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Nonreciprocal responses of noncentrosymmetric quantum materials attracted recent intensive interests, which
is essential for the rectification function in diodes. A recent breakthrough is the discovery of superconducting
diode effect. The principle to enlarge the rectification effect is highly desired to guide the design of the
superconducting diode. Here, we study theoretically the Josephson junction S/FI/S (S: d-wave superconductor,
FI: ferromagnetic insulator) on the surface of a topological insulator (TI). The simultaneous existence of sin ¢,
cos ¢, and sin 2¢ terms with almost the same order in the Josephson current /(¢) is essential to get larger values
of the Q factor given by Q = (I — |I7|)/(IF 4+ |I7]) with I = max[/(¢)] and the negative one I for the
macroscopic phase difference ¢ of two superconductors on TI. We find that it can show a very large diode
effect by tuning the crystal axes of d-wave superconductors and the magnetization of FI. The difference of
the maximum Josephson currents /.’s between the positive and negative directions can be about a factor of 2,
where the current-phase relation is modified largely from the conventional one. The relevance of the zero-energy
Andreev bound states as Majorana bound states at the interface is also revealed. This result can pave the way to

realize an efficient superconducting diode with low-energy cost.
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I. INTRODUCTION

Nonreciprocal responses have recently become hot topics
in condensed matter physics [1]. It is generally expected that
the response to the external field is different from that of
the field in the opposite direction in the presence of broken
inversion symmetry P. When the flow of electrons, i.e., the
current, is concerned, the reversal of the arrow of time, i.e.,
the time-reversal symmetry 7 is also relevant, and it often
happens that the nonreciprocal transport occurs when both P
and 7 are broken simultaneously, although only P breaking
is enough in some cases. In the normal state of the conductor,
the typical energy scale is the Fermi energy of the order of
eV, which is large compared with the spin-orbit interaction
and Zeeman energy due to the external magnetic field, both
of which are needed to introduce the asymmetry of the energy
band dispersion &,(k) between k and —k. Therefore, the value
of y, which characterizes the strength of the nonreciprocal
resistivity in the empirical expression

p) = po(1 +yIB), (1.1)

is usually very small, typically of the order of ~1073 —
107'A~1 T~! [2-5]. Here py is the linear resistivity without
a magnetic field, / is the current, and B is the magnetic field.
This phenomenon is called magnetochiral anisotropy (MCA).
It was reported that y reaches the order of 1A~' T~! in
BiTeBr, which shows a gigantic bulk Rashba splitting [6].
MCA can occur also in superconductors, where the resistivity
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is finite above the transition temperature or due to the vortices
[7]. Specifically, the noncentrosymmetric two-dimensional
superconductors were studied from this viewpoint, and the
very large y-values ~103-10*A~! T~! compared with the
normal state are realized there [8]. It is interpreted as the
replacement of the energy denominator from the Fermi en-
ergy to the superconducting gap energy, corresponding to the
difference between the fermionic and bosonic transport. Some
other superconductors are reported to show MCA [9,10].

The nonreciprocal response can be also defined without
the resistivity expressed in Eq. (1.1). Instead, the critical
current I. can depend on the direction of the current. In
Ref. [11], this nonreciprocal I, was observed in an artificial
superlattice [Nb/V /Ta],, under an external magnetic field. The
difference between the magnitudes of the critical currents in
the opposite directions Al = It — |I7| is typically 0.2 mA
while I (|I7]) = 6 mA, which indicates that the magnitude
of the nonreciprocity is of the order of a few %. Later, there
were several experiments which reported the larger magnitude
of the nonreciprocity [12—-17]. On the other hand, theories
of nonreciprocal critical current, i.e., Al., were developed
recently [18-26]. Compared with bulk transport in supercon-
ductors, the Josephson junction might show the much larger
diode effect because the kinetic energy at the junction is
suppressed and the interaction effect can be relatively en-
hanced. In Ref. [27], the asymmetric charging energy, which
acts as the “kinetic energy” of the Josephson phase ¢, leads
to the diode effect through the nonreciprocal dynamics of
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@. In this scenario, no time-reversal symmetry breaking is
needed. On the other hand, with 7 breaking, the nonrecip-
rocal current-phase relation can lead to the diode effect even
without the charging energy. Our target system is the super-
conductor (S)/ferromagnetic insulator (FI)/S junction on a
three-dimensional topological insulator (TI) where the pairing
symmetry of the superconductor is d-wave. One of the mer-
its to using the d-wave superconductor is its high transition
temperatures realized in its high 7¢ cuprate. The transition
temperature of the high 7¢ cuprate is ten times larger than
that of the conventional s-wave superconductor used in many
junctions currently. We can expect the larger magnitude of
the Josephson current as compared to the conventional one.
Also, by considering the d-wave/FI/d-wave junction, we can
expect a large magnitude of nonreciprocity owing to the huge
spin-orbit coupling on the surface of TI.

It is known that the standard current-phase relation (CPR)
of the Josephson current /(¢) between two superconductors
is I(¢) ~ sin ¢, where the ¢ is the macroscopic phase differ-
ence between two superconductors. However, if we consider
unconventional superconductors like the d-wave one, a wide
variety of current phase relations appears. For the d-wave su-
perconductor junctions, when the lobe direction of the d-wave
pair potential and the normal to the interface is not parallel,
the so-called zero-energy Andreev bound state (ZEABS) is
generated at the interface due to the sign change of the d-wave
pair potential on the Fermi surface [28-31]. The presence of
ZEABS enhances the sin 2¢ component of /(¢) and the result-
ing free-energy minimum of the junction can locate neither at
¢ = 0 nor £ [32,33]. Also, the nonmonotonic temperature
dependence of the Josephson current is generated by ABS
depending on the direction of the crystal axis of the d-wave
pair potential [33-36].

