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Supercurrent-induced resonant optical response
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The optical conductivity encodes the current response to a time dependent electric field. We develop a theory of
the optical conductivity σ (ω) in the presence of a dc supercurrent. Current induced optical response is prohibited
when current is conserved, an illustrative example of which is Galilean invariant systems. However, we show
that lattice effects give rise to a pronounced current dependent peak in σ (ω) at the gap edge ω = 2�, which
diverges in the clean limit. We demonstrate this in a model of a multiband superconductor. Our theory predicts
the current induced peak in σ (ω) to scale quadratically with the super-current density, as was recently reported
in experiments on NbN by Nakamura et al. [Phys. Rev. Lett. 122, 257001 (2019)]. This provides the potential
for a new mechanism for direct activation of the Higgs mode with light.
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I. INTRODUCTION

The nonlinear electromagnetic response of quantum mate-
rials at terahertz (THz) frequencies and below allows direct
probing of electronic structure [1], and provides new in-
roads into the “THz gap”—a frequency range that has been
barely exploited for practical applications in signal genera-
tion or detection [2]. In particular, in metals, the nonlinear
Hall effect [3–5] and the linear/circular photogalvanic ef-
fects [6–10] at low frequency provide direct measurements
of Fermi surface properties without generating high-energy
excitations, and have established new connections between
nonlinear conductivity and the quantum geometry of Bloch
electrons [11–13].

In the context of superconductors, the nonlinear response
has long been a focus of interest [14–20], where second-order
effects in an ac electric field may enhance the superconducting
gap and critical current [21–23].

In contrast, there has been less focus on nonlinear ef-
fects due to a combination of externally driven electric fields
and currents. Notably, experiments on s-wave superconductor
NbN observed a dc supercurrent to produce giant second-
harmonic generation (SHG) in the THz range [24]. The
supercurrent breaks inversion symmetry allowing for SHG.
Separately, also in NbN, a dc supercurrent was seen to en-
hance the optical response at the edge of the superconducting
gap, where peaks in the dissipative and reactive parts of the
optical conductivity were observed [25].

In this work we analyze current enabled optical response
in a superconductor. We study the effect of a uniform, dc
supercurrent density jsc on the ac optical conductivity σ (ω) in
a time-reversal symmetric superconductor at temperature T =
0. This dc supercurrent may be due to an external source, or
a screening current induced by a magnetic field [26]. In clean
systems, where the gap exceeds the scattering rate 2� > τ−1,
we show the supercurrent to enable a large optical absorption
peak of height ∝ j2

sc at the gap edge ω = 2�. This peak is

due to single photon processes which excite quasiparticles
across the gap. Naively, one might expect this peak to persist
even for jsc = 0. However, when the Hamiltonian is inversion
symmetric, this response is absent due to selection rules be-
tween quasiparticle modes at the gap edge [Fig. 1(a)], which
cause the optical absorption to go continuously to zero at this
frequency [27–32]. In order to obtain a large gap edge optical
response, inversion symmetry must be broken. As supercon-
ductors with intrinsically broken inversion symmetry are rare,
we consider extrinsic breaking due to a finite supercurrent
[Fig. 1(b)].

A second important ingredient is current relaxation. The
large gap edge response is thus absent in common min-
imal models of superconductors, where there is a single
parabolic band, as the current is conserved (as follows from
Galilean invariance). We provide a minimal model in the
form of a multiband superconductor, as has been proposed for
NbN [33,34] and experimentally reported in NbSe2 [35–38],
MgB2 [39–43], and FeSe [44,45], or as may be realized via
the proximity effect at a superconductor-metal interface.

We focus on a response that is linear in the electric field,
and thus characterized by the optical conductivity σ (ω)

〈 j(ω)〉 = σ (ω)E(ω). (1)

We calculate the tensor σ (ω) in the presence of a dc supercur-
rent, for finite frequencies, via the Kubo formula

iωσab(ω) = −Dab + iV
∫ ∞

0
dt eiωt 〈[ ja(t ), jb(0)]〉, (2)

where j is the current density operator, V is the system
volume, a, b are spatial indices, Dab is the Drude weight in
the clean noninteracting limit (for a parabolic band Dab =
ne2δab/m where n, m and e are electron density and mass, and
charge), and 〈·〉 denotes thermal expectation values calculated
for zero-field E(ω) = 0. As the Kubo conductivity σab(ω)
depends only on the current j and Hamiltonian H defined at
zero field, we henceforth discuss these operators only as de-
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FIG. 1. Optical absorption in inversion symmetric superconduc-
tors: The quasiparticle band structure with electron (hole) orbitals
colored orange (blue). (a) Inversion symmetry leads to selection rules
which prevents optical excitation of quasiparticles across the gap.
(b) A current breaks this symmetry, allowing excitation across the
direct gap, resulting in an absorption peak at ω = 2�.

fined in this limit, neglecting the minimal coupling correction
k → k + eA.

II. CURRENT CONSERVING SYSTEM

An illustrative example of a current conserving system is
the canonical model of an s-wave superconductor: a single
parabolic band with a contact interaction

H =
∑
kσ

ξkc†
kσ

ckσ + g
∑

q

P†
q Pq. (3)

Here the interaction is attractive g < 0, ξk = k2/2m − μ is the
dispersion, and P†

q = ∑
k c†

k+q↑c†
−k↓ creates a pair of electrons

with total momentum q.
The optical response of the system (3) is trivial and inde-

pendent of the presence of the supercurrent or otherwise. This
follows from the Galilean invariance of H , which entails that
the current density operator is a conserved integral of motion

j = e

V

∑
kσ

vkc†
kσ

ckσ ⇒ [H, j] = 0, (4)

where vk = ∂kξk = k/m and V is the system volume. The
conservation of current at zero-field [H, j] = 0 entails that
there are no energy absorbing processes which couple to the
electric field. This current conservation thus forbids the elec-
tromagnetic energy dissipation, and results in a trivial optical
conductivity. Specifically, the real part of the optical conduc-
tivity is zero at all finite frequencies, while the imaginary part,
given by σ (ω) = iD/ω, encodes the oscillatory motion of the
electron center of mass in response to an oscillating external
electric field.

