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Pairing of fermions under spin-orbit coupling in two dimensions
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We present a theoretical approach to the problem of two-dimensional fermion pairing under spin-orbit (SO)
coupling and Zeeman interaction with an external magnetic field. We introduce a generic pairing Hamiltonian
operating in the Hilbert space spanning free pairs and bare two-body bound states. The SO coupling of Rashba
or Dresselhaus type provides p-wave dressing of an s-wave spin-singlet bound state by continua in the triplet
scattering channels. In the strong-coupling (Bose-Einstein condensate) limit of the many-body fermion system
at zero temperature our theory maps onto the two-channel Fano-Anderson model of a spinless resonant p-wave
superfluid.
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I. INTRODUCTION

Pairing of fermions under spin-orbit (SO) coupling in
two-dimensional (2D) crystals has been a central issue of
the condensed matter physics over the past decades [1–11].
Rashba [12–14] or Dresselhaus [15,16] SO coupling in combi-
nation with transverse Zeeman splitting has been argued [3–6]
to endow a conventional BCS superconductor with topologi-
cal properties of the long-sought px ± ipy Fermi superfluid
[17,18]. The idea has readily been adopted to neutral ultracold
atoms [4], where effective Zeeman splitting can be achieved
by changing the population imbalance and the complications
associated with the orbital motion of electrons in a transverse
magnetic field do not arise. Atomic settings also enable the
paradigmatic BCS-BEC crossover [19,20] by means of the
Feshbach resonance [21]. However, experimental realization
of the synthetic SO coupling [22,23] on top of the pairing
remains challenging [24].

From the theoretical perspective, transparent analytical
arguments have been provided for the BCS side of the
crossover [6], the so-called weak-pairing regime [25]. The
Bose-Einstein condensate (BEC) regime of tightly bound
pairs (also referred to as strong-pairing limit) is far less un-
derstood. Recent numerical studies indicate that the precious
topological aspect of the SO-coupled superfluidity survives in
that regime for sufficiently large Zeeman splittings [11]. The
critical magnetic field scales linearly with the pair binding
energy [11].

In this paper, we present an insightful approach to the
problem based on the second quantization in the basis of
pair states. The theory inherits from our recent studies of
SO-coupled pairing of electromagnetic bosons in 2D semi-
conductors [26]. We introduce a generic pairing Hamiltonian
acting on free pairs and bare (i.e., without SO coupling) two-
body bound states. For two particles in vacuum one obtains
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a multichannel scattering theory, the channels being labeled
by the projection of the pair spin on the transverse quanti-
zation axis (z axis) Sz. The SO coupling plays the role of a
coherent switch between the channels. In particular, a bare
s-wave bound state with Sz = 0 (spin singlet) transforms into
a p-wave resonance due to the SO coupling to the continua
of scattering states in the Sz = ±1 channels energetically de-
tuned from the bound state by the magnetic field. One thus
discovers a rich Feshbach resonancelike phenomenology. We
predict giant p-wave halos carrying synthetic angular mo-
menta Lz = ±h̄. For a Fermi superfluid in the strong-coupling
regime, our theory maps onto the two-channel Fano-Anderson
model [27,28] of a spinless resonant p-wave superfluid. This
model has been extensively studied in the context of resonant
Fermi superfluids of ultracold atoms [31]. The coherent Fes-
hbach link between “open” and “closed” scattering channels
in a typical atomic setting is due to the hyperfine interaction
[21]. The SO coupling may then be added on top of it as an in-
dependent ingredient [24]. In our case, the SO coupling itself
plays the role of the Feshbach-type link. Such a link, however,
has a nontrivial dynamical (orbital) nature, that provides p-
wave dressing of the bare s-wave bound state. The topological
properties of the Bogoliubov transformation, existence of Ma-
jorana fermions in the vortex cores, and helical edge states
[17] then follow automatically. At fixed binding energy of
the bare molecule the topological transition is realized by the
Zeeman tuning of the lower-energy triplet channel across the
resonance. One thus recovers the linear scaling of the critical
magnetic field with the binding energy reported in the earlier
work [11]. The quantum halos may be regarded as precursors
of the p-wave Cooper pairs enabling the topological super-
fluidity on the BCS side of the transition. In contrast to the
Cooper pairs, the halos may equally well exist in vacuum and
are expected to be more robust to thermal fluctuations.