If we put the S/FI/S junction with d-wave superconductors
on the surface of the TI, it is possible to generate a cos¢
term in the Josephson current since this system can break both
P and T symmetry due to the strong spin-orbit coupling of
TI [37,38], allowing for a cos ¢ harmonic (see Appendix C).
Then, we can expect the exotic current-phase relation with
1(p) # —I1(—¢) [39]. One of the merits to using the S/FI/S
junction on TI is that the cos ¢ term is easily induced even
for the narrow width of the FI region without suppressing
the sin2¢ term [39]. Then, we can realize the simultaneous
existence of sin¢g, cosg, and sin2¢ terms with almost the
same order. This condition is essential to get larger values of
the Q factor of the diode effect.

Although the previous article has not reported the non-
reciprocity of the Josephson current [39,40], we anticipate
that the positive maximum magnitude of I(¢), i.e., Ij =
max[/(¢)] and the negative one I can take different values
from each other by searching various configurations of the
junctions with breaking mirror inversion symmetry along the
interface.

In this paper, we calculate the Josephson current in a
d-wave superconductor (x < 0)/ferromagnetic insulator (0 <
x < d)/d-wave superconductor (x > d)(S/FI/S) junctions on
a three-dimensional (3D) topological insulator (TI) surface.
It is known that the ABS generated between the S/FI (FI/S)
interface becomes Majorana bound states (MBS) [38,41] due
to the spin-momentum locking. We show an anomalous cur-

rent phase relation and the energy dispersion of MBS. A
giant diode effect with a huge quality factor Q given by
O = (I = |I7])/(IL} + |I7]) is obtained by tuning the crystal
axis of the d-wave superconductor. We also clarify the strong
temperature dependence of Q due to the presence of the asym-
metric ¢ dependence of MBS. It is revealed how the sign of O
is controlled by the direction of the magnetization.

The organization of this paper is as follows. We explain
the model and formulation in Sec. II. The detailed expres-
sions of the Andreev reflection coefficients are shown since
these quantities are essential to understand the current-phase
relation /(¢) for various parameters. Section III shows the
numerically obtained results about 7(¢), Q and the dispersion
of MBS. In Sec. IV, we conclude with our results.

II. MODEL AND FORMULATION

First, we explain the outline of the way to calculate
Furusaki-Tsukada’s formalism [42]. It is known that to cal-
culate the Josephson current, Matsubara Green’s function is
needed. However, in nonuniform superconducting systems
like junctions, it is difficult to obtain Matsubara Green’s func-
tion directly. On the other hand, it is possible to calculate
the retarded Green’s function by using the scattering state
of the wave function. This method was used to obtain the
Green’s function in the Josephson current in unconventional
superconductor and junctions on the surface of the topological
insulator [30,33,43]. After we obtain the analytical formula
of the retarded Green’s function, we obtained the Matsubara
Green’s function by analytical continuation from real en-
ergy to Matsubara frequency. Using the resulting Matsubara
Green’s function analysis, we obtain the compact relation of
the Josephson current given by the Andreev reflection coef-
ficient, which is analytically continued from the real energy
obtained in the scattering state to the Matsubara frequency
[42].

A. Model
We consider a d-wave superconductor (x <
0)/ferromagnetic  insulator (0 < x < d)/d-wave super-

conductor (x > d)(S/FI/S) junction on a 3D topological
insulator (TT) surface as depicted in Fig. 1. The corresponding
Bogoliubov—de Gennes (BdG) Hamiltonian is given by [39]

 [hke, k) +M i6,A(9, x)
"= |:—i6yA*(0,x) —h*(—ky, —ky) — M} @1
with
hke, ky) = v(ke6y + ky6y) — p[O(=x) + O(x — d)],
3 3
kx = T y = T
i0x idy

where 6, ) . is the Pauli matrix in the spin space with i =1
unit. @ is the chemical potential in the superconducting re-
gion with u = vkp and the (x,y) component of the Fermi
momentum kr is given by (kpy, kpy) = kp(cos 0, sin6) with
an injection angle 8. A chemical potential in the FI is set to be
zero and an exchange field in the FI region is given by [37]

A~

M = m,6,0(x)0(d — x),
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FIG. 1. Schematic illustration of the d-wave superconductor
junctions on the surface of a 3D topological insulator (TI). An
electron-like quasiparticle (Elq) is injected and it is reflected or
transmitted as Elq and hole-like quasiparticle (Hlq). A, (0) =
Agcos[2(8 — a)]exp(ip) and Ag. () = Agcos[2(0 — B)] are pair
potentials felt by the quasiparticle with the direction 6, where the
angle 6 is measured from the normal to the interface. A, (0) =
Agcos[2(0 + a)] exp(ie) and Agr_(0) = Agcos[2(0 + B)] are pair
potentials felt by the quasiparticle with the direction m — 6, where
the angle 6 is measured from the normal to the interface.

and a pair potential of the d-wave superconductor is expressed
by [33]

A %) = Ap+(0) = Agcos [2(0 F a)]exp(ip), x <0,
©. %)= Ar+(0) = Agcos[2(60 F B)], x>d.
2.2)

Here, Ay is a real number and its temperature dependence
is determined by mean-field approximation [33,34]. « and 8
denote the angles between the x-axis and the lobe direction
of the pair potential of the d-wave superconductor as shown
in Fig. 1. The index + (—) in Ay 1 () and Agy(0) denotes
the direction of the quasiparticle with the angle 6 (7 — 0)
measured from the normal to the interface.