Let us now examine how the trivial optical conductivity
of a current conserving superconductor may be correctly ob-
tained in mean-field theory when the system is carrying a
supercurrent jsc. For jsc 
= 0, Cooper pairing occurs at a finite
momentum q, this is related to the supercurrent density jsc and
condensate velocity vc by

jsc = envc, vc = q/2m. (5)

The corresponding mean-field Hamiltonian, which depends
on the Cooper pair momentum q, is obtained in the usual way

H̃ =
∑
kσ

ξαkc†
kσ

ckσ + �(eiθPq + e−iθ P†
q ), (6)

where � and θ are the magnitude and phase of the su-
perconducting order parameter, respectively. In the standard
Bardeen-Cooper-Schrieffer (BCS) theory, the phase factor eiθ

is treated as a c number. Although this leads to an artefactual
violation of electron number conservation [H̃, N] 
= 0 (N =∑

kσ c†
kσ

ckσ ), this treatment still allows for accurate calcula-
tion of the optical conductivity in clean and dirty systems
at jsc = 0. The standard approach works for q = 0 as the
pairing and kinetic terms in H̃ still conserve current as desired.
However, for a finite supercurrent jsc 
= 0, Cooper pairing
occurs at finite momentum q, then the pair operators Pq in the
mean-field Hamiltonian alter the current [Pq, j] 
= 0. In this
case treating the condensate phase eiθ as a c number leads to
an additional artefactual violation of the current conservation:
[H̃ , j] 
= 0 and consequently artefactual contributions to the
optical conductivity.

In order to obtain the optical conductivity correctly, we
treat θ as an operator associated with the phase of the conden-
sate, the canonically conjugate operator −i∂θ then counts the
number of Cooper pairs making up the condensate. The phys-
ical picture [46,47] is that eiθ increases the number of Cooper
pairs by one, while Pq decreases the number of fermions by
two. In this modified mean-field approach, the total charge
consists of both charge-e fermions and charge-2e Cooper
pairs. Thus, the total charge number operator takes the form

Ñ = −2i∂θ +
∑
kσ

c†
kσ

ckσ . (7)

Importantly this restores the conservation of the electron num-
ber to the mean-field theory, so that [H̃ , Ñ] = 0, respecting the
charge conservation present in the original theory (3)

This modified mean-field approach also restores the current
conservation of Galilean invariant superconductors. The total
current consists of the currents carried by unpaired electrons
and the condensate

j̃ = e

V

(
−2ivc∂θ +

∑
kσ

vkc†
kσ

ckσ

)

= e

V

(
vcÑ +

∑
kσ

(vk − vc)c†
kσ

ckσ

)
, (8)

where in the second line, we have substituted Eq. (7) to elim-
inate ∂θ . From Eq. (8) one obtains [ j̃, H̃ ] = 0 as required.

We have presented physical arguments for the form of
the number and current density operators appropriate for a
superconducting mean-field theory with a finite supercurrent.
Importantly, these operators provide the correct bookkeeping
for the charge and current carried by the condensate. In the
Galilean invariant system considered, this restores conserva-
tion of current to the mean- field theory, and hence recovers
the desired trivial optical conductivity. This approach is for-
malized in Appendix A where we show the mean-field current
and number operators (7) and (8) may be obtained by extend-
ing the Hilbert space, and enforcing charge conservation as a
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gauge constraint which must be respected by the mean-field
theory. In Appendix B we further show that in addition to
conservation of charge, current, and momentum, this approach
restores the correct Galilean transformation properties of H̃ .

III. LATTICE EFFECTS

Current conservation in a Galilean invariant system follows
from the fact that the interaction conserves current. How-
ever, in solids, the presence of an underlying lattice means
that current is generically not conserved: nonparabolic bands,
Umklapp processes, or multiband effects all break Galilean
invariance, leading to current relaxation, and allowing for a
nontrivial optical response. To illustrate this, we now show
how coupling between bands with different effective masses
allows for a nontrivial optical response in a current carrying
superconductor.

We consider a minimal model which, after the kinetic term
has been diagonalized, consists of two parabolic bands α =
1, 2, and interactions that scatter electrons within (g11, g22)
and between (g12 = g∗

21) bands

H =
∑
αkσ

ξαkc†
αkσ

cαkσ +
∑
kαβ

gαβP†
αqPβq, (9)

where ξαk = k2/2mα − μα , and P†
αq = ∑

k c†
αk+q↑c†

α−k↓. For
simplicity, we assume the primary pairing interaction occurs
in the first band, and induces a pairing potential in the sec-
ond band via the interband coupling, providing the dominant
source of pairing in both bands

|g11〈P1q〉| � |g12〈P2q〉|, |g12〈P1q〉| � |g22〈P2q〉|. (10)

This may occur either due to a hierarchy of scales in the
coupling g11 � g12 � g22, or because the density of states
at the Fermi surface is much greater in the first band. In this
regime the mean-field Hamiltonian takes the form

H̃ =
∑
αkσ

ξαkc†
αkσ

cαkσ +
∑

α

�α

(
eiθ Pαq + H.c.

)
, (11)

where the primary gap is �1eiθ = g11〈P†
1q〉, and a smaller

gap is induced in the second band �2 = �1g12/g11. In
Boguliobov–de Gennes (BdG) form we obtain

H̃ =
∑
αk

ψ
†
αkH̃αkψαk, (12a)

where ψ
†
αk = (c†

αq/2+k↑, cαq/2−k↓) is the Nambu spinor and we
have defined the BdG matrices

H̃αk = ξ̄αkτ3 + δξαkτ0 + �α (eiθ τ+ + H.c.), (12b)

where ξ̄αk = 1
2 (ξα,q/2+k + ξα,q/2−k), δξαk = 1

2 (ξα,q/2+k −
ξα,q/2−k), and τa are the usual Pauli matrices.

In this model Galilean invariance is broken, thus the current
density is not conserved, but relaxes due to pair scattering
between the bands. This nonconservation is quantitatively
captured by the commutator of the current operator (4) and
Hamiltonian (9) which details the rate of change of current
due to each microscopic process

[ j, H] = δ j(g12P†
1qP2q − H.c.), δ j = evcδm

m2V
, (13)

where δm = m1 − m2, and vc = q/2m1 is the condensate ve-
locity. Though for the parabolic bands considered here current
is conserved upon intraband scattering, the current changes
upon interband scattering: pairs of electron from the second
band are scattered with rate g12 into the first band, each
causing a change to the current density of δ j, and vice versa.
The mean-field theory current operator must preserve this
commutator in order to preserve the microscopic dynamics of
current, correctly capture the current relaxation, and allow for
accurate calculation of σ (ω).

