in de-
signing and analyzing analog gravity experiments on this
platform.

Finally, let us comment on the absence of entanglement
between the induced peaks in the experimental observations
of [4]. In their phenomenological treatment of dissipation, the
authors of [35] showed that a dissipative rate �/ωk ∼ 4.2%
[39] would be sufficient to explain this negative result. Using
the relevant parameters (kξ ∼ 1, kBT/h̄ωk ∼ 1, ρ0ξ ∼ 60),
Eq. (17) gives �/ωk ∼ 5%. The decay mechanism identified
here thus provides a possible microphysical basis to this sce-
nario. The precise dynamics of the entanglement will be the
subject of a future work.
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APPENDIX A: FULLER DERIVATION
OF EVOLUTION OF δnk

In this Appendix we derive Eq. (19), a more precise equa-
tion of motion for the phonon spectrum, and we show how the
FGR emerges despite there being no exactly elastic scatter-
ing channel. We then analyze more fully the deviations with
respect to the FGR result.

1. Equations of motion for phonon operators

We start by computing the Heisenberg equation of mo-
tion for ϕ̂k . The one for ϕ̂

†
k is easily deduced by taking the

adjoint. We consider only the dynamics under the quadratic
(8) and cubic (11) Hamiltonians, neglecting higher orders.
We have

∂t ϕ̂k = − i

{
ωkϕ̂k + 1√

Nat

∑
q �=0,−k

2V3(k, q)ϕ̂†
q ϕ̂k+q

+ 1√
Nat

∑
q �=0,k

V3(k − q, q)ϕ̂k−qϕ̂q

}
. (A1)

Considering then the full number operator n̂k = ϕ̂
†
k ϕ̂k , we have

∂t n̂k = ϕ̂
†
k · ∂t ϕ̂k + ∂t ϕ̂

†
k · ϕ̂k,

= − i√
Nat

∑
q �=0,−k

2V3(k, q)ϕ̂†
k ϕ̂

†
q ϕ̂k+q

− i√
Nat

∑
q �=0,k

V3(k − q, q)ϕ̂†
k ϕ̂k−qϕ̂q + H.c.. (A2)

On the right-hand side of the equation of motion for n̂k appears
the momentum preserving three-phonon operator ϕ̂

†
k ϕ̂

†
q ϕ̂k+q,

the same that appears in V̂3. We are thus compelled to
consider the dynamics of this operator as well. It is use-
ful to define ϕ̂†

pϕ̂
†
q ϕ̂p+q = ĉ3(p, q) exp[−i(ωp+q − ωp − ωq)t],

where the oscillations are made explicit. These operators
obey

e−i(ωp+q−ωp−ωq )t∂t ĉ3(p, q) = ∂t ϕ̂
†
p · ϕ̂†

q ϕ̂p+q + ϕ̂†
p · ∂t ϕ̂

†
q · ϕ̂p+q + ϕ̂†

pϕ̂
†
q · ∂t ϕ̂p+q + i(ωp+q − ωp − ωq)ϕ̂†

pϕ̂
†
q ϕ̂p+q

= 2i√
Nat

V3(p, q)ϕ̂†
p+qϕ̂p+q + 2i√

Nat

∑
λ �=0,−p

V3(p, λ)ϕ̂†
p+λϕ̂

†
q ϕ̂λϕ̂p+q +

∑
λ �=0,−q

V3(q, λ)ϕ̂†
pϕ̂

†
q+λϕ̂λϕ̂p+q

−
∑

λ �=0,−(p+q)

V3(p + q, λ)ϕ̂†
pϕ̂

†
q ϕ̂

†
λϕ̂p+q+λ + i√

Nat

∑
λ �=0,p

V3(p − λ, λ)ϕ̂†
λϕ̂

†
p−λϕ̂

†
q ϕ̂p+q

+
∑
λ �=0,q

V3(q − λ, λ)ϕ̂†
pϕ̂

†
λϕ̂

†
q−λϕ̂p+q −

∑
λ �=0,p+q

V3(p + q − λ, λ)ϕ̂†
pϕ̂

†
q ϕ̂p+q−λϕ̂λ. (A3)
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The extra term on the first line involving the amplitudes for
the p + q mode comes from rearranging the one term, which
is not initially in normal order.

2. Equations of motion for average values

We want to take average values in both equations of motion
above and derive the evolution of nk = 〈n̂k〉. However, in order
to get a closed system we have to make some approximations.
We assume that the state is initially homogeneous; it will
remain so as our Hamiltonian is momentum-conserving. We
also assume that the initial state is Gaussian, and that the only
deviation from Gaussianity to evolve is a nonvanishing value

of ĉ3(p, q), i.e., every connected correlation function of order
higher than three is negligible. Therefore, when taking aver-
age values on the right-hand side of Eq. (A3), the four-point
functions reduce to products of two-point functions, which
have to respect the homogeneity of the state,

〈ϕ̂†
pϕ̂

†
q ϕ̂p+q−λϕ̂λ〉 = npnqδq,λ + npnqδp,λ + c�

qcλδp,−q, (A4)

where cp = 〈ϕ̂pϕ̂−p〉. The quantities n±p and cp—respectively
the population and two-mode correlation of the modes
±p—are the only nonvanishing two-point functions in a ho-
mogeneous state. We shall further assume, for simplicity, that
the cp are all vanishing [40]. The equation of motion for np

and c3(p, q) = 〈ĉ3(p, q)〉 then reads

∂t nk = 1√
Nat

∑
q �=0,−k

4V3(k, q)�[c3(k, q)e−iδωL (q;k)t ] − 1√
Nat

∑
q �=0,k

2V3(k − q, q)�[c3(k − q, q)eiδωB (q;k)t ],

∂t c3(p, q) = 2i
V3(p, q)√

Nat
[np+q(np + nq + 1) − npnq]ei(ωp+q−ωp−ωq )t . (A5)