B. Wave functions of BdG equation

A BdG wave function of the above Hamiltonian is given by
W(x) = exp(ikpyy)[WsL (x)O(—x) + W (x)O(X)O(d — x)
+ Wsp(x)O(x — d)],

with the momentum parallel to the interface kr,. We denote
the quasiparticle energy measured from the Fermi surface
as E and assume the conditions where |E| < u, Ay < W,
|E| < |m;|, and Ay < |m;| are satisfied. If we consider an
electron-like quasiparticle injection from the left supercon-
ductor Wy (x), Wgi(x), and Weg(x) are given by

lIJSL(X) = (\I’[ien+ae\yhr) eXp (ikFxx) + beqjer eXp (_ikFxx)9

2.3)

"IJFI(x) = fle“yel exXp (_Kexx) + fZe‘IjeZ €Xp (Kexx)

+f3eWhi €xp (KpeX) + faeWho eXp (—kpeX), (2.4)

lIJSR(X) - Ce\IJez exXp (ikFxx) + de\phl exp (_ikFxx)v

ke = [ (1/0) = kE s Kex = Kne = \[m2 4+ v2K2 [v.

2.5)
W, Wy, W, defined in the left superconductor are given by
1
e — exp (i0)
| =Trrexpli(@ — o)l |
'Lt exp (—ip)
Cry
W [y exp (i0)
T —expli@ — ol |
exp (—ig)
1
—exp (—if)
“I’[er = . , 2.6
[y exp[—i(0 + ¢)] (26)
' _exp(—igp)
with exp(z@) = (kFx + l.kpy)/kp. \Ijel’ \Ifez, "I’[hl’ and "I’[hZ in FI
are
iy —iy~!
1 1
“Ilel = 0 b \I’ez - O ’
0 0
0 0
0 0
Wy = iv | Wio —ipt | 2.7
1 1
Y = —V(Key — kpy)/m;. W, Wy, in the right superconductor

are given by

1 I
- exp (i0) W, — —Tgr_exp(—if)
| —Treexp (i) |’ e = exp (—if) ’
iy 1
(2.8)
with
Ap+(0) Ar+(0)

.= )
E+ /E2— A%i(B) E+,/E2—A§i(0)

We can also calculate the wave function corresponding to
Egs. (2.3), (2.4), and (2.5) with hole-like quasiparticle injec-
tion as follows:

Wy (x) = (Wl +apW,,) exp (—ikpxx) + by Wy exp (ikpix),

(2.9)

Ve (x) = flh"pel exp (—Kexx) + thqleZ exXp (Kexx)

+ 30 Wn1 €xp (kX)) + fan Wi €xp (—kpex), (2.10)

Wer(x) = ¢ Wer exp (ikpxx) + dp Wy exp (—ikpex), (2.11)
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with
I _
—I'_exp (—if)
exp [—i(0 + ¢)]
exp (—iyp)
Wy (x), Wrr(x), and Wgr(x) satisfy the boundary conditions Wg; (x = 0) = Wp;(x = 0) and Wr;(x = d) = Wsg(x = d). The
Andreev reflection coefficients a, and a;, are needed to calculate the Josephson current [33,42]. They are given by
_onAie+ (I —on)Ag o= _onAup + (1 —on)Ag
AE6) T AJ(E.6)

h _
lpin_

, (2.12)
with

AJ(E,0) = [1 —on][1 +exp (—=in)Try Tr_][1 +exp (i)'t '] + on[1 — exp (—ip)'L_T'r_][1 — exp (i@)'+ T'r4 ],

(2.13)
Aje = [1 —exp(—ig)l'L_Tr_][I'4 — Try exp (ip)],
Ase = [1 +exp(—im)Tr Tr-1[TL4+ +exp (inIL—], (2.14)
Ay = [1 —exp(i@)' 1 Tril[T— — Tr—exp (—ig)],
Aoy = [1 4 exp(=in)r Tr-1[T'r— + exp(in)Ir4 ], (2.15)
and
m? cos® § — p*sin” 0 ) —2m_ 1 cos O sin O
oS = m2cos® 0 + u2sin’ @’ S = m2cos® 6 + pu2sin® 0 (2.16)
Here oy is the transparency of this junction in the normal state and it is given by
cos’ 6
2.17)

- cosh?(k,.d) cos? 6 + sinh®(k,.d) sin’ 0 sin’ (%) .

C. Josephson current formula based on Andreev reflection coefficients

Based on the Green’s function of the BdG equation, it is known that the Josephson current is expressed by a,, and ay,,, which
are obtained from the analytical continuation from E to iw, in a, and a; for conventional s-wave superconductor [42], d-wave
superconductor [33,34], and junctions on the TI [39,43], where w, = 27kgT (n + 1/2) is the Matsubara frequency. The resulting
Josephson current /(¢) is given by [33,39,43]

RykgT en(0, (0,
Ryl(p) = 2782 Z/ [“ ©.9) 5, . 0)— MAL(G)} cos0do \ (2.18)
- /2 nL+ QnL—
with
B /2
R;l = / oncos0dl, Qui = sgn(wy)/ A2(01) + @2,
- /2
and
.UNAlen+(l _UN)AZEH .UNAlhn+(l _UN)AZhn
Aep =1 s hn = s (2.19)
Adn(e’ (P) Adn(g’ ‘P)
with

Adn(ga ‘P) = [1 _O'N][1 - exp(_in)FnR-‘anR—][l — €Xp (in)FnL+FnL—]+UN[1+ €Xp (_iw)FnL—FnR—][l + eXp (ifﬂ)FnL-anR-r],