In direct generalization of Eqs. (7) and (8) we use the
mean-field current and number operators

j̃ = e

V

(
vcÑ +

∑
αkσ

(vαk − vc)c†
αkσ

cαkσ

)
,

Ñ = −2i∂θ +
∑
αkσ

c†
αkσ

cαkσ . (14)

The mean-field operators have the commutator

[ j̃, H̃ ] = evcδm

m2V
(�2eiθ P2q − H.c.). (15)

This commutation relation corresponds directly to the mean-
field equivalent of Eq. (13). Precisely, one obtains Eq. (15) by
making the mean-field replacement to both sides of Eq. (13).
Note that Eq. (13) is symmetric upon exchanging the band
labels, whereas Eq. (15) is not, this is a consequence of our
assumption that both the primary gap �1 and induced gap �2

arise due to pairing in the first band (10). Note also that, as
required, the mean- field current j̃ is conserved in the limits of
m1 = m2 and g12 = 0 in which Galilean invariance, and hence
current conservation is restored. In BdG form we have

j̃ = evcÑ/V +
∑
αk

ψ
†
αk j̃αkψαk,

j̃1k = ev̄1kτ0/V, j̃2k = e[v̄2kτ0 + vc(δm/m2)τ3]/V, (16)

where v̄αk = ∂kξ̄αk = k/mα . We note the appearance of the τ3

term in j̃2k with a current dependent coefficient. This term
measures the density of electrons in the second band. This
term will be important to obtaining a large gap edge response,
and is only possible in a multi-band system where electrons
may be exchanged between bands. Within a single band sys-
tem the conservation of the total number of electrons prevents
the coupling of electron density to an external field.

We may now evaluate the optical conductivity using
Eqs. (12) and (16). As Ñ , commutes with both the mean-
field Hamiltonian H̃ and the current operator j̃, we work
in its diagonal basis, replacing Ñ with its eigenvalue. By
further writing H̃ and j̃ in terms of the chargeless fermions
fkσ = eiθ/2ckσ (which satisfy the anticommutation relations
{ fkσ , f †

qτ } = δkqδστ , { fkσ , fqσ } = 0 as required) in this basis
the Hamiltonian is independent of θ

H̃ =
∑
αkσ

ξαk f †
αkσ

fαkσ +
∑

α

�α

(∑
k

f †
αk+q↑ f †

α−k↓ + H.c.

)
,

(17)
and similarly for j. Consequently the current-current correla-
tor to be evaluated using the usual fermionic algebra. In the
clean system, which we consider first, only the latter (∝ τ3)
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FIG. 2. Current induced optical conductivity of a clean su-
perconductor: The red (blue) line show the dissipative (reactive)
response (18). The dashed line shows the response for zero cur-
rent q = 0. The clean reactive response is shown (dashed) for
comparison. Shown for a parabolic dispersion with parameters
(vcδm/v2Fm2)2 = 1/2.

term of Eq. (16) gives rise to a non-trivial response. To obtain
this response, let us set the z direction parallel to q, due to axial
symmetry the optical conductivity then has two independent
components σ‖(ω) = σzz(ω), and σ⊥(ω) = σxx(ω) = σyy(ω).
In the presence of a supercurrent the perpendicular component
remains trivial Re[σ⊥(ω)] = 0, while the parallel component
takes the form (plotted in Fig. 2, derivation in Appendix C)

Re[σ‖(ω)] = ρ2F

ω

(
evcδm

m2

)2

f
( ω

2�2

)
, f (x) = πθ (x2 − 1)

x
√

x2 − 1
,

(18)
where we have set temperature T = 0, θ (x) is the usual step
function, and ρ2F is the normal phase Fermi surface density
of states of the second band. The appearance of mass in this
result is due to the dependency on the curvature of the bands
at the Fermi surface. As is necessary, this current mediated
contribution to the optical conductivity (18) disappears if the
condensate velocity is zero vc = 0, or in either of the current
conserving cases of m1 = m2, or g12 = 0. The current medi-
ated contribution is largest for in the case when the second
band is much faster, m2 � m1, i.e. in the same regime as our
assumption (10).

The current mediated optical response (18) is most signif-
icant at the gap edge where it diverges. This divergence is
mirrored in the reactive (imaginary) part of the optical con-
ductivity (obtained via the Kramers-Kronig relation) which
has an equivalent divergence as the gap is approached from
below

Re[σ‖(2�2 + δω)] ∼ Im[σ‖(2�2 − δω)] = O(δω−1/2),
(19)

where ∼ indicates asymptotic equality as δω → 0. For fields
oscillating at frequencies just below the gap, where the re-
active part is large, a large ac current is induced, carried by
electrons in the second band. As the peak is found only in σ‖,
with σ⊥ remaining trivial, the induced ac current runs parallel
to the supercurrent.

The large response is peaked at a frequency generically
above the superconducting gap, and approaches the super-
conducting gap edge only in the limit of weak current.
Specifically, the gap edge, where the onset of the real part
optical conductivity occurs, is set by the indirect gap ωig− =

2�2 − qk2F/2m2 + O(q2/m2), this moves to lower frequen-
cies as the supercurrent density increases due to the Doppler
shift (the tilting of the dispersion). In contrast, the large re-
sponse is always set by the current independent direct gap
2�2. Moreover, as both the direct gap, and the change to the
current (13) induced by scattering δ j are independent of po-
sition on the Fermi surface, the current induced response (18)
is obtained by integrating contributions from the entire Fermi
surface.

IV. IMPURITY SCATTERING

Impurities couple different momentum sectors, altering the
optical response. We consider the effect of quenched nonmag-
netic disorder

H̃ → H̃ +
∑
kqσ

Vkqc†
kσ

cqσ , (20)

and focus on its effect on the dissipative response, from
which the reactive response follows via the Kramers-Kronig
relation.

Let us recall some useful properties from the usual BCS
theory of response functions for the case jsc = 0, T = 0.
In the presence of time-reversal symmetry, response func-
tions can be decomposed into case I (case II) terms which
are generated by operators which are even (odd) under
time-reversal symmetry [27–29]. In the usual Nambu ba-
sis ψ

†
αk = (c†

k↑, c−k↓) these correspond to BdG matrices τ3

(τ0), respectively. At zero temperature, case I and case II
responses exhibit markedly different behavior at the gap
edge. To illustrate this consider an example case I (case II)
operator O+ (O−) with BdG matrices o+

kp = τ0, (o−
kp = τ3)

coupling the k and p momentum sectors, we obtain matrix
elements

|〈εk|o±
kp|εp〉|2 =

εkεp ∓ �2
2 −

√(
ε2

k − �2
2

)(
ε2

p − �2
2

)
2εkεp

, (21)

where |εk〉 is the eigenvector of H̃2,k for zero current δξ2,k = 0.
In the limit of states on either side of the gap edge (εk, εp) →
(�2,−�2) we find that in case II |〈εk|o−

kp|εp〉|2 → 0, whereas

in case I the matrix element |〈εk|o+
kp|εp〉|2 approaches double

its normal phase (�2 = 0) value. Thus we see that, due to
selection rules (or equivalently coherence factors), the case
I (case II) response is enhanced (suppressed to zero) as ω →
2�+

2 . Whereas inside the gap |ω| < 2�2 both the case I and
II responses are zero. Thus the (enhanced) case I response
drops discontinuously to zero at ω = 2�2. The distinct gap
edge behavior of case I and case II operators relies only on
the time-reversal symmetry of H [48], and thus holds in the
presence of nonmagnetic disorder. Despite the possibility of
enhanced linear response at the gap edge, no such large gap
edge response is exhibited in the optical conductivity, as the
current operator is odd under time-reversal symmetry, and
thus purely case II [27–31,49–54].