The paper is organized as follows. We first provide a
more detailed statement of the problem and discuss its scope
(Sec. II). In Sec. III we provide some guiding arguments for
our discussion by using the familiar language. In Sec. IV,
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we present our approach. We introduce a generic second-
quantized pair Hamiltonian and discuss its properties. In
particular, we point out destructive interference of the Fesh-
bach links associated with SO-induced spin flips due to the
center-of-mass motion of two fermions. This makes possi-
ble the standard identification of a dressed four-leg vertex
function with the two-body scattering T matrix in vacuum.
The corresponding discussion opens Sec. V. After having
discussed the two-body scattering (Sec. V A) and emergence
of the p-wave halo (Sec. V B), we unveil the intrigue of the
topological phase transition in the BEC limit (Sec. V C). We
close that section by a brief demonstration of direct correspon-
dence of our theory to the familiar arguments in the limiting
case of weak pairing. Finally, we discuss experimental detec-
tion of the halos and speculate on possible implementation of
the topological superconductivity in cuprates.

II. STATEMENT OF THE PROBLEM

We consider a binary mixture of spin-up |↑〉 and spin-down
|↓〉 fermions constrained to move in two dimensions (2D).
The (grand canonical) Hamiltonian reads as

Ĥ =
∑

p,σ,σ ′=↑,↓
[ξpδσσ ′ − h̄ω(p) · sσσ ′]â†

σ,pâσ ′,p

+ 1

2S

∑
p1,p2,q,σ,σ ′

â†
σ,p1+qâ†

σ ′,p2−qVσσ ′ (q)âσ ′,p2
âσ,p1

, (1)

where, according to the common notation,

ξp ≡ h̄2 p2

2m
− μ (2)

and Vσσ ′ (q) = ∫
e−iqrVσσ ′ (r)dr are the Fourier transforms of

the two-body interaction potentials. The annihilation opera-
tors âσ,p for fermions are labeled by z projection σ of their
spin

s = 1
2 (σ̂xnx + σ̂yny + σ̂znz ) (3)

and the momentum p = (px, py) of their in-plane translational
motion. Here the vectors nx, ny, and nz form an orthonormal
basis in the real space. The operators âσ,p obey the commuta-
tion relations

{âσ,p, â†
σ ′,p′ } = δσσ ′δpp′ ,

{âσ,p, âσ ′,p′ } = 0.
(4)

The mixture is characterized by the unique chemical potential
μ and the population imbalance is due to Zeeman splitting of
the spin sublevels in a generalized magnetic field character-
ized by the Larmour frequency

ω(p) = �(p) + μB

h̄
gBnz, (5)

that includes the effect of SO coupling in the form of an
effective momentum-dependent magnetic field. Equivalently,
one could model the Zeeman splitting due to the transverse
magnetic field B = Bnz by introducing two chemical poten-
tials μ± = μ ± μBgB/2. For definitiveness, hereinafter we
shall adopt the former way.

The vector �(p) is assumed to lie in the xy plane. Invari-
ance of the fermionic Hamiltonian (1) with respect to the time

FIG. 1. Schematic illustration of the interaction potentials (on the
left) and effective SO fields (on the right). The scattering channels
are split by an external magnetic field. The curved arrows (solid and
dashed) depict possible coherent couplings between the bound state
and the continua of scattering states performed by the SO fields.
The solid curved arrow corresponds to the resonant approximation
employed in Sec. V.

reversal requires

�(−p) = −�(p). (6)

Explicitly, in most cases of interest one deals with the follow-
ing two types of SO coupling:

�D(p) = −υD p(nx cos θ − ny sin θ ), (7)

the so-called Dresselhaus SO coupling [15] written in the 2D
form (7) by Dyakonov and Kachorovskii [16] and

�R(p) = −υR p(nx sin θ − ny cos θ ), (8)

known as Rashba SO coupling [12]. The 2D form (8) was
derived by Vas’ko [13] and exploited by Bychkov and Rashba
a few years later [14]. Here p and θ are the polar coordinates
of p, and the material-specific parameters υD,R have the di-
mension of the velocity. We shall focus on the Rashba SO
coupling (8) in order to be in line with the previous studies
[1,4–6,9,11].