(2.20)
Alen = [1 + eXp(_i(p)FnL—FnR—][FnL-‘r - IﬂnR-ﬁ- exXp (lfﬂ)],
Aoen = [1 — exp(=im)Tugs Cur—Tnr+ + exp ()1, (221)
Alhn = [1 + CXP(i(P)FnL+FnR+][FnL— - FnR— €Xp (_l(p)]5
Aopn = [1 — exp(=in)Cug4 Dur-1Tur— + exp(in)Tar+ ], (2.22)
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with
Ap+(9) Ar+(9)
Cppe=—""-"—, DTppe=———.
Wy + QL Wp + Qur+
By using 'y (0) = Uy (—0), Dire(0) = Tire(—0),
nRykgT T2 AT Dars
Ryl(gp) = Z2NZBT / Ao RY BN F (B, iy, @), (2.23)
N e Z a2
F(0, iw,, ¢) = (1 — ox)A, + oy sing|1 + exp (i9) T —Tyr_ |, (2.24)
with
Ay, = singReal{[1 — exp (im)Uyr+ Dur- 111 — exp (—in)Turi Tur-1} + cos @ sin (g Uu— — Tur Tir—). - (2.25)

The obtained /(¢) reproduces the standard formula of the d-wave superconductor junctions without a TI [33-35,44] by choosing
n = m. In the next section, by using Eqgs. (2.23) and (2.24), we calculate /(¢) and the quality factor Q. To prove the m,, «, and
B dependence of I(¢) analytically, it is convenient to transform F (0, iw,, ¢) in Eqgs. (2.23) and (2.24) as follows:

F@,iw,, ¢) = (1 —oy)(sinpA,, +cospA,,) + (TN[SiIl (p(l + FﬁL_F,ZIR_) + Iy _Tp_ sin 2<p], (2.26)

with
Ane = 1+ Ty Unp—Unry Tng— — €08 n(Tur4 Un— + Ture Tir-), (2.27)

and
Ao = (T4 Upp— — Tyre Tug-) sinn. (2.28)

Here, A,. and A,, are the even and odd functions of 6,
respectively.

III. RESULTS

First, let us focus on the current phase relation (CPR). To
understand the obtained results more intuitively, we rewrite
Eq. (2.23) as follows:

RyksT /2 2cos6
Ryl(p) = 2L / d92058
e ~Jxp [Aan(8, )]

X [A(0)sing 4+ B(0) sin2¢ + C(0)cos ¢], (3.1)
with

A(@) = (FnL+FnR+ + 1-‘nL—l-‘nR—)[(l —on)Ape

+ O'N(l + FnL-‘anL—FnR"anR—)]v (32)
B(0) = 20nTprt Tnp—Togy Uur—, C(0)
= (1 - UN)(FnL+F11R+ R 1—‘nR—)Anov (33)

using the definition of Ay,(0, ¢), Ay, and A,, given in
Egs. (2.20), (2.27), and (2.28). In general, due to the ¢
dependence of Ag,(0,¢) in Eq. (3.1), I(¢) includes the
terms proportional to sin(ng) and cos(ng) with (n > 1). As
seen from Eq. (3.3), the term which is proportional to cos ¢
in Eq. (3.1) appears when both A,, # 0 and [ ey #
I —Tr— are satisfied except for special . This means that
sinn in A,, Eq. (2.28)] and m, in Eq. (2.16) are nonzero. It
is remarkable that the term proportional to cos ¢ in Eq. (3.1)
is induced by m., which is in sharp contrast to the case of the
s-wave superconductor Josephson junction on TI where the
in-plane magnetic field generates a cos ¢ term [37]. However,
the magnitude of m, cannot be too large since the coupling

(

between two superconductors becomes weaker and the mag-
nitude of the sin(2¢) term is suppressed since it is basically
proportional to the second order of the transparency of the
junctions. The coexistence of all three harmonics, i.e., sin @,
cos ¢, and sin 2¢, is essential for the Josephson diode effect.

As shown later, the quality factor O depends sensitively
on the angles « and B. It is noted that the cos ¢ term does
not appear for C(6) = 0. By choosing n = m, we reproduce
the formula of the Josephson current of the d-wave junctions
without TT [33,34]. Here, we pick up the particular value of
o =—0.27 and B = 0.097, where Q is hugely enhanced,
and examine the current-phase relation. In this case, all terms
proportional to sin ¢, cos ¢, and cos 2¢ of the same order of
magnitudes. At this value of «, B, we obtain a quite exotic
CPR shown in Fig. 2(a).

As seen from curves (A) and (B) of Fig. 2(a), the magni-
tude of I and I are different from each other, where I* (I.7)
is the positive (negative) maximum value of /(¢). Since the
quality factor showing nonreciprocity is expressed by

IF— 17|

=y

(3.4)

we can expect diode effect for nonzero Q. On the other
hand, for « =0, 8 = 0 [curve (A) in Fig. 2(b)] I(¢) shows
a standard sinusoidal behavior since '+ = [, Thre =
I'wr_, and T,z Tyre = T _Tg_ are satisfied. Then, C(9)
in Eq. (3.1) becomes zero and I(¢p =0)=I(p =7) =0 is
consistent with curve (A) in Fig. 2(b). For « =0, g = 7 /4,
although I(¢) shows an unconventional current phase relation
with nonzero I(¢p) at ¢ =0, I = |I7] is still satisfied due
to the absence of the term proportional to sin¢ in Eq. (3.1)
since [ Tyure + Tu—Tur— = 0 is satisfied. Then, A(6) in
Eq. (3.1) becomes zero and the resulting I(¢ = 7 /2) = 01is
consistent with curves (B) and (C) in Fig. 2(b).
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1
(@)

[\

(=]

eRnI(p)/Dy(0)
Ry I(9)/24(0)

o/ @/m

FIG. 2. Current phase relation /(¢) is plotted for 7 = 0.057; and
dlm;|/v =1. Ry, A4(0), and T, are the resistance of the junction
in the normal state, the amplitude of pair potential at zero tem-
perature, and the transition temperature of d-wave superconductor,
respectively. Panel (a): « = —0.27 and 8 = 0.097. (A) m;, = 0.5,
(B) m, = —0.5u. Panel (b): (A) a =0, =0, and m, =0.5u.
B)a=0, 8 =0.257 and m; = 0.5u. (C) @ =0, B = 0.257 and
m, = —0.5u.