We can reduce this to a single equation of motion for nk by writing c3(p, q) explicitly in terms of nk ,

c3(p, q)(t ) = 2i
V3(p, q)√

Nat

∫ t

0
dt ′ Np,q(t ′)ei(ωp+q−ωp−ωq )t ′

, (A6)

where Np,q = np+q(np + nq + 1) − npnq. Equation (A6) can now be substituted directly into the equation of motion for nk ,

∂t nk = 8
∑

q �=0,−k

|V3(k, q)|2
Nat

∫ t

0
dt ′ Nk,q(t ′)cos[(ωk+q − ωk − ωq)(t − t ′)]

− 4
∑

q �=0,k

|V3(k − q, q)|2
Nat

∫ t

0
dt ′ Nk−q,q(t ′)cos[(ωk − ωk−q − ωq)(t − t ′)]. (A7)

Note that the terms depending on the various populations
can be rewritten as the difference between the direct process
mentioned in the text below Eq. (11) and the corresponding
reverse process. For instance in the first sum, corresponding
to the Landau scattering, we have

np+q(np + nq + 1) − npnq

= (np + 1)(nq + 1)np+q − (np+q + 1)nqnp. (A8)

On the right-hand side the +1 terms are associated only
with the decay products and allow for spontaneous processes,
while the ns encode the stimulated part. This generalizes the
matrix elements given in the main text, which only include
one direction where an excitation at p is removed by the
interaction.

Equations (A5) and (A7) are the key equations governing
the system, given our simplifying approximations. They are
entirely equivalent if c3(p, q) is set to zero at t = 0, although
Eqs. (A7) can be straightforwardly modified in a more general
case. Since Eqs. (A5) are Markovian, they are much more
suitable for numerical integration. On the other hand, Eq. (A7)
is a nonlinear, non-Markovian equation for the full phonon
spectrum nk . However, if analyzed using appropriate approx-
imations, we will show that it encodes both the exponential
decay of the phononic population, its first deviations and

the corrections to the growth of population in a parametric
resonance process.

3. Dynamics of a probe on top of a quasicondensate

Up to this point, we have assumed homogeneity and quasi-
Gaussianity of the state but worked with the full phonon
spectrum nq. As explained in the main text, the presence
of a near-thermal population in the IR modes is instrumen-
tal in the decay process that we study. Therefore, as done
in Eq. (13), we split nq into a thermal background nth

q =
1/[exp(h̄ωq/kBT ) − 1] plus a perturbation δnq. Physically
this setup allows us to analyze the response of a quasicon-
densate at temperature T to the addition of phonons around a
certain mode k. This can either be done “by hand”, as we have
done in the first set of simulations presented in the text, or by
a parametric amplification as in the second set, see Sec. IV.
As illustrated by Fig. 1 of the main text, we expect these δn
probe phonons to redistribute across the system and want to
compute the ensuing decay rate.

Notice that the background thermal population nth
q is

not strictly stationary due to the addition of the interac-
tion term V̂3, but as a first approximation we will assume
it to be a solution of the equation of motion. Since we
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expect the relevant interactions to be between the peak
and the thermal population, and not of the peak on itself,

we insert nk = nth
k + δnk in Eq. (A7) and linearize in δn.

We have

Np,q = N th
p,q + δnp+q

(
nth

p + nth
q + 1

) + δnp
(
nth

p+q − nth
q

) + δnq
(
nth

p+q − nth
p

) + O(δn2),

= N th
p,q + δNp,q + O(δn2), (A9)

with N th
p,q the specific combination of populations evaluated with thermal populations and

δNk,q = δnk
(
nth

k+q − nth
q

) + δnk+q
(
nth

k + nth
q + 1

) + δnq
(
nth

k+q − nth
k

)
, (A10)

δNk−q,q = δnk
(
nth

k−q + nth
q + 1

) + δnk−q
(
nth

k − nth
q

) + δnq
(
nth

k − nth
k−q

)
. (A11)

Inserting back in the equations of motion we get

∂tδnk = 8
∑

q �=0,−k

|V3(k, q)|2
Nat

∫ t

0
dt ′ δNk,qcos[(ωk+q − ωk − ωq)(t − t ′)]

− 4
∑

q �=0,k

|V3(k − q, q)|2
Nat

∫ t

0
dt ′ δNk−q,qcos[(ωk − ωk−q − ωq)(t − t ′)],

= −
∫ t

0
dt ′ Dk (t − t ′) δnk (t ′) +

∫ t

0
dt ′ ∑

q �=−k

Mk,k+q(t − t ′) δnk+q(t ′). (A12)

In the last line we have split the right-hand side into two terms, defining a “diagonal” response function Dk (t − t ′) that acts only
on δnk (t ′), and a “matrix” response function that includes contributions from other modes δnk+q(t ′). Notice that when defining
the response functions we have included the term q = 0, by extending the summand to its finite limit as q goes to 0, in both
the diagonal and the matrix function; one can check that they exactly cancel out. This inclusion allows to separate clearly the
exponential decay from its deviations, as laid out below. The last equality in Eq. (A12) gives Eq. (19) of the main text.

4. Diagonal response function and exponential decay

Considering first the diagonal response function, we have explicitly

Dk (τ ) = 8
∑

q �=−k

|V3(k, q)|2(nth
q − nth

k+q

)
cos[(ωk+q − ωk − ωq)τ ]

+ 8
∑

q�k/2

|V3(k − q, q)|2(nth
q + nth

k−q + 1
)

cos[(ωk − ωk−q − ωq)τ ], (A13)

where we have used the q → k − q symmetry in the second sum to fold it on q � k/2 adding a factor 2. We want to show that
Dk (τ ) reduces to a Dirac delta, and for this purpose it is convenient to first consider its integral. We define

Ik (τ ) =
∫ τ

0
dτ ′ Dk (τ ′) ⇐⇒ Dk (τ ) = I ′

k (τ ), Ik (0) = 0. (A14)

Since Dk (τ ) is an even function (Dk (−τ ) = Dk (τ )), we find that Ik (τ ) is odd,

Ik (−τ ) =
∫ −τ

0
dτ ′ Dk (τ ′) =

∫ τ

0
d (−τ ′) Dk (−τ ′) = −

∫ τ

0
dτ ′ Dk (τ ′) = −Ik (τ ). (A15)