In the presence of the current this picture is altered, the
pairing is at finite momentum, and thus the BdG matrices
τ3 and τ0 are not odd/even under time reversal. However,
for weak scattering, the distinction in behaviors of the ma-
trix elements close to the gap remains, and so we retain
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FIG. 3. Current mediated response in a disordered supercon-
ducting wire: The dissipative optical conductivity is shown in units
of the normal phase dissipative response ReσN for different scat-
tering times (legend inset). The dissipative response onsets at the
indirect gap ωig−, is peaked at the direct gap 2�, and converges
Re(σI )/Re(σN ) ∼ 1 far from the gap. The peak height becomes large
O(τ 3/2) in the clean limit (2�2τ � 1). The line shape is a sum of case
I and case II contributions are plotted separately in the lower panels.
The gaps ωig− and 2�2 are labeled on the quasiparticle particle den-
sity of states (inset, upper panel). Parameters: (vc δm/m2v2F ) = 0.3,
δξ2F = qk2F/2m2 = �2/2, 2�2τ given in legend.

the nomenclature of case I and case II for τ3 and τ0,
respectively. Using this convention, we find the case I term
in the current (16) leads directly to a case I term in the
optical conductivity (2), in addition to the usual case II
term

σ (ω) = σI(ω) + σII(ω). (22)

In Eq. (22) the case I/II cross terms are omitted as they disor-
der average to zero (see Appendix D 2). Moreover, the optical
conductivity is further altered by the current induced Doppler
shift, which causes the indirect (momentum nonconserving)
gap ωig± = 2�2 ± qk2F/2m2 + O(q2/m2) to become smaller
than the direct (momentum conserving) gap 2�2 (see Fig. 1
and Fig. 3 inset).

We now discuss the case I and case II contributions to the
optical conductivity in the presence of a finite current. These
are obtained via exact diagonalization in Fig. 3, where the
scattering term (3) is used for Gaussian distributed elements
Vk,q = V ∗

−k,−q (numerical details in Appendix D). The current
mediated case I contribution consists of a single peak at 2�.
Unlike in the clean case, where the response is zero at frequen-
cies below the peak ω < 2�2, in the presence of scattering
a tail extends down to the indirect gap at ωig− < 2�2. Most
significantly, the presence of a current means the sharp peak

at the direct gap ω = 2�2 is not protected by time-reversal
symmetry, and becomes rounded. This effect is quantitatively
captured by repeating the calculation of Eq. (18) with a finite
quasiparticle lifetime τ (see Appendix C) yielding

σI,‖(ω) = ρ2F

ω

(
evcδm

m2

)2

f
(ωτ − i

2�2τ

)
, f (z) = 2i arcsin(z)

z
√

1 − z2
.

(23)

We find Eq. (23) the clean divergences in the dissipative and
reactive parts both become truncated at a maximal height
σ (ω) = O(τ 1/2). This may be compared with the normal
phase response at the same frequency Re(σN) = Dτ/(1 +
ω2τ 2) [55]. In the clean limit 2�2τ � 1, at the gap edge
ω = 2�2, we thus find a peak contrast of

Re(σ‖)

Re(σN)
∼ πρ2F

2D

(
evcδm

m2

)2

(2�τ )
3
2

= πd

2

(
vcδm

v2Fm2

)2

(2�τ )
3
2 , (24)

where ∼ indicates asymptotic equality at large τ , and the
second equality in Eq. (24) applies for a parabolic band in
dimension d with Fermi velocity v2F. We find the O(τ 3/2)
scaling is in good agreement with numerics (see Fig. 3 and
Appendix D). Lastly we note that, as before in Eq. (19), the
real and imaginary peaks are asymptotically equal in this limit
Re(σ‖) ∼ Im(σ‖).

The case II contribution (Fig. 3) exhibits no dramatic
changes from the jsc = 0 case, altered only due to the change
in the gap structure: σII converges to the normal phase Drude
response far above the gap Re(σII )/Re(σN) ∼ 1, and remains
of comparable scale at all frequencies above the indirect gap.
In the absence of a current, the case II response goes contin-
uously to zero at the gap edge ω = 2�2. In the presence of
the supercurrent this divides into three onsets, one at each of
the gaps—in one spatial dimension the indirect gaps are linear
onsets, whereas the direct gap is softer due to additional sup-
pression of the matrix elements. In larger spatial dimension
the onsets at the indirect gaps become softer, as only parts
of the Fermi surface where k is parallel to q contribute to
the density of states at the indirect gap. The case I and case
II contributions are shown separately in the lower panels of
Fig 3.

V. DISCUSSION

In this manuscript we have described a supercurrent en-
abled optical response present in BCS superconductors. Such
a supercurrent may be due to an external current source, or a
screening current induced by a magnetic field. An important
ingredient was the breaking of current conservation, which
itself requires the breaking of Galilean symmetry, i.e., the
presence of some form of lattice physics. As an example
we considered pair scattering between bands with differ-
ent Fermi velocities. However, the type of lattice physics
employed is unimportant, as the current mediated response
should be expected in any system where electron scattering
does not conserve the total current. Other examples of physics
which provide such nonconservation of current include Umk-
lapp scattering, and strongly nonparabolic dispersion at the
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Fermi surface. These examples, though generically providing
a weaker response, may be appealing avenues for future study
as they require only a single band.

A current enabled optical response was recently reported
in the experimental analysis of Ref. [25]. In this experiment,
a current enabled change to the optical conductivity was ob-
served, which manifested in an absorption (reactance) peak
beginning at ω = 2� and extending just above (below) the
gap. These peaks were observed to reach a height quadratic in
the current, in agreement with (23), and were of typical sizes
Re(σ‖)/Re(σN) ∼ 0.025 [c.f. Eq. (24)].