By changing the sign of the magnetization from m, to —m,,

I(p) = I(p, m,) satisfies
(g, m;) = —I(—¢, —m;), (3.5)

as seen from curves (A) and (B) in Fig. 2(a) and curves (B)
and (C) in Fig. 2(b). This property can be understood from the
time-reversal operation. Actually, we can show this relation
explicitly in Appendix A. Next, we show the « and 8 depen-
dence of Q for —w/4 <a<mw/4dand - /4 < B < 7/4as
shown in Fig. 3. It is remarkable that the maximum value of
|Q| becomes almost 0.4 and it means the generation of the
giant diode effect by tuning « and 8.

Here, by changing («, B) to (—«, —8), QO = Q(«, B) satis-
fies

O(a, p) = —0(—a, =p). (3.6)

We can show this relation analytically as shown in Ap-
pendix B. Also, it can be explained by more intuitive
discussion. If we denote the macroscopic phase by ¢, and ¢g
with ¢ = ¢ — pr (We set ¢p = ¢ and gg = 0 in this model

BIT (@ Q

without loosing generality), we have

I(p,a, B) = I(¢1, a; 2, B),

where the left superconductor has parameters (¢, o) and the
right superconductor has (¢;, 8). If we apply a mirror opera-
tion with respect to the yz plane, the left superconductor has
parameters (¢, 8) and the right superconductors has (¢, ).
Because the direction of the current reverses according to this
operation, we have

3.7

(2, B; @1, @) = =11, @592, B). (3.8)
Therefore, we have
(g, a,B)=—I(—¢, B,a). 3.9)

This relation leads to Eq. (3.6).

It is interesting to clarify how nonreciprocal effect de-
pends on the temperature. As shown in Fig. 4, Q is enhanced
at low temperatures and has a sign change at T = T, with
T, ~ 0.781;. Also, there is a sharp peak structure of Q at
T = 0.857;. This peak structure comes from the intrinsic
nature of the temperature dependence of the d-wave super-
conductor junctions. In d-wave superconductor junctions, if
we consider the injection angle-resolved Josephson current,
we can decompose into O-junction and 7 -junction domains.
The temperature dependence of the Josephson current from
the O-junction domain and that of the m-junction domain can
be qualitatively very different was shown in previous pa-
pers [30,34]. Then, the macroscopic phase difference ¢ = ¢,,.
which gives a maximum Josephson current has a jump at some
temperature. The resulting maximum Josephson current has a
kink-like structure as shown in Figs. 36 and 37 in Ref. [30].
This is the reason why Q has a sharp peak at 7 >~ 0.857.

As shown in curves (A) and (B) in Fig. 4(a), the overall sign
of Q is reversed with the sign change of m,. The corresponding
I” and Ij are plotted as curves (A) and (B) for m, = 0.5u
in Fig. 4(b) and those for m, = —0.5u in Fig. 4(c). If we
denote the m, dependence of IF explicitly, IF (m, = 0.5u) =
—IF(m, = —0.511) to be consistent with Eq. (3.5). In the
inset of Fig. 4(b), |IF| is plotted in the enlarged scale from
0.7T; < T < Ty. I} = |I] is satisfied for T = T, when Q
becomes zero as shown in Fig. 4(b).

08 B/T © | Q

02 . P03 02 e 1M 03
0.2 0.2

01 p¥ ] 01 | |
0.1 0.1

J:

0l oo o |4 1o
(101 -0.1

0.1 | ] 0.1 | ]
-0.2 il -0.2
0.3 -0.3

02 | '- 1 02 | - |
: il ! " 04 ! . ; . ‘ 04

02 01 01 02 02 01 01 02
o o

FIG. 3. Qs plotted for various « and 8 for T = 0.057; and d|m;|/v = 1. (a) m; = 0.5u, (b) m; = —0.5u.
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(@

0 T/Td 1

() ©

T/Td T/Td

FIG. 4. Temperature dependencies of Q, I, and I are plot-
ted for « = —0.27, B = 0.097, and d|m,|/v = 1. Panel (a): Q for
(A) m; = 0.5, (B) m; = —0.5u. Panel (b): (A) I” and (B) I' for
m, = 0.51. In the inset, [[*] is plotted for 0.77; < T < T;. Panel
(c): (A) I and (B) If for m, = —0.5p.