Explicitly, we note that
∫ τ

0 cos(�τ ′) dτ ′ = τ sinc(�τ ). Therefore,

Ik (τ ) = 8
∑

q �=−k

|V3(k, q)|2(nth
q − nth

k+q

)
τ sinc[(ωk+q − ωk − ωq)τ ]

+ 8
∑

q�k/2

|V3(k − q, q)|2(nth
q + nth

k−q + 1
)
τ sinc[(ωk − ωk−q − ωq)τ ]. (A16)
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It is also useful to take the continuous (large L) limit, replacing 1
�q

∑
q �q → L

2π

∫
dq

Ik (τ ) = 4L

π

∫ +∞

−∞
dq |V3(k, q)|2(nth

q − nth
k+q

)
τ sinc[(ωk+q − ωk − ωq)τ ]

+ 4L

π

∫ k/2

−∞
dq |V3(k − q, q)|2(nth

q + nth
k−q + 1

)
τ sinc[(ωk − ωk−q − ωq)τ ]. (A17)

Considering the large τ limit of Eq. (A17), the sinc functions
in the integrand become highly peaked around q = 0, and
to a good approximation can be replaced by Dirac deltas
proportional to δ(q). However, the limit must be taken with
care since the general term has a discontinuity as q goes to 0.
We split the integrals for negative and positive momenta and in
the limit of large τ we have

∫ ε

0 f (x)τ sinc(τ δωL/B(q))dq −→
f (0+)

∫ ∞
0 τ sinc(τ δω′

L/B(0+) q)dq = π
2 f (0+)/|δω′

L/B(0+)|,
and similarly on the other side. Explicitly, for τ → ∞∫ ε

−ε

|V3(k, q)|2(nth
q − nth

k+q

)
τ sinc[δωL(q)τ ] dq

= π

2

(
lim

q−→0−
+ lim

q−→0+

)
|V3(k, q)|2 nth

q

|δω′
L(q)| ,∫ ε

−ε

|V3(k − q, q)|2(nth
k−q + nth

q + 1
)
τ sinc[δωB(q)τ ] dq

= π

2

(
lim

q−→0−
+ lim

q−→0+

)
|V3(k − q, q)|2 nth

q

|δω′
B(q)| . (A18)

In both integrals, in the limit q to 0, nth
k±q and 1 are negligible

compared to nth
q that diverges as 1/q. In addition, we have

|δω′
L/B(0±)| = |vgr (k) ∓ c|. Combining the above two limits

we get the formula (17) for the decay rate of phonon of
momentum k. Therefore

Ik (τ ) =
∫ τ

0
Dk (τ ′) dτ ′ → ±�k as τ → ±∞, (A19)

where the opposite limit is obtained by antisymmetry. Ik is
asymptotically constant in both directions and only varies
in the vicinity of τ = 0. As a consequence Dk is peaked
around τ = 0. We now assume that Dk is sufficiently peaked
compared to the variation of δnk so that the integral in
Eq. (A12) only picks out its instantaneous value δnk (t )∫ t

0
dt ′ Dk (t − t ′) δnk (t ′) ≈ δnk (t )

∫ t

0
dt ′ Dk (t − t ′),

= δnk (t )Ik (t ). (A20)

The equation of motion becomes

∂tδnk = −δnk (t )Ik (t ) +
∫ t

0
dt ′ ∑

q �=−k

Mk,k+q(t − t ′) δnk+q(t ′).

(A21)

Let us now consider the ideal situation where at initial time
every mode but a single mode k is exactly thermal nq(0) =
nth

q + δn δk,q where δn is the number of phonons added in
mode k on top of the quasicondensate. This corresponds to
the situation analyzed in Sec. IV A. Then we may neglect the
matrix response function (since δnq � δnk),

∂tδnk = −δnk (t )Ik (t ). (A22)

Finally we take a large time limit to have Ik (t ) → ±�k so that
in this limit nk obeys

∂tδnk = −δnk (t )�k, (A23)

i.e., the population of the mode k decays exponentially at the
rate predicted by Eq. (17).

5. Matrix response function: The slowing effect of a finite width

It remains to give the form of Mk,k+q and describe its
effects. It reads

Mk,k+q(t − t ′) = 8|V3(k, q)|2(nth
q + nth

k + 1
)

× cos[(ωk+q − ωk − ωq)(t − t ′)]

+ 8|V3(k + q,−q)|2(nth
q − nth

k

)
× cos[(ωk − ωk+q − ωq)(t − t ′)]

+ 8|V3(k, k + q)|2(nth
2k+q − nth

k

)
× cos[(ω2k+q − ωk − ωk+q)(t − t ′)]1q �=−2k

(A24)
Firstly, a couple of technical remarks. Notice that there is
an indicator function in the last term, stating that this piece
should not be evaluated at q = −2k. Also, the q = 0 term has
been included to compensate for the inclusion of the opposite
term in Dk (t − t ′). Therefore, even in the case where only
a single mode is significantly occupied, the matrix response
function can never be completely neglected and (A23) has to
be amended. This first limitation is dealt with in Appendix B
below.

Mk,k+q represents the indirect interaction of phonons in the
modes k and k + q through the thermal population. Equa-
tion (A24) shows that there are three such processes. The
first term corresponds to the conversion between phonons of
wavevectors k and q and that of wavevector k + q, which we
write symbolically as (k, q) ↔ k + q. Similarly, the second
term encodes processes of the form (k + q, −q) ↔ k, and the
third term (k + q, k) ↔ 2k + q. Even though the perturbation
is initially localized in the mode k, the decay process will
generate a nonzero δnq in the vicinity of both q = 0 and q = k.
We shall assume that the perturbation spectrum is relatively
narrow around these two points. Equation (A21) then implies
that we need only consider the values of Mk,k+q for k + q ≈ k
and k + q ≈ 0.