In this manuscript, we have provided a proof of principle
analysis showing that the presence of multiple gaps is suffi-
cient to lead to such a current enabled response such as that
observed in Ref. [25]. For simplicity, we assume a specific
hierarchy of gap scales (10) for which the optical conductivity
may be analytically calculated, However, we do not expect
this assumption to be an important ingredient in obtaining the
gap edge response, which should be present whenever there
are low-energy scattering processes which allow the current
to relax.

Our theory differs from the alternative theoretical proposal
of Ref. [56], which considered a model of a dirty single
band superconductor in the diffusive limit, and showed here
too, one finds a current induced peak in σ (ω), consistent
with the observations of Ref. [25]. The difference in origin
of the gap edge peak uncovered in the present manuscript
and in Ref. [56] manifests in different limiting behavior with
disorder strength: the gap edge peak predicted by Ref. [56] be-
comes small in the limits of weak disorder (in which the clean
limit of σab(ω) = iDab/ω is approached), and in the limit of
strong disorder (where the absence of time-reversal symmetry
means that the gap edge features are strongly be smeared by
the disorder), providing only an intermediate crossover regime
where the effect is present. In contrast, in the present analysis
the peak in the optical conductivity follows from the gap
structure, rather than scattering, produces a response which
grows asymptotically as τ 3/2 with the scattering time τ as the
clean limit τ → ∞ is approached, providing a large response
in clean samples. One direction which will be interesting
to pursue in future work is to quantitatively determine the
relative sizes of the different contributions to the gap edge
peak for different materials, in particular for the NbN system
studied in Ref. [25].

More broadly, our theoretical treatment extends the stan-
dard BCS theory of superconductivity to situations where the
condensate is flowing. In this setting, it is necessary to have
accurate calculation of the current response as it necessitates
correct accounting for the exchange of momentum between
the condensate and excitations upon creation/destruction of
a Cooper pair. In the absence of a supercurrent, this theory
reduces to the standard BCS theory. Consequently, if one
follows the Mattis-Bardeen treatment of scattering effects, one
will obtain the usual form of the optical conductivity in the
limit of zero supercurrent [27–31].

We comment on further interesting avenues for future stud-
ies. The large reactive response which is generated in the
superconducting gap provides a mechanism for the coherent
coupling of THz radiation and superconducting circuits [57].
Additionally, we note that the current enabled optical response

allows for excitation of the Higgs mode. The coherent gener-
ation of excitations above the superconducting gap results in
a suppression of the pairing potential, and this perturbation
decays amidst long-lived oscillations of the collective Higgs
mode δ�(t ) ∼ cos(2�t )/

√
2�t [58–62]. Here we present a

single photon process, second order in the current, which per-
mits such a coupling. This provides an alternative mechanism
to previous efforts which have focused on achieving such a
coupling using multiphoton processes [62]. Lastly we note
that our theory relies only on the scattering between bands,
which may be taken as parabolic in the simplest example. We
leave to future investigations the exploration of how effects
due to the quantum geometry of electrons [32,63,64] may also
contribute to the superconducting optical response.

Note added in proof. Recently a related work appeared [65].
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APPENDIX A: GAUGE CONSTRAINT DERIVATION

In this Appendix we formalize the arguments presented in
the main text, showing how the current and number operators
obtained in the main text (8) may be obtained from a BCS the-
ory in an extended Hilbert space in which charge conservation
is enforced using a gauge constraint.

We begin with a many fermion Fock space F with asso-
ciated creation (annihilation) operators f †

αkσ
( fαkσ ). We then

extend this Hilbert space to include a degree of freedom which
counts total number of particles in the system

HE = F ⊗ Hφ, (A1)

where Hφ = L2(S1) is spanned by |n〉, n ∈ Z, or equivalently
in its dual basis |φ〉, φ ∈ [0, 2π ] in the canonically conjugate
basis. Operators acting on Hφ include the number operator
Nφ = −i∂φ and the raising (lowering) operator eiφ

Nφ|n〉 = n|n〉, eiφ |n〉 = |n + 1〉. (A2)

We impose the gauge constraint that Nφ is equal to the total
number of fermions N = ∑

kσ f †
αkσ

fαkσ

F ′ = span(|ψ〉 : |ψ〉 ∈ HE, (N − Nφ )|ψ〉 = 0), (A3)

or in more concise terms, we fix to a gauge

N = Nφ. (A4)

One may verify that F ′ is itself a fermionic Fock space with
associated fermionic creation (annihilation) operators

c†
αkσ

= f †
αkσ

eiφ, cαkσ = fαkσ e−iφ. (A5)

More specifically, F and F ′ are isomorphic, related by the
unitary map

c†
αkσ

= U f †
αkσ

U †, U = eiφN . (A6)
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A useful picture for understanding this contruction is to
view Eq. (A5) as a decomposition of the electron c†

αkσ
into a

chargeless fermionic quasiparticle f †
αkσ

and a charge eiφ . In
accordance with this intuition, the electrons have the global
U(1) transformation

eiαQc†
αkσ

e−iαQ = c†
αkσ

eieα, Q = eNφ. (A7)

Due to our extension of the Hilbert space, there is a gauge
freedom in defining operator on F

O → O′ = O + λ(N − Nφ ). (A8)

In the full theory this gauge choice is inconsequential. How-
ever, in the mean-field theory, this gauge choice leads to
ambiguities which must be resolved.

We now turn to consider the full Hamiltonian

H =
∑
αkσ

ξαkc†
αkσ

cαkσ +
∑
αq

gαβP†
αqPβq, (A9)

where P†
αq = ∑

k c†
αk+q↑c†

α−k↓ and ξαk = k2/2mα − μα cre-
ates a pair of electrons with total momentum q. The
corresponding number, momentum, and current density op-
erators are given by

N =
∑
αkσ

c†
αkσ

cαkσ , (A10a)

K =
∑
αkσ

kc†
αkσ

cαkσ , (A10b)

j = e

V

∑
αkσ

vαkc†
αkσ

cαkσ , (A10c)

where vαk = ∂kξαk. In a situation where electrons cannot flow
in an out of the system from an external environment, the
electronic charge of the system remains fixed to its initial
value N0, thus we have the additional constraint

Nφ = N0. (A11)

The BCS mean-field analysis breaks conservation of a
number of fermions. Here we seek to apply this analy-
sis in a manner that preserves the conservation of charge,
specifically we relax the constraint (A4) (the conservation
of chargeless fermionic quasiparticles) while maintaining the
constraint (A11) (the conservation of charge). This is achieved
by applying the usual mean-field arguments in the basis of
the f †

αkσ
, so following the example used in the main text, we

consider pairing dominated by the α band

〈F1k〉 = δkq�2/g21 = δkq�1/g11, 〈F2k〉 = 0 (A12)

where

F †
αq =

∑
k

f †
αk+q↑ f †

α−k↓. (A13)

This leads to the usual mean-field replacement in the contact
interaction

Hint =
∑
αq

gαβF †
αqFβq → H̃int =

∑
α

(�αFαq + H.c.)− �2
1/g11.