To elucidate the exotic CPR specific to nonreciprocal na-
ture of Josephson current, we focus on its Fourier components.
In general, the Josephson current is decomposed into

I(p) = Z [Z, sin ng + J, cos ng].
For « = —0.27 and B8 =0.097, I}, I, and J; become
nonzero values [Figs. 5(a) and 5(b)]. By changing m, to —m,,
I) and I, are invariant and J; has the sign change as shown
in Figs. 5(a) and 5(b). As shown in the inset of Fig. 5(b), I
has the sign change at T = T,. At this temperature, as shown
in Fig. 4(a), Q becomes zero. We also show I, I, and J; for
o =0 and B = 0.257 in Figs. 5(c) and 5(d). In this case, the
resulting Q is zero since the term proportional to A = A(9)
in Eq. (3.1) becomes zero and the resulting /; becomes zero
independent of the sign of m,.
Similar to the case for Figs. 5(a) and 5(b), I, is invariant and
Ji has a sign change by changing m, to —m,. To summarize,
the simultaneous existence of 11, I, and J; does lead to nonzero

Q

(3.10)

Next, we discuss the energy spectrum of the ABSs since
it plays a crucial role to determine I(¢) [30,31,45-48]. It is
known that the magnitude of /(¢) is enhanced at low temper-
atures due to the presence of low-energy ABS. In addition,
by the strong spin-momentum locking of the surface states
of topological insulator (TI), the ABSs in the present S/FI/S
junction become MBSs [37,38,41,49,50]. The nonreciprocity,
which is responsible for the diode effect, is also apparent in
the spectrum of the ABS in the junction.

The energy eigenvalues of ABS(MBS) E;, are found by the
zero of A4(E, 0) defined in Eq. (2.13) for

|Epl < min(|Azy], [AL—], [Ar+l, [Ar-D. (3.11)

€RN[1/A‘1(U) eRNIQ/Ad(O) eRle/Ad(U)

-0.5 y
0 T/Td 1 0

1

eRN11/Ad(0)  eRyL/A4(0) eRyJ1/A4(0)

T

FIG. 5. Temperature dependencies of (A) I;, (B) I, and (C) J,
are plotted for d|m;|/v = 1. Panel (a): (o, ) = (—0.27,0.097)
with m, = 0.5u, panel (b): («, ) =(—0.27,0.097) with m, =
—0.5u, panel (c): («a, B) = (0,0.257) with m, = 0.5u, and panel
(d): (o, B) = (0,0.257) with m; = —0.5u. The enlarged plot for
0.7T; < T < T, is shown in panel (b) as the inset.

Only for limited cases, can we obtain the energy level of E;
analytically. For « = 8 = 0, the energy level of the ABS is
expressed by

E, = :I:\/UN cos? g + (1 — oy)sin’ g| c0s20|Ag, (3.12)

with
] mzzcosze
cos” o = ———= o
2 m?cos” 6 + p*sin” 0
iy wu?sin” 6
sin® — =

2 micos’6 + pu2sin®6’

consistent with the result of an s-wave superconductor junc-
tion [37]. E}, becomes zero for ¢ = £ and 6 = 0.
For o = 8 = 7 /4, E;, becomes

E, = :I:\/GN cos? g + (1 — o) cos? g| sin20|Ag.  (3.13)

Eyiszeroforo =4+mand0 =+w/20rp = +m and 6 = 0.
In this case, the pair potential also becomes zero and Ej is
absorbed into the continuum level. In these two cases with
Egs. (3.12) and (3.13) since E}, is a symmetric function of ¢,
we cannot expect the diode effect and the resulting Q is zero.

In other cases, only for 6 =0 and ¢ = 7, we can show
E, = 0 for a wide variety of parameters with —7/4 <« <
w/4 and —m/4 < B <m/4. In this case, I'fy =T =T
and 'g, = I'g_ = I'g are satisfied. Then, A, (E, 6) becomes

Ag(E.0 =0)=(1—oy)(14TF)(1+T7)

+on(14+ T TR)% (3.14)
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FIG. 6. The intensity plot of S(E,60,¢) for fixed ¢ for d|m,|/v=1 and m, =0.5u. (o, B) = (—0.27,0.097) for panels (a),
(b), and (c). (o, B)=(0,0.257) for panels (d), (e), and (f). Panel (a): ¢ = 0.57, panel (b): ¢ = —0.57, and panel (c): ¢ =
. Panel (d): ¢ =0.57, panel (e): ¢ = —0.57, and panel (f): ¢ =m. We plot £Apcos[2(0 = «)] and +A(cos[2(0 £ B)] as

auxiliary lines.

Since cos(2«) and cos(28) become positive numbers, I'g and
', become —i at E = 0 and Ay (E, 6) = 0 at this condition.
This means E;, = 0 and the ubiquitous presence of the zero-
energy ABS for various « and B at ¢ = £ and § = 0.

In general, it is impossible to solve E}, analytically and we
plot the inverse of Ay(E,0) = Ay(E, 6, ¢)

1
|A(E, 60, 9)|

The intensity plot of S(E, 9, ¢) for fixed ¢ is shown in Fig. 6.
In the actual calculation we replace E with E + i§ with a small
number 6 = 0.001A to avoid the divergence, where we used
the value of A at zero temperature. We first show the contour
plot of S(E, 6, ¢) for a fixed value of ¢. The blight curve sat-
isfying Eq. (3.11) corresponds to the position of Ej. As shown
in Fig. 6(a), S(E, 8, ¢) shows a complicated 6 dependence for
o = —0.27 and B = 0.097 where the nonreciprocal effect is
prominent as discussed in Figs. 2—4. By changing ¢ = 0.5
to —0.57, S(E, 0, ¢) shows a dramatically different behavior
as shown in Fig. 6(b) as compared to that in Fig. 6(a). From
Figs. 6(a) and 6(b), we see that the ABS energy spectrum
is different for the phase biases ¢ and —¢ in the regime
of the Josephson diode effect. For ¢ = m, S(E = 0,6, ¢) is
enhanced around 6 = 0 [Fig. 6(c)] due to the existence of
ABS at E = 0. For all cases [Figs. 6(a), 6(b), and 6(c)]