Consider first k + q ≈ 0. In the second and third terms of
(A24), the factor of |V3|2 and the combination of thermal pop-
ulations independently vanish in the limit k + q → 0, making
these terms negligible. In the first term, only the factor of |V3|2
tends to zero, but the rapid oscillations of the cosine function
at frequencies close to 2ωk will greatly suppress its contri-
bution to the integral of (A21). Therefore, the back-reaction
from the decay products at very low momenta is expected to
be negligible.
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On the other hand, for k + q ≈ k only the contribution of
the third term in (A24) is expected to be negligible, for the
frequency of the cosine function is large (roughly ω2k − 2ωk)
and suppresses its contribution. We are then left with contribu-
tions coming from the first and second terms. Their frequency
differences are small, preventing any averaging out due to
rapid oscillations, and can be written to first order in q. Their
coefficients have nonvanishing limit since the vanishing of
|V3|2 is compensated by the divergence of the thermal popula-
tion, and can be approximated by their low-q limits. Finally,
we get [41]

Mk,k+q(t − t ′)

≈ 8

Nat
limq→0+

[|V3(k, q)|2nth
q

]
cos[q(vgr (k) − c)(t − t ′)]

+ 8

Nat
limq→0−

[|V3(k, q)|2nth
q

]
cos[q(vgr (k) + c)(t − t ′)].

(A25)

Equation (A25) will be used to compute the correction to
the FGR prediction of the decay rate due to the finite width of
the peak, i.e., to the back-reaction of neighboring modes.

APPENDIX B: DEVIATIONS FROM FGR RESULT

We turn in this Appendix to the deviations with respect to
the simple exponential decay predicted by the FGR. Each of
these deviations is described by equation of motion (A12).

1. Nonexponential decay of IR phonons

a. Numerical observations

It was shown in the main text that, in the first set of simu-
lations where an initial probe is simply injected into a single
phonon mode, the numerically observed decay of modes with
a large enough momentum (kξ � 2.5) is very well described
by an exponential decay at a rate given by Eq. (17). In Fig. 7,
a more complete set of results is shown, in which the template
δnk (t ) = Aexp(−�t + γ t2/2) is fitted to the behavior of a
larger set of initial momenta. This figure demonstrates that
there are significant deviations at lower kξ , with the values of
�k extracted from the simulations going to zero as kξ → 0
instead of the predicted finite limit. These deviations are due
to the fact that the FGR result is only valid within a certain
time window [31,36].

We review the last approximation made in the passage
from Eqs. (A22) to (A23), which is that t be large enough
for Ik (t ) to be equal to its asymptotic value, or equiva-
lently [as shown in Eqs. (A18) and (A19)], being able to
replace t sinc(δωL/Bt )/π by a δ function. This requires that
δωL/B(k, q)t , which vanishes for the elastic scattering channel
q = 0, should nevertheless reach a large enough value in its
vicinity so that the most significant part of the sinc is squeezed
into the region of constant effective interaction strength. We
may introduce a critical response time tcrit , which marks the
time after which this condition is satisfied. This critical time
depends on k, so that, for a fixed time window t/tξ ∈ [0, 10]
over which the fit is performed, those k for which tcrit/tξ � 10
will be in the FGR regime, while those k for which tcrit/tξ �

FIG. 7. Best-fit values for h̄�k extracted from the TWA simula-
tions as a function of kξ . The window shown here is larger than that
of Fig. 3 while all physical parameters are fixed at the same values.

10 will be in an early-time regime long before the FGR can be
applied.

Examples of δωL/B(q, k)tξ are plotted in Fig. 8, for kξ =
1.7 and 3.1. The key observation is that |δωB| is the most
significantly constrained, especially in the window q ∈ [0, k]
where the decay processes are expected to be most efficient
(as the effective interaction strength is largest there). It is
this restriction on |δωB| that is most clearly responsible for
the failure of the approximation. |δωB| reaches a maximum
δω

(max)
B = ωk − 2ωk/2 at q = k/2. At lowest order in kξ , we

have δω
(max)
B tξ ≈ 3

32 (kξ )3. The critical response time can be
(somewhat arbitrarily) defined via δω

(max)
B tcrit = 2π , but the

key point is that it increases quickly at low momentum,
tcrit/tξ ∝ (kξ )−3. Since the fitting window of Fig. 7 extends
only up to t/tξ = 10, we require at least 10 δω

(max)
B tξ ≈

(kξ )3 � 2π , which imposes kξ � 2. This estimate is in close
correspondence with the onset of deviations seen for kξ ∼ 2
in Fig. 7. Moreover, as the total duration of the simulation is
varied, the estimated threshold for kξ will vary only slowly,
as (t/tξ )−1/3.

At lower kξ , we are well outside the validity regime of
the FGR, in an early-time regime where a t2 behavior is
expected [36] (see below). Furthermore, for very low-lying
modes k ∼ 2π/L, the range q ∈ [0, k] will be poorly sam-
pled. We thus expect a strong suppression of the Beliaev
component of the decay as kξ → 0 due to the small number
of available modes to decay to, in accordance with similar
remarks made in [9,10]. While such low-lying k mode can
still decay via a Landau process we expect that in this regime
the system becomes sensitive to the discreteness of excitations
and this process would thus require a separate analysis (see,
e.g., Ref. [42]).

b. Approximate analytical description of behavior

We expect that these low-k modes can still be well
described by Eq. (A7). However, we shall adopt an early-
time approximation, assuming that Np,q(t ) varies sufficiently
slowly for it to be taken out of the time-integral as an overall
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FIG. 8. Plots of the Rabi frequencies associated to Landau and Beliaev damping processes δωL,B(q; k) as a function of q for kξ = 1.7 (left)
and kξ = 3.1 (right). The value of k is shown by the vertical-dashed line.

prefactor. We get

∂t nk = 8
∑

q �=0,−k

{ |V3(k, q)|2
Nat

[nk+q(nk + nq + 1) − nknq]t sinc[δωL(q; k)t]

}

− 8
∑

0<q�k/2

{ |V3(k − q, q)|2
Nat

[nk (nk−q + nq + 1) − nk−qnq]t sinc[δωB(q; k)t]

}
, (B1)

where we have used the symmetry k → k − q in the second
term to sum over only half the momenta, compensating with
the inclusion of a factor 2. This equation is then numerically
solved twice: once using only the thermal population as an
initial state, and a second time using the thermal population
plus the δn phonons added in the mode k. We then take the
difference to obtain the green curves in Fig. 9. This procedure
correct for small variations of the background thermal popu-
lation. A good agreement is found with the TWA simulations
even for large values of kξ .