We now discuss in more detail the interaction part of the
Hamiltonian (1). We shall make use of the renown toy model
of the BEC-BCS crossover [19,29], where discussion of the
actual pairing mechanism is left aside and the pairing insta-
bility is due to a bound state in a hypothetical static potential
V↑↓(r) schematically illustrated in Fig. 1. Strong arguments
in favor of the ensuing phenomenology have recently been
provided for high-temperature superconducting cuprates [30].
For our purposes and for the sake of transparency, it is suf-
ficient to assume that there is a unique s-wave bound state.
This bound state may additionally be separated from the cor-
responding (spin-singlet) continuum by a repulsive potential
barrier. In this case the bound state can transform into a 2D
resonance upon shallowing the potential well. Such upgrade
allows one to account for a possible resonant pairing scenario,
pertinent to ultracold atoms [21,31]. Introduction of the SO
coupling in this case may yield a peculiar folded resonance,
implicitly encountered in our earlier work on bosons [26].
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Detailed discussion of this possibility goes beyond the scope
of this study and we shall postpone it to future work. Bear-
ing in mind the Pauli exclusion principle, we assume the
background potentials V↑↑(r) and V↓↓(r) to be featureless (no
bound states or resonances). In Fig. 1 these are tentatively
sketched as short-range repulsive potentials. All potentials are
assumed to be axially symmetric: the interaction term alone
conserves angular momenta of the pairs.

We shall refer to the zero-temperature many-body phase
diagram of the model (1) with ω(p) ≡ 0 as bare BCS-BEC
crossover. It is realized by varying either the chemical poten-
tial μ or the energy of the discrete level ε. For the pairing
potential of the type shown in Fig. 1 a thermodynamically
smooth crossover occurs in the vicinity of the characteristic
point μ = 0 [29]. For the resonant shape (not shown) there
would be a well-defined crossover region, where the BCS
superfluid coexists with a molecular BEC: the crossover starts
at 2μ = ε and terminates at μ = 0 [31]. At that lower bound
almost all Cooper pairs are converted into the molecules. A
qualitative connection between the two scenarios is estab-
lished by letting the resonance width � go to infinity (i.e., by
suppressing the repulsive potential barrier).

III. PRELIMINARIES

Let us consider the BCS side of the (bare) crossover in the
presence of SO coupling and magnetic field. We replace the
s-wave pairing potential V↑↓(k′ − k) in the Hamiltonian (1)
by an attractive separable force

V↑↓(k′, k) ≡ εχ∗(k′)χ (k)S, (9)

where the quantization area S on the right-hand side has been
singled out for further convenience, so that the parameter

ε < 0 characterizing the strength of the attraction has the units
of energy. The relative momentum k enters the dimensionless
monotonously decaying function χ (k) as a product ka, with
a characterizing the spatial extent of the force. For simplicity,
we switch off the background repulsive interactions by setting
V↑↑(r) = V↓↓(r) ≡ 0. Following the standard prescription, we
introduce the anomalous average

� = ε
∑

k

χ (k)〈â↓,−kâ↑,k〉 (10)

over the bare BCS ground state. The arbitrary complex phases
of both χ (k) and � can be set identically zero, but hereinafter
we shall keep the sign of the complex conjugate for the aes-
thetic reasons.

We diagonalize the single-particle part of (1) by the substi-
tution

â↑,p = 1

N

(
h̄�(p) · s↑↓

1
2 h̄ω(p) + 1

2μBgB
b̂+,p − b̂−,p

)
,

â↓,p = 1

N

(
b̂+,p + h̄�(p) · s↓↑

1
2 h̄ω(p) + 1

2μBgB
b̂−,p

)
,

with

N =
√

2h̄ω(p)

h̄ω(p) + μBgB
.

We have defined the matrix element s↑↓ ≡ 〈↑| ŝ |↓〉. Assum-
ing μ < μBgB/2 and

� 	 μBgB − 2μ (11)

we adiabatically eliminate the upper band and obtain the pro-
jected Hamiltonian

Ĥ (−−) =
∑

p

ζ−,pb̂†
−,pb̂−,p + ε

∑
k′,k

χ∗(k′)
�(a)(k′) · s↑↓

ω(k′)
b̂†

−,k′ b̂
†
−,−k′χ (k)

�(a)(k) · s↓↑
ω(k)

b̂−,−kb̂−,k

− ε
∑
k′,k

χ∗(k′)
�(a)(k′) · s↑↓

ω(k′)
b̂†

−,k′ b̂
†
−,−k′χ (k)

μBgB

h̄ω(k)
b̂+,−kb̂−,k − H.c., (12)

where

ζ±,p = ξp ± 1
2 h̄ω(p) (13)

and we have taken advantage of the anticommutation relations
(4) and the symmetry of �(k) with respect to the time reversal
(6) to define

�(a)(k) ≡ �(k) − �(−k)

2
. (14)

Note, that the last term in Eq. (12) should be retained under
the condition (11).