(A14)

Neglecting the overall constant this yields the mean-field
Hamiltonian

H̃ =
∑
αkσ

ξαk f †
αkσ

fαkσ +
∑

α

(�αFαq + H.c.), (A15)

which we may subsequently write in terms of the electron
algebra

H̃ =
∑
kσ

ξαkc†
αkσ

cαkσ +
∑

α

�α (e2iφPαq + H.c.). (A16)

In relaxing the constraint on the number of fermionic
quasiparticles, we introduce a physical distinction between
previously gauge equivalent operators (A8). It is thus neces-
sary to fix a gauge consistent with the mean- field theory. In
cases where there are conservation laws, this gauge fixing is
easily achieved by requiring that the mean-field theory also
respect the appropriate conservation laws. For example, in
the case of momentum, we have [H, K] = 0, and we seek to
find K̃ = K + λ(Nφ − N ) such that [H̃, K̃] = 0. One finds the
solution

K̃ = K + (q/2)(Nφ − N ) = qNφ/2 +
∑
kσ

(k − q/2)c†
αkσ

cαkσ .

(A17)

Applying the same logic to the case of charge we obtain

Ñ = Nφ. (A18)

Current is generically not a conserved quantity, but we can
nevertheless gauge fix in an analogous manner, requiring that
the algebra of [H, j] is conserved. Specifically we want that
as

[ j̃, P†
αq] = evαqP†

αq/V, (A19)

and that its mean-field replacement P†
αq → 〈P†

αq〉 =
δα1�1e2iφ/g11 should act on the total current in an analogous
way

[ j̃, e2iφ] = evαqe2iφ/V (A20)

yielding the mean-field current operator

j̃ = e

V

(
v1qNφ +

∑
kσ

(vk − v1q)c†
αkσ

cαkσ

)
. (A21)

It is natural in the superconducting context to identify the
“missing fermions” with the condensate. Specifically, the
number of Cooper pairs in the condensate is taken to be

Nθ = (Nφ − N )/2 (A22)

with a canonically conjugate coordinate

eiθ = e2iφ. (A23)

With these substitutions the results in the main text (6),
Eqs. (7), (8), and (14) are readily obtained.

APPENDIX B: GALILEAN INVARIANCE, CONSERVATION
OF MOMENTUM AND CHARGE CONSERVATION IN THE

MEAN- FIELD THEORY

In this Appendix we show the argument presented in
the main text and Appendix A restores the correct Galilean
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transformation properties of the mean field Hamiltonian H̃ .
Corollaries of the restored behavior under Galilean transfor-
mations are the restored conservation of momentum, current,
and particle number.

First we recap the technical content of Galilean invariance.
A Galilean transformation to a moving reference frame r →
r′ = r + ut is implemented by the unitary

Uu = exp(iu · g), g = MR − Kt, (B1)

where K is the total momentum and R the center of mass

K =
∑
kσ

kc†
kσ

ckσ , R = M−1
∑
rσ

mrc†
rσ crσ , (B2)

and M = mN is the total mass, with N the number of electrons
and m their effective mass. Under this transformation position
and momentum base creation operators transform as

Uuc†
k,σ

U †
u = c†

k+mu,σ
exp[−itk · u − imu2t/2],

Uuc†
r,σU †

u = c†
r+ut,σ exp[imr · u + imu2t/2]. (B3)

Galilean symmetry is the statement that the dynamics of
|ψ〉 and |ψ ′〉 = Uu|ψ〉 are generated by the same Hamiltonian

i∂t |ψ〉 = H |ψ〉, i∂t (Uu|ψ〉) = HUu|ψ〉. (B4)

A system is thus Galilean symmetric if and only if the Hamil-
tonian satisfies

H = UuHU †
u − iUu∂tU

†
u . (B5)

It is readily verified that the full Hamiltonian (3) satisfies the
transformation rule (B5) provided the dispersion is parabolic.

However we cannot make the requirement of Galilean in-
variance on the mean-field Hamiltonian H̃ . This is because
the mean-field theory explicitly breaks Galilean symmetry by
privileging a specific frame, the rest frame of the condensate.
Instead the Galilean transformation relates a family of mean
field Hamiltonians H̃q parameterized by the Cooper pair mo-
mentum q

H̃q =
∑
kσ

ξkc†
kσ

ckσ + �(eiθq Pq + H.c). (B6)

Here, for clarity, we have explicitly labeled the momentum
q carried by the mean-field, writing eiθq . As the cooper pair
momentum transforms as q → q′ = q + 2mu under Galilean
transformations, the mean-field Hamiltonian must satisfy the
transformation rule

H̃q+2mu = ŨuH̃qŨ
†
u − iŨu∂tŨ

†
u . (B7)

We now show that the mean-field Hamiltonian H satisfies
the Galilean transformation rule (B7) if we make the appro-
priate requirements for the transformation properties of the
superconducting phase eiθq . In detail, if we define a mean
Galilean transformation operator for the mean-field theory
Ũu = exp(iu · g̃), where g̃ = MR̃ − K̃t where we require

[eiθq , e−iθq ] = 0, [Ñ, eiθq ] = 2eiθq ,

[MR̃, eiθq ] = −2im∂qeiθq , [K̃, eiθq ] = qeiθq , (B8)

then we recover the desired property, that eiθq transforms as a
creation operator for a pair of electrons with total momentum

q

UueiθqU †
u = eiθq+2mu exp[−itq · u − imu2t] (B9)

and it is readily verified that the mean field Hamiltonian (B6)
satisfies the transformation rule (B7).

It may be further verified that the mean-field Hamiltonian
conserves momentum and particle number

[H̃q, K̃] = 0, [H̃q, Ñ] = 0, [H̃q, j̃] = 0, (B10)

where the current is given by j̃ = −eK̃/m.

APPENDIX C: DERIVATION OF THE OPTICAL
RESPONSE IN THE EFFECTIVE ONE-BAND MODEL

In this Appendix we derive the optical conductivity (18)
as plotted in Fig. 1, and obtain the form (23) for the case I
response in the presence of a finite scattering time.