Let us try to get an analytical estimate for the behavior of
the low-lying modes. Their critical time being very large, it
is appropriate to consider the early-time limit of Eq. (A22)
where δnk (t ) ≈ δnk (0) and sinc(δω τ ) ∼ 1, therefore Ik (τ ) =
αkτ for a certain constant αk . This gives

δnk (t ) = δnk (0)(1 − αkt2/2), (B2)

where we now have to calculate αk .
We cannot simultaneously set all the sinc functions in

Eq. (A17) to 1, as the +1 term in the second sum would then
lead to a divergence. Indeed, for large q the frequency dif-
ference diverges and the sinc decay accordingly quickly. We
typically consider the evolution of the system over timescales
of the order of tξ . Considering kξ ∼ 0.3, we want to sort every
mode q in two categories. Either δωL/B(q, k)tξ � 1, then this

mode can be considered to experience an early time behavior
and the related sinc can be set to 1, or δωL/B(q, k)tξ � 1 then
the sinc should be set to 0. We simply exclude the latter modes
from the sum.

On the one hand, as noted above for the Beliaev-type chan-
nels it is clear from Fig. 8 that the modes q ∈ [0, k] oscillate at
frequencies smaller than the others and should be the one kept
in the sum. On the other hand there is no clear separation for
the Landau-type scatterings. However, the terms associated
to δωL in Eq. (A17) are already suppressed at large q by an
exponentially decaying thermal population nq in factor. The
inclusion of them in the sum should then be irrelevant for the
resulting numerical prediction and we include all the modes
in the first sum. We then get

αk = 8

Nat

{ ∑
q �=0,−k

|V3(k, q)|2(nth
q − nth

k+q )

+
∑

0<q�k/2

|V3(k − q, q)|2(nth
k−q + nth

q + 1)

}
. (B3)

In Fig. 10 we compare this prediction with the best-fit
value of α for the template A(1 − αt2/2) applied to the TWA
simulations with A and α as fitting parameters. We considered
the smallest values of k of Fig. 3 in the text and used the
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FIG. 9. Number of phonons nk in the mode kξ = 0.3 (top left), kξ = 1.3 (top right), kξ = 2.4 (bottom left), kξ = 3.4 (bottom left) as a
function of time t/tξ for kBT/mc2 = 2, ρ0ξ = 49.9, L/ξ = 90.5, and nr = 400 realizations. Each plots is comprised of nt = 140 points. The
red dots correspond to the result of the TWA simulations. The green line is obtained by taking the difference of the prediction of Eq. (B1) for
the background thermal population and the full population. The gray line in the top left panel corresponds to the prediction for an early-time
quadratic decay given by Eq. (B2), while in the bottom right panel it corresponds to the prediction of an exponential decay at the rate given by
Eq. (17) of the text with corrections given by Eq. (20).

same time window t/tξ ∈ [0, 10]. The agreement is good for
very small k and deviations appear around kξ = 0.5. This
can be understood using Fig. 9. For kξ = 0.3 the decay is
satisfyingly described by the quadratic prediction Eq. (B3),
while for kξ = 3.4 it is well described by the exponential
prediction of Eq. (17) plus the finite-size correction examined
in the next section. On the other hand for the intermediate val-
ues kξ = 1.4 and kξ = 2.4, corresponding to the second and
third panels, the decay from t/tξ = 0 to t/tξ = 10 is neither
quadratic nor exponential all the way. kξ = 2.4 is precisely
the value around which our prediction of exponential decay
seems to break down in Fig. 7.

2. Finite-size effect

a. Description of effect

The inequivalent curves in Fig. 11 plotted for L/ξ = 90.5
and L/ξ = 181 demonstrate that the dynamics of nk in the
TWA simulations is not completely insensitive to the size
of the system L. Therefore, the L-independent exponential
decay rate of Eq. (17) cannot fit exactly the result of the
simulations.

The key to understanding this effect is the q = 0 con-
tribution to the matrix part of the response function. For a
singularly occupied mode, this is the only term in the matrix
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FIG. 10. Red dots are the best fit values for αkt2
ξ extracted from

the TWA simulations using a template of the form of Eq. (B2). The
green-dashed line is the prediction for αkt2

ξ of equation Eq. (B3). The
simulation parameters are kBT/mc2 = 2, ρ0ξ = 49.9, and L/ξ =
90.5 with nr = 400. The fits are performed over a time window
t/tξ ∈ [0, 5], which is half the time-window used in for the fits of
�k in Figs. 2 and 3, but with the same number of points nt = 140.

part that plays any significant role. Recall that it must be
included simultaneously in both the diagonal and matrix parts,
so that there is no net change in the total response function.
If these q = 0 terms were not included, the effect would be
related to the absence of the q = 0 term in the diagonal
response function.

What effect does this term have? Considering the case
where a certain number of phonons are injected at t = 0, and

working in the regime where the diagonal response function
reduces to a Dirac delta, we have

∂t (δnk ) = −�k δnk +
∫ t

0
dt ′ Mk,k (t − t ′) δnk (t ′)

= −�k δnk + γk

∫ t

0
dt ′ δnk (t ′), (B4)

where we have made it manifest that γk ≡ Mk,k does not
depend on t − t ′,

γk = 8
(

lim
q−→0+

+ lim
q−→0−

) |V3(k, q)|2
Nat

nth
q . (B5)

At fixed density, Nat is proportional to L, so γk ∝ 1/L.
Performing computations explicitly we get Eq. (21) of the
main text.