S(E’ 9’ §0) 7é S(E? _97 (P)

S(E,0,¢) = (3.15)

(3.16)

is satisfied.
On the other hand, for « = 8 =0, S(E, 0, ¢) shows a
symmetric function with 6 [Figs. 6(d), 6(e) and 6(f)

S(E’e’(p)zs(Es _97¢)5 S(E70’¢)=S(E’95_¢)

(3.17)

to be consistent with Eq. (3.12). In Fig. 7, we focus on ¢
dependence of S(E, 0, ¢) for fixed 6 with « = —0.27r and
B = 0.097. By changing 0 to —0, S(E, 6, ¢) has a dramatic
change. ABS is located for E < 0 for 8 = 0.1z while it is
located for E > 0 for & = —0.1z [Figs. 7(a) and 7(b)]. On
the other hand, if we change m, = 0.5u to m, = —0.5u, ABS
is located for E > 0 for & = 0.1z while itis located for E < 0
for & = —0.1x [Figs. 7(c) and 7(d)]. It is noted that the nonre-
ciprocal current phase relation of /(¢) in Fig. 2(a) comes from
the exotic ¢ dependence of ABS as shown from S(E, 6, ¢)
in Fig. 7. Since Q is determined by the maximum Josephson
current, its value can be enhanced by the asymmetric energy
spectrum of ABS for ¢ and —¢.

Finally, we mention how the energy level of E, changes
by the transformation from m, to —m,. By using the prop-
erties of g+, ['z4, and n, A(E, 0, ¢) = A(E, 0, ¢, m;), and
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o/T

FIG. 7. The intensity plot of S(E, 0, ¢) for fixed 6 for d|m,|/v = 1, = —0.27 and 8 = 0.097. Panel (a): & = 0.17 and m, = 0.5u, panel
(b): 6 = —0.17 and m, = 0.5u, panel (c): 0 = 0.17 and m, = —0.5u, and panel (d): 0 = —0.17 and m, = —0.51. We plot £A cos[2(6 £

)] and A cos[2(6 £ B)] as auxiliary lines.

S(E,0,¢9)=S(E, 0, ¢, m,) satisfy
Ad(E’ _03 (pv _mz)

= [1 — on][1 + exp (—in)Tr Tr-1[1 +exp (iM'r T -]
+on[l —exp (—ig)T'L Ty ][l — exp (ip)L-Tr-],

(3.18)
AJ(E, -0, —¢,—m;) = Ay(E, 0, ¢, m), (3.19)

and
S(E, -0, —¢,—m;) =S(E, 0, ¢, my). (3.20)

We can see Eq. (3.20) by comparing Fig. 7(a) [Fig. 7(b)], and
Fig. 7(d) [Fig. 7(c)].

To understand the contribution of the ZEABS to the
Josephson current, in Fig. 8, we plot S(0, 6, ¢) and the magni-
tude of the angle-resolved Josephson current |/(6, ¢)| with the
same parameters used in Fig. 6. For the corresponding 6 and
¢ hosting ZEABS, the resulting S(E = 0, 6, ¢) is enhanced.
Clearly, |1(0, ¢)| is enhanced for 6 and ¢ when S(0, 0, ¢)
shows the prominent peak structure. Thus, the ZEABS and the
angle-resolved Josephson current has a correspondence. It is

known from the study of d-wave superconductor junctions in
the context of high T, cuprate, in the presence of the ZEABS,
the Josephson current at low temperature is mainly carried by
ZEABS [33,34]. It can trigger a nonmonotonic temperature
dependence of the Josephson current observed in the high
T. cuprate [36]. The sophisticated 6 and ¢ dependence of
Ey(0, @) in the present d/FI/d junctions on TI shown in
Figs. 6-8, is due to the breaking of P and 7 symmetry, and
generates the exotic current phase relation with the simultane-
ous coexistence of sin ¢, sin 2¢, and cos ¢ terms.

IV. CONCLUSION AND DISCUSSION

In this paper, we showed a very large nonreciprocity of the
Josephson current in a d-wave superconductor/Ferromagnetic
insulator (FI)/d-wave superconductor junction on a topolog-
ical insulator. We found the large magnitude of the quality
factor Q, which characterizes the diode effect by tuning the
crystal axis of both the left and right d-wave superconductors.

The magnitude of Q becomes almost 0.4 at low tem-
peratures and its sign is reversed by changing the direction
of the magnetization in the FI. The physical origin of the
large Q stems from the exotic current-phase relations of the
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FIG. 8. The intensity plot of S(0,6, ¢) for («, ) = (—0.27,0.097) in panel (a). The angle-resolved Josephson current /(6, ¢) =
|10, ¢, o, B)| is plotted in panel (b). We choose d|m.|/v =1, = —0.27, B = 0.097, and m, = 0.5u.

Josephson current due to the simultaneous existence of the
sin ¢, cos ¢, and sin 2¢ components. The present situation is
realized due to the strong asymmetry of the mirror-inversion
symmetry along the junction interface and the time-reversal
symmetry breaking by FI. The strong temperature dependence
of Q stems from the existence of the low-energy Andreev
bound state appearing as Majorana bound states (MBSs) at
the interface. We analyzed the Fourier components of the
Josephson current and found that the cos ¢ changes sign by the
inversion of m,. These results can serve as a guide to design
the Josephson diode using MBSs on the surface of TI.