Starting the effective Hamiltonian (12) and current oper-
ator (16), given to first order in (t/ξ̄2k) and zeroth order in
(δξ1k − δξ2k)/ξ̄2k by

H̃2k = ξ̄2kτ3 + δξ2kτ0 + �2(eiθ τ+ + H.c.),

j̃2k = e[v̄2kτ0 + vc(δm/m2)τ3]/V. (C1)

The current correlator is then easily evaluated

〈[Ja(t ), Ja(0)]〉 =
∑
kαβ

( fkα − fkβ )|〈kα| j̃a,2k|kβ〉|2ei(Ekβ−Ekα )t ,

(C2)
where α = 1, 2 enumerates the eigenvectors of the effective

Hamiltonian H̃2k|kα〉 = Ekα|kα〉, and fkα = f (Ekα ) is popu-
lation of the αth level, given by the Fermi-Dirac distribution.
Evaluating this at T = 0, including a finite quasiparticle life-
time τ > 0 and we obtain

C(ω) = V
∫ ∞

0
dteiωt 〈[ ja(t ), ja(0)]〉

=
∫ ∞

−∞
dξ

ρ2F j2
aq�

2
2

�2
2 + ξ 2

∑
s=±

is

ω + i/τ − 2s
√

ξ 2 + �2
2

=
∫ ∞

2�

4ρ2F j2
aq�

2
2dω′

ω′
√

ω′2 − 4�2
2

∑
s=±

is

ω − sω′ + i/τ
, (C3)

where ρ1F is the normal phase density of states of the first
band at the Fermi surface and we have set

jaq = eqaδm

2m1m2
= evc,aδm

m2
, (C4)

where vc = q/2m1 is the condensate velocity. To obtain C(ω)
in the τ → ∞ limit we apply the Sokhotski-Plemelj theorem
and evaluate the subsequent integrals to obtain

σaa(ω) = iDaa

ω
+ e2ρ2F

ω
·
(

vc,aδm

m2

)2

· f
( ω

2�2

)
, (C5a)

where

f (x) = − f ∗(−x) =
{

π−2i arccosh(x)
x
√

x2−1
x > 1

2i arcsin(x)
x
√

1−x2 0 < x < 1.
(C5b)

Taking the real part we obtain Eq. (18) as desired, both the
real and imaginary parts are shown in Fig. 1.
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FIG. 4. Additional data, as in Fig. 3: Here we show data, as in Fig. 3, for additional parameters. Data is shown for two different values of
the current, parameterized by δξ2F = qk2F/2m2 = 0.5, 0.6 (top and bottom row, respectively). The columns show the Case I part of the optical
conductivity, the Case II part of the optical conductivity, and the density of states, respectively. The Case I part is not significantly effected
by vary the current but far a small change to the overall scale factor. Increasing the current does however change the indirect gap, moving the
onset of the Case II part to lower frequencies (second column), whereas in terms of the quasiparticle density of states (third column) ones sees
the inner pair of edges (at ε = ±|� − δξ2F|) move to lower frequencies, and the outer pair (at ε = ±|� + δξ2F|) to higher frequencies.

For finite τ we may evaluate Eq. (C3) directly, obtaining

σaa(ω) = ine2

ωm
+ ρ1F j2

aq

ω
f

(
ω − i/τ

2�2

)
(C6)

with

f (z) = 2i arcsin(z)

z
√

1 − z2
(C7)

and it may be verified that in the limit of τ → ∞ (i.e., in
the limit of z ∈ R) this coincides with the previous result
Eq. (C5).

In the limit of large τ , in the vicinity of the gap edge, this
form simplifies

σaa(ω) ∼ ine2

2�2m
+ πρ2F j2

aq

2�2

√
�2

ω − 2�2 − i/τ
, (C8)

where ∼ indicates asymptotic equality when the limit of
large τ is taken with τ (ω − 2�2) held fixed. This reveals the
maximum height of σaa(2�2) = O(

√
τ ) which holds for the

complex conductivity, and for the real and imaginary parts
individually.

We comment that this approach does not recover the Case I
response, i.e., the term which reproduces Drude conductivity
in the limit �2 → 0. This term must be obtained by other
means [27–31,49–53,55].

APPENDIX D: EXACT DIAGONALIzATION

In this section we provide details and additional data re-
garding the random matrix model used to numerically obtain
forms for the dissipative part of the optical conductivity in
Fig. 3 for a superconducting wire.

Data for the cases of δξ2F = qk2F/2m2 = 0.5, 0.6 is pro-
vided in Fig. 4, while Fig. 5 provides numerical confirmation
of the scaling of the current induced absorption peak stated in
Eq. (24).

1. Numerical details

We begin from the BdG Hamiltonian (12). For simplicity
we assume a hierarchy of scales that allows us to consider
effects due to the second band only. Specifically we work in
the frequency window ω ∈ [−ωc, ωc] such that

2�2 + qk2F

2m2
+ 1

τ
< ωc < 2�1 − qk1F

2m1
− 1

τ
. (D1)

In words: we assume that ωc is at least τ−1 above the larger
indirect gap of the second band, and at least τ−1 below the
smaller indirect gap of the first band. In this frequency range
the current operator for the first band has no spectral weight,
and we may calculate the optical conductivity considering
consider only the current operator for the second band. At the
end of this section we discuss violations of this assumption.

F

0.5

0.6

0. 0.25 0.5 0.75 1. 1.25 1.5

1

2

� 2 2 �	1

	
3
�2
R
e
�
I
��
R
e
�
N
�

FIG. 5. Scaling of the peak value of the Case I response: Here we
show the peak values of the Case I response (left column of Fig 4)
rescaled by τ−3/2. The two series correspond to distinct values of
the current (values of δξ2F inset). The data displays apparent asymp-
totic convergence to a finite constant, confirming the relationship
Re(σI )/Re(σN ) = O(τ 3/2) discussed in the main text, and derived in
Appendix C.
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We thus consider only the Hamiltonian of the second
band (12). In the present context, where momentum is not
conserved, it is convenient to write this as a block matrix

H̃ = �†h̃�. (D2)

where � is the vector of all ψk. It is convenient to choose a
basis in which h̃ takes the block diagonal form

h̃ =
(

h̃0 + σ3δξ2F �̃

�̃† −h̃T
0 − σ3δξ2F

)
, (D3)

where here and throughout σα are the usual Pauli matrices.
Here h̃ is denoted as block matrix with the top left (bottom
right) blocks correspond to the particle (hole) sector, and the
off-diagonal blocks correspond to the pair creation/breaking
processes. Within the particle sector h̃0 there are two further
block—left movers and right movers (which have a relative
offset due to the Doppler shift σ3δξ2F), and within each of
these blocks there are d states labeled by their different crystal
momenta k—thus h̃ is a 4d × 4d matrix.