It is clear from Eq. (B4) that there is some push back on the
decay. The simplest solution is when δnk does not vary much
over the duration of interest, so that we can pull it out of the
integral,

∂t (δnk ) ≈ (−�k + γkt )δnk, (B6)

with solution given by Eq. (20) of the main text. In this
approximation, the γk term simply provides a constant decel-
eration to the decay rate [43]. In numerical simulations, we
have used Eq. (20) as a template to extract the fitted values
of �k shown in the figures of the main text. The values of γk

extracted from the same fits in the time window t/tξ ∈ [0, 10]
are plotted in Fig. 12, along with the prediction of Eq. (21).
It demonstrates a reasonable agreement in the same regime
of validity as the one of exponential decay (kξ � 2.5) shown
in Fig. 3. At smaller kξ , the system exhibits the t2 behavior
described above, and this becomes reflected in the fitting
parameters. In particular, γk moves over into the t2 coefficient
−αk , and we see indeed that its sign changes.

That said, there is a difference between how γk and αk enter
the expression of nk (t ), respectively, linearly and exponen-
tially. In particular, while the early t2 behavior is described

FIG. 11. Number of phonons nk in the mode kξ = 2.4 (left) and kξ = 3.1 (right) as a function of time t/tξ for kBT/mc2 = 2, ρ0ξ = 49.9,
and nr = 400 realizations. The red dots correspond to L/ξ = 90.5 and the green ones to L/ξ = 181.
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FIG. 12. (Left) Plot of γkt2
ξ as a function of kξ . The parameters and data used are the same as Fig. 3. (Right) Plot of γkt2

ξ as a function of
kBT/mc2, ρ0ξ , and L/ξ . The parameters and data used are the same as Fig. 2. In both panels the red dots are the best-fit values extracted from
the TWA simulations using Eq. (20) as a template. The green-dashed line is the prediction of Eq. (21).

by the single fitting parameter αk , the inclusion of γk as a
correction to the exponential decay means that it is one of two
fitting parameters. The time window of fit is large enough so
that the difference between these two templates (applied on
the same data) is visible, as illustrated by a direct comparison
of Fig. 10 with Fig. 12.

b. Relation to finite size and resolution in k space

Is there an intuitive way to link this apparent deceleration
to the finite size of the system? As our calculations are based
in Fourier space, the size of the system enters through the
discreteness of the available modes. To some extent, the dis-
cretized description should simply provide a finite-resolution
view of the continuous-mode (infinite-L) case.

We have investigated this by numerically solving Eqs. (A5)
directly. We inject a number of phonons in a single mode, and
allow the system to evolve in time, for three different values of
L. We then compare the evolution by appropriately binning the
phonon number spectrum nk when the k-space resolution is
higher, so that each simulation is ultimately represented using
the same set of discrete modes. This procedure can also be
seen as restricting attention to a section of length D of the
system so that the relevant momenta are 2π n/D rather than
2π n/L, for n ∈ Z. The precise relationship between the two
sets of modes is equivalent to a choice of window in position
space, over which the Fourier transform of the field is taken.
We take a more heuristic approach here.

For example, to map the data for a simulation of a system
of length L onto the set of modes applicable to a system or
section of length L/2, the phonons in every second mode must
be reallocated to neighboring modes. We do this by dividing
them symmetrically into their two nearest neighbors, half the
phonons going into the mode above, half into the mode below.
So

nbinned
k = 1

2 nk−�k + nk + 1
2 nk+�k . (B7)

Similarly, to map onto a set of modes applicable to a system
of length L/4, we adopt the following binning procedure:

nbinned
k = 1

2 nk−2�k + nk−�k + nk + nk+�k + 1
2 nk+2�k . (B8)

Results are shown in Fig. 13, for two different values of k.
Interestingly, the binning procedure applied to larger-L data
gives a very good approximation to the data for smaller-L.
This suggests that there is no new (relevant) physics due
to the discretization in k space, in the sense that we can
solve for a continuous k space (i.e., in the limit of infinite
L) and then simply apply a suitable binning procedure to
see how the discretized system behaves. Similarly, the (rel-
evant) physics on a section of length L of a system of infinite
size is the same as that of a finite-size system of the same
length.

This binning procedure provides an intuitive explanation
for the apparent deceleration of the decay encoded in Eq. (B4).
For, while the singularly occupied mode decays exponentially,
the lost phonons are kicked into nearby modes, whose
occupation numbers grow in time. This is what is captured by
the second term of Eq. (B4): it represents the growth of those
modes in the continuous spectrum that are very near k, but
which, due to the finite resolution in k space, are included in
the same bin. By local conservation of the number of phonons
described in the text, if we bin all modes within the width of
the peak into a single mode, we effectively suppress the decay,
i.e., if we consider a sufficiently short section we will not
witness the decay of the phononic excitations. The timescale
comparison of Eq. (23) shows that the relevant length scale
is the coherence length of the quasicondensate r0. For shorter
distances we do not expect to be able to resolve the decay of
the phonons and the broadening of the peak in momentum
space.

Of course, we do not expect the good correspondence
shown in Fig. 13 between simulations of different L to
last indefinitely. Eventually, the relevant components of the
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FIG. 13. Number of nonthermal phonons δnk as of function of kξ at t/tξ = 50 (top left), and t/tξ = 25 (bottom left), when δn = 10
phonons were initially added in the mode kξ = 1.4 (top left), or kξ = 3.1 (bottom left). This number is shown in full line for different values
of density of the grid �k = 2π/L where L = 128 (blue), L = 256 (green). and L = 512 (red). The number of modes in the simulation for
L = 512 is then halved by merging nearby modes into a single bin via Eq. (B7) and shown in red squares. Equation (B7) is then applied on
the set of modes for L = 256 and repeated via Eq. (B8) on the new set of modes to have the same set of modes as L = 128 shown respectively
the red and green dots. They are almost everywhere superimposed so that they can hardly be distinguished. The evolution as a function of
t/tξ of the population in the probe mode is shown in full lines on the right figures for kξ = 1.4 (top right) and kξ = 3.1 (bottom right). The
result of the binning procedure from L = 512 to the set of modes of L = 256 is shown in red-dotted line. The result of the second binning and
the binning of L = 256 to the set of modes of L = 128 is shown in red- and green-dashed lines. The initial thermal state used corresponds to
kBT/mc2 = 2. The evolution is performed using the same numerical strategy as described for the green curves of Fig. 9 for ρ0ξ = 49.9.