In this paper, we consider a two-dimensional (2D) junction.
It is noted that the present diode effect does not exist in the
one-dimensional (1D) system. In this case, only the contribu-
tion from 8 = 0 remains in the integral of 8 in Eq. (3.1). Since
we are considering an even-parity superconductor, ', =
[ and I'ypy = Ty are satisfied at & = 0. Then, C(6 = 0)
in Eq. (3.3) becomes zero and the resulting /(¢ ) does not have
a cos ¢ dependence. Then, we cannot expect the present diode
effect.

In the end, we mention the feasibility of the actual exper-
iments. The fabrication of the junction with misorientation
angles o # 0 and B # 0 were realized in the high 7, cuprate
to prove the d-wave nature of pairing [51,52]. Also nonmono-
tonic temperature dependence of the maximum Josephson
current due to the enhanced sin 2¢ component was observed
experimentally for « = —f # 0 [36,53]. On the other hand,
Josephson current was observed in conventional s-wave super-
conductor junctions fabricated on the surface of TIs [54-57].
It is noted that 4w periodicity due to the Kramers pair of
MBS was reported [58]. Furthermore, a high 7. cuprate
(Bi-2212)/TI junction was fabricated [59]. Based on these
accumulated experimental works, the realization of the setup
in our proposal seems to be feasible and our prediction can be
tested in the near future. Finally, to pursue the superconduct-
ing diode effect in the Josepshon junctions with topological
superconductors is an interesting future issue [60].
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APPENDIX A

In this section, we show Eq. (3.5). We can show this
relation analytically from Eqgs. (2.23) and (2.26). Since
[Agn(8, ©)|> = |Agn(—6, @)|? is satisfied. I(¢) is expressed
in Eq. (3.1). Here A(6) = A(—6), B(6) = B(—0),and C(0) =
C(—0) are satisfied. Since exp(—in) changes into exp(in) by
the transformation of 8 to —6 or m, to —m,, Ag,(0, @) =
Aan(0, my, @) satisfies

Adn(ea —my, (p) = Adl‘l(_eﬂ mg, _(p)a
Adﬂ(_ev mg, (p) = A;n(ev mg, (p)v

and
|Adn(0, —mz, @)* = [Aan(®, m, —@)I*.  (Al)
Also, Ay = Ape(0, my) and A,y = A,0(0, my) satisfy
Npe(0,m;) = Npe(6, —my),
Ano(0,m;) = —Ayo(0, —m).
Then, A(0)=A(0,m.), B@®)=B(,m,), and C(6)=

C(6, m,) satisfy
A0, m;) = A0, —my),
CO,my)=—-C, —m,).

B(ev mz) = B(ev _mz)3

As a result, we can derive Eq. (3.5).

APPENDIX B

We can show Eq. (3.6) as follows. Since I', + and
Iyr+ change into 'y and I'ypy by the transformation
(o, B) 0 (—a,—=B), A0, 9) = Aun(0, 0,0, B), Ay =
N0, a, B), and Ay, = A,0(0, a, B) in Egs. (2.20), (2.27),
and (2.28) satisfy

Adn(ev ¢, —«, _13) = Adn(ev —¢,a, 13)7 (Bl)
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and
Ane(ea -, _ﬂ) = Ap(0, a, ﬂ)»
Am)(ea -, _,3) = Ano(g, o, ;3) (B2)
If we write the o, 8 dependence of I(¢) explicitly
is obtained and it leads to Eq. (3.6).
APPENDIX C

In this Appendix, we explain why simple d-wave superconductor junctions by cuprate without TI do not show any diode
effect. In the d-wave/ferromagnet insulator/d-wave superconductor junction, there is no diode effect since the cos ¢ term is not
generated as shown in Ref. [44] if the spin-orbit coupling is absent. We can prove why the d/FI/d junction without TI cannot
hold the diode effect. The Hamiltonian in d-wave junctions realized in cuprates, is given by

with
A(ky, ky) = (k7 — k7) cos 2o — 2kky sin 2. (C2)
The time-reversal symmetry is
is,K 0
T = , (C3)
0 isyK
and another relevant operator is the C,, given by
e iz 0 —1isy 0
C2y = x| = . . (C4‘)
0 e 'Y 0 —isy
Let us define a combined operator T
~ —SoK 0
T=TGC,= : (C5)
i 0 —S()K
we can obtain
TH()T ™' = H(—9). (Co)
It implies that the energy spectrum has symmetry
E,(¢) = E,(—¢). €N

The energy of the junction is an even function of the phase
difference ¢. Thus, the Josephson current is an odd function
of ¢ according to

2e OF
e

268

F 30 (ZE (go)fn) (C8)

I(p) =

—ﬁ(";’:d‘) — K+ my 0
0 _rlE)
0 —Alky, ky)e™
Alky, ky)e™* 0

0 Atk ky)e'
—Aky, ky)e'? 0
' , (C1)
2 2
72 (a +02) i 0
2
0 ” (a +02) Futm
2e BF e
I-0=3% (Z E(=9)fy) = ~1(@),
(C9)
with Fermi distribution function f,,. Then, we can get
I(—¢) = —1(p), (C10)
and
1(0) = (C11)

If 1(0) = 0, the Josephson current cannot hold the cos ¢ term,
which is required by the diode effect. We can therefore con-
clude that the similar d/FI/d junction without TI cannot
harbor the diode effect due to the combined 7 symmetry.
Instead, if there is spin-orbit couplings, 7H (¢)T ! will no
longer equal H(—¢), then we can expect the cos ¢ term and
diode effect. The presence of spin-orbit coupling is essential
for the diode effect.

On the other hand, the surface state of a topological
insulator has a strong spin-orbit coupling which generates
spin-momentum locking. To enhance the cos¢ term, it is
promising to consider the d/FI/d junction on the surface of
TL
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