The normal phase Hamiltonian is the sum of kinetic and
potential energy terms

h̃0 = T0 + V0. (D4)

In the one-dimensional setting considered here, the kinetic
energy T0 may in turn be expressed as a 2 × 2 block diagonal
matrix, with the two blocks corresponding to left and right
movers, respectively,

T0 = t0σ0, t0 = v2F(k̂ − k2F)σ0, (D5)

where k̂ is a matrix which measures the unsigned momentum.
For exact diagonalization we keep only a finite number of
states in the vicinity of the Fermi surface, such that k̂ is a
d × d diagonal matrix whose diagonal values (i.e., eigenval-
ues) kν are evenly spaced over the interval specified by Eν =
v2F(kν − k2F) ∈ [−Ec, Ec], where we use an energy cutoff
Ec = ωc + �2 + δξ2F + λV where λV = v

√
2d is the disorder

bandwidth. Ec is chosen to exceed ωc by an additional buffer
The pairing potential matrix may be written in this basis

�̃ =
(

0 �2σ1

�2σ1 0

)
= �2σ1τ1, (D6)

where � is the scalar paring potential.
The scattering potential V0 is a 2d × 2d matrix which

mixes couples left and right moving electrons. As the scat-
tering potential is assumed to be real in the position basis, the
matrix V satisfies

σ1V0σ1 = V ∗
0 , (D7)

where σ1 is the usual Pauli matrix, in this context imple-
menting coordinate inversion, sending left movers to right
movers and vice versa. We use a random matrix model of
the scattering potential, assuming it induces a statistically
identical coupling between all low energy momentum modes.
Specifically, we use

V = URU †, U = 1√
2

(
1 1
i −i

)
, (D8)

where R = RT , one may verify that V satisfies (D7) as re-
quired. We take R to be a Gaussian orthogonal matrix, i.e., the

matrix elements Ri j are real, identically distributed Gaussian
random numbers with correlations

[Ri jRnm] = v2(δinδ jm + δimδ jn), (D9)

where v sets the typical scale of the matrix elements of V .
The matrix element scale v is related to the scattering time τ

by Fermi’s Golden rule

1/τ = 2πρv2, (D10)

where ρ = d/Ec is the density of states coupled by the disor-
der, i.e., of T0. We note that for the Fermi Golden rule result to
be valid, we must be in the regime where it has a nonperturba-
tive effect on T0, the kinetic term, ρv = dv/Ec � 1. However,
we also want to remain in the regime where the disorder does
not alter the density of states of the minimal model—that is the
typical eigenvalue of T0 is of scale λT = Ec/

√
3, far exceeds

the typical eigenvalue scale of V0, λV = v
√

2d , yielding the
condition Ec � v

√
6d .

The current operator is given by Eq. (14). We are interested
only in the current carried by the second band, for which, in
the present notation, the BdG matrix may be decomposed into
its case I and case II pieces as

j2 = jI + jII, jI = e(δv2 − vc)

V
τ3, jII = ev2F

V
τ3σ3.

(D11)
Finally we calculate the optical conductivity. We divide the

dissipative part of the optical conductivity into corresponding
case I and case II terms

Re[σ (ω)] = Re[σI(ω)] + Re[σII(ω)]. (D12)

Subsequently, we obtain Fig. 3 numerically by diagonalising
h̃, to obtain the diagonal orbitals h̃|εν〉 = εν |εν〉 and use the
relation

Re[σm(ω)] = πV
∑

εμ<0<εν

|〈εμ| jm|εν〉|2δ(ω − ωμν ), (D13)

where ωμν = εμ − εν , and m ∈ {I, II}, and the cross term dis-
order averages to zero (see Appendix D 2)

Re[σcross(ω)] = πV
∑

εμ<0<εν

〈εμ| jI|εν〉〈εν | jII|εμ〉δ(ω − ωμν )

= 0. (D14)

Repeating this calculation for � = 0, jsc = 0 provides σN as
required.

Finally we discuss parameters. As noted in previous para-
graphs, the parameter regimes where this model is accurate
are constrained. Specifically we require the following:

(1) The disorder strength is nonperturbative ρv =
dv/Ec � 1.

(2) The disorder bandwidth is small compared to the win-
dow of kinetic energies λT/λV = Ec/(v

√
6d ) � 1.

(3) We need sufficient density of states to observed the
expulsion of levels from the superconducting gap 2�2ρ =
2d�2/Ec � 1.

(4) The energetic bias determining the current must also
be nonperturbative, requiring

√
dδξ2F/Ec � 1. This is the

condition that the matrix elements of δξ2Fσ3τ3 (which encode
the energy bias setting the finite current) are of scale δξ2F/

√
d

214526-10
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far exceed the density of states in the electron/hole sectors
ρ = d/Ec.

When these constraints are satisfied, the calculation of
the optical conductivity is accurate for ω < ωc. For the nu-
merics presented in the main text, we use these constraints,
determining x to satisfy x � 1 if x > 2. Specifically we set
� = 1, Ec = 8.5, 8.6, and d = 4624, 3450 for the data with
δξ2F = 0.5, 0.6 respectively.

2. Cancellation of the cross term

Sufficient conditions for the case I/II cross term to average
to zero are provided by

(1) The kinetic energy ξk may be linearized at the Fermi
surface ξk = v2F(k − k2F).

(2) The scattering matrix elements are identically dis-
tributed, and symmetric about 0 (i.e., V and −V occur with
equal probability).

To see this, as before let T0 = t0σ0, V denote the kinetic and
disorder terms in H̃ . Let also u denote the normal involutory
(uu† = u†u = u2 = (u†)2 = 1) which changes the sign of the
kinetic energy ut0u = −t0. One may show that two Hamil-
tonians H̃ and H̃ ′ which are identical but for their disorder
realisations V and V ′ = −uVu make exactly canceling contri-
butions to the case I/II cross term

Re[σcross(ω)] = πV
∑

εμ<0<εν

〈εμ| jI|εν〉〈εν | jII|εμ〉δ(ω − ωμν ).

(D15)

Thus if V and V ′ = −uVu occur in the disorder ensem-
ble with equal probabilities the cross term averages to
zero. The first condition above is sufficient for the invo-
lution u to exist, and the second is sufficient for V and
V ′ = −uVu to occur with equal measure in the disorder
ensemble.
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