system—namely, the thermal spectrum and the probe—will
be able to tell that they are on a finite torus, rather than a finite
section of an infinite-size system, and we can then expect
the different simulations to diverge significantly. The critical
time can be conceptualized as the recrossing of the relevant
components, which would not recross if the system were truly
infinite in length. There are two such times, corresponding to
the recrossing of the probe with the positive and negative wave
vector components of the thermal spectrum, which propagate
and speeds c and −c, respectively. Then the recrossing
times are

t rec
+ = L

vgr (k) − c
, t rec

− = L

vgr (k) + c
. (B9)

Since these are simply proportional to L, it makes sense that
the simulation with smallest L should be the first to show
deviations, as we see in the lower-right panel of Fig. 13. (In

this example, t rec
− /tξ = 30.1.) However, the deviations remain

small, likely due to the weaker coupling between the probe
and the negative part of the thermal spectrum. We expect
more significant differences after time t rec

+ ; indeed, we have
observed some recurrence of δnk on this timescale.

3. Finite width of the resonant peak

Here we will discuss the corrections to the decay rate
induced by a finite peak width. In particular, we will show how
the approximate corrections shown in Fig. 5 were calculated.

The reduction of the decay rate is induced by the off-
diagonal part of the matrix response function. Phonons next
to the mode of interest also decay due to interaction with the
thermal population, and some of these are thus transferred into
the mode of interest. Since they can only contribute positively
to the occupation number of the main mode, they deceler-
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FIG. 14. Logarithm of the mean occupation of the resonant mode (green) and its nearest neighbors on either sides (red, blue) as a function
of time extracted from the TWA simulations. The parameters for the initial state, the amplitude and the duration of the modulation are the
same as in Fig. 4. We see a quicker convergence of the growth rates within the peak on the right plot, which is due to a smaller atomic density
resulting in a larger effective interaction strength.

ate the decay of nk , thereby effectively reducing the decay
rate �k .

In our first set of simulations, we impose a very narrow
initial peak, and this effect does not have a chance to build
up significantly. By contrast, in the second set of simulations
where the peak is induced via parametric resonance, it natu-
rally has a finite width, which is observed to depend on the
interaction strength. We thus see signs of the overall decay
rate being smaller than the predicted value at larger interaction
strengths, as seen in Fig. 5.

We wish to predict the expected reduction in �k given the
observed peak width. To this end we employ Eq. (19) with
two key assumptions. First, we modify the equation to include
a source term that induces exponential growth, modeling the
parametric resonance. This is achieved by adding Gk δnk to
the right-hand side, where Gk is the predicted growth rate in
the absence of any phonon-phonon interactions,

Gk = 1
2 Akωk, (B10)

which is consistent with Eq. (26) for sufficiently large t .
Second, we assume that a steady state is reached where the
occupation numbers of all relevant nearby modes grow at the
same net rate Gnet. Therefore, the shape of the peak is assumed
constant, and evolves in time simply according to

δnk (t ) = fk eGnett . (B11)

This appears to be consistent with numerical observations see
Fig. 14.

Incorporating these assumptions in Eq. (19) for the oc-
cupation number of the resonant mode yields a consistency
equation that determines the expected net growth rate Gnet,

∂t (δnk ) = Gnet δnk = (Gk − �k )δnk

+
∫ t

0
dt ′ ∑

q �=−k

Mk,k+q(t − t ′) δnk+q(t ′)

≈ (Gk − �k )δnk +
∫ t

0
dt ′

∫
dq

L

2π

× Mk,k+q(t − t ′)
δnk+q(t ′)
δnk (t ′)

δnk (t ′)
δnk (t )

δnk (t )

= (Gk − �k )δnk + δnk (t )
∫ t

0
dt ′

∫
dq

× L

2π
Mk,k+q(t − t ′) Rk+q e−Gnet (t−t ′ ), (B12)

where in the second line we have taken the continuum limit
to replace the sum over wave vectors q by an integral. The
exponential suppression in t − t ′ allows us to replace the
lower limit of the t ′ integral by −∞, which in turn allows us
to write the integral independently of t and to divide through
the whole equation by δnk (t ),

Gnet = Gk − �k +
∫ ∞

0
dτ

∫
dq

L

2π
Mk,k+q(τ ) Rk+q e−Gnetτ .

(B13)
This self-consistency equation can be solved for Gnet, given
that we know Gk , �k , and the profile shape Rk+q. If we as-
sume that the peak is narrow enough so that only small q are
relevant, we may replace Mk,k+q with its small-q limit, given
in Eq. (A25). This gives

Gnet ≈ Gk − �k +
∫ ∞

0
dτ

∫
dq{ f+ cos[q(vgr (k) − c)τ ]

+ f− cos[q(vgr (k) + c)τ ]} Rk+q e−Gnetτ

= Gk − �k +
∫

dq

{
f+

Gnet

G2
net + q2(vgr (k) − c)2

+ f−
Gnet

G2
net + q2(vgr (k) + c)2

}
Rk+q, (B14)
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where we have defined

f± = 4

π

L

Nat
limq→0±

{|V3(k, q)|2nth
q

}
. (B15)

All that remains is to plug in a suitable profile Rk+q for the
profile of the peak. Over a significant range of parameters, we
observe numerically that the profile is fairly well described by
a Lorentzian

Rk+q = 1

(q/σ )2 + 1
. (B16)

Adopting this as an ansatz and plugging it into the integral
above, we find

Gnet − �+g

(
Gnet

(vgr (k) − c)σ

)
− �−g

(
Gnet

(vgr (k) + c)σ

)

= Gk − �k, (B17)

where �± are the predicted decay rates given in Eq. (17)
(recall that �k = �+ + �−), and where we have defined

g(x) = 1

1 + x
. (B18)

The effective decay rate �eff is then defined as �eff = G −
Gnet, thus capturing the reduction of the growth rate due to
phonon-phonon interactions. Note that Eq. (B17) yields the
expected behavior in the limits of very narrow and very broad
peaks:

(i) When the peak is very narrow, we take σ → 0 so that
the argument of g(x) becomes very large, and we can set g(x)
to 0. Then we just get Gnet = Gk − �k , so �eff = �k; this is
exactly our prediction for the decay rate of a narrow peak.

(ii) Conversely, when the peak is very broad so that we
can send σ → ∞, the argument of g(x) becomes very small
and we can replace g(x) by 1. Since �k = �+ + �−, Eq. (B17)
tells us that Gnet = Gk , i.e., there is no reduction of the growth
rate. This corroborates our expectation that the broadness of
the peak tends to suppress the decay rate.

To determine the corrected decay rates shown in Fig. 5,
we first perform a fit of a Lorentzian profile to the occupation
numbers around the resonant peak (including five data points
on either side of the resonant mode), in order to extract the
width σ . This is then used in Eq. (B17) on order to determine
the expected net growth rate Gnet, and thereby the effective
decay rate �eff .

APPENDIX C: MONTE CARLO SIMULATIONS :
TRUNCATED WIGNER APPROXIMATION (TWA)

In order to assess the validity of our predictions we com-
pare them to the results of ab initio Monte Carlo simulations of
the system. To simulate the evolution of our quasicondensate
we use the Truncated Wigner Approximation (TWA) also
known as the classical field approximation. This method is
based on the description of the state of the system by means
of a quasiprobability distribution, the Wigner function. The
TWA has been repeatedly used to describe Bose gas [30,44],
specifically one-dimensional quasicondensate [45,46], as well
as a wide variety of other systems (polaritons, spins etc.)
[47,48]. We will restrict our presentation of the TWA to the
necessary minimum and we refer to [30] for further details.

1. TWA in a nutshell

The Wigner function W (�,��) is a quasiprobability dis-
tribution in phase space defined by a bijective transformation
of the density matrix ρ̂. Under this transformation the von
Neumann equation of motion on the density matrix then trans-
lates into a partial differential equation for W [49]. For the
Hamiltonian (1) the equation reads

ih̄Ẇ (�,��) = −
∫ +∞

−∞

{
δ

δ�

[
1

2m
∂2

x � + g(|�|2 − 1)�

]

− 1

4

δ3

δ2�δ��
�

}
W (�,��) + c.c., (C1)

where the derivatives act on the element inside of the brackets
multiplied by W (�,��), see Eq. (23) of [30]. The trunca-
tion giving its name to the truncated Wigner approximation
consists in neglecting terms with three derivatives or more.
The resulting equation is then solved by using the method
of characteristics. Practically, the Wigner function at time
t is found by first sampling the Wigner function at initial
time, i.e., drawing a set of values �i(x, t = 0) according to
the initial Wigner function and evolving these realizations
under an equation of motion, which is simply the classical
counterpart of the Heisenberg equation of motion of �̂ under
the Hamiltonian (1)

ih̄�̇ = − 1

2m
∂2

x � + g|�|2�. (C2)

The resulting �i(x, t ) represent a sampling of the Wigner
function of the state at time t . This sample can be used to
compute average values of observables 〈A(ϕk )〉TWA built from
ϕk . It can be shown that expectation values computed treating
the Wigner function as a bona fide probability distribution
are equal to quantum expectation values of the associated
operator when the expression is completely symmetrized in
ϕ̂k and ϕ̂

†
k . We will not discuss here the conditions of validity

of this truncation and of its numerical implementation; some
considerations can be found in [18,28,30].

2. Numerical implementation

The numerical implementation of the TWA is a straight-
forward application of the above program. The evolution is
performed using a discretized version of Eq. (C2) and a split-
step Fourier algorithm [50]. The initial state is taken to be
thermal at a temperature T , up to the addition of a few “probe”
phonons in the mode k for the first set of simulations. The
exact thermal state of the system is approximated by the one
associated to the quadratic Hamiltonian Ĥ2, i.e., the phonon
modes are completely uncorrelated to each other and their
number spectrum is set equal to the Bose-Einstein distribution
at temperature T . The realizations of the atomic field are
built from nr realizations of the phonon modes ϕk . These
are themselves built drawing independently �[ϕk] and �[ϕk]
according to a centered Gaussian distribution with variance

σ 2
k = 1

2

(
nk + 1

2

)
= 1

4
coth

(
h̄ωk

2kBT

)
. (C3)
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It is then straightforward to check that the TWA averages
reproduce the averages of the symmetrized quantum operators
in a thermal state,

〈ϕk〉TWA = 〈ϕ∗
k 〉TWA = 0, (C4)

〈ϕ∗
k ϕk〉TWA = nth

k + 1
2 = 1

2 〈{ϕ̂k, ϕ̂
†
k }〉, (C5)

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator. Since this
is not the exact thermal state we let the system evolve for a
certain duration to be as close as possible to a stationary state
that we use as an initial state. For the first set of simulations
phonons are then injected in the mode k by transforming its
amplitude ϕk (0) according to

ϕk (0) −→
√

1 + δn

nth
k + 1

2

ϕk (0), (C6)

so that ϕk (0) still has Gaussian statistics but with a vari-
ance corresponding to nk = nth

k + δn. We then evolve under

Eq. (C2) both the realizations with and without the addition
of probe phonons using the same code. We repeat this process
for the nr realizations. Finally we compute the average values
for nq with and without the probe at any time and take the
difference to get the evolution of the average value δnq(t ).

This method closely mirrors the step of the derivation of
the decay rate laid out around Eq. (A12) where we subtract
the evolution of the background thermal population to single
out the evolution of the probe. However the TWA encodes also
the deviations to the linear case considered in our equations.
For the second set of simulations we simply evolve the initial
quasistationary state according to (C2) where g is modulated
according to (25), and proceed to the same type of averaging
as in the first set. We want to stress that in any figure of this
paper, for both set of simulations, a data point at time t + dt is
not obtained simply by evolving the realizations at t time by
an extra-step dt as this would result in strongly correlated data
points. We rather start the whole evolution process from new
realizations of the initial state and evolve them until t + dt .
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