Let us start with the Zeeman splitting only and gradually
increase the SO coupling strength. In the first order, we write

b̂−,−kb̂−,k = â↑,−kâ↑,k + h̄�(a)(k) · s↑↓
1
2μBgB

〈â↓,−kâ↑,k〉,

(15a)

b̂+,−kb̂−,k = −〈â↓,−kâ↑,k〉 + �(a)(k) · s↓↑
μBgB

â↑,−kâ↑,k.

(15b)

Before we proceed, it is instructive to consider the two-body
scattering in vacuum by putting μ → −μBgB/2. In this limit
one may omit the last term (and its H.c.) in the projected
Hamiltonian (12) [under the assumption (11) this term comes
into play only when μ approaches 0] and discover that the SO
coupling results in an effective p-wave attraction between the
spin-↑ fermions

V (eff )
↑↑ (k′, k) ≡ ε h̄2υ2

R

χ∗(k′)χ (k)k′k
(μBgB)2

ei(θ ′−θ )S, (16)

where we have borne in mind the Rashba expression (8) for
the SO field �(k). This attraction is certainly too weak to
produce a polarized bound state (the total spin Sz = +1). The
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latter would require an energy scale of V↑↓(k′, k) comparable
to the Zeeman splitting μBgB. But, this circumstance does not
exclude a p-wave pairing instability, even despite that we are
in 2D [25,29]. Indeed, below we show that unconventional
p-wave pairing of the polarized spin-↑ Fermi sea takes place
in this model.

By substituting Eqs. (15) into (12), using the Wick’s the-
orem and omitting full averages, we replace the Hamiltonian
(12) by the BCS form [6]

Ĥ (−−)
BCS =

∑
p

ζ−,pâ†
↑,pâ↑,p +

∑
k

(�∗
−−â↑,−kâ↑,k + H.c.),

(17)
where we have defined

�−− ≡ h̄�(a)(p) · s↑↓
μBgB

� = i
�

2μBgB
h̄υR pe−iθ (18)

and absorbed the Hartree-Fock shift of the quasiparticle
energy into the chemical potential μ. The projected BCS
Hamiltonian (17) is characterized by broken time-reversal
symmetry and nontrivial topology of the Bogoliubov coeffi-
cients u↑,k and υ↑,k that define the long-distance behavior of
the (in-medium) pair wave function

g↑↑(r) = 1

S

∑
k

g↑↑,keikr (19)

via its Fourier transform

g↑↑,k = υ↑,k

u↑,k
= −

√
ζ 2
−,k + |�−−|2 − ζ−,k

�∗−−
. (20)

Namely, as k → 0, one has g↑↑,k ∝ 1/(kx − iky) and g↑↑(r) ∝
1/z with z = x − iy, which is characteristic for the Moore-
Read (Pfaffian) state in the fractional quantum Hall effect
[17].

As μ approaches the upper band and the condition (11)
gets violated, a topological phase transition occurs into the
conventional BCS superfluid due to onset of the inter-band
s-wave pairing in the full (nonprojected) model

ĤBCS =
∑

p,α=+,−
ζα,pb̂†

α,pb̂α,p

+
∑

k

(�++b̂+,−kb̂+,k + �−−b̂−,−kb̂−,k

+�+−b̂+,−kb̂−,k + H.c.), (21)

with �++ = �∗
−− and

�+− = μBgB

h̄ω(p)
�. (22)

Note also the restoration of the time-reversal symmetry as the
upper band comes into play. A fully analytical description
of this transition is not available because of the necessity to
keep all contributions from both bands, which is a nontrivial
task. Nevertheless, the underlying phenomenology is rather
well understood [5,7]. At B → 0 the interband pairing is again
suppressed, but there is no topological transition since now
the anomalous averages build up simultaneously within both
bands of opposite chirality [1].

The model (17) has primarily been known [17] to exhibit
a topological phase transition from the weak to strong pair-
ing regime, where the function ζ−,0 becomes negative. This
transition is not accessible within our current approximation,
for, to push the chemical potential μ below the bottom of
the band, one would need a true Sz = +1 bound state and,
as we have just seen, the latter is impossible in the frame
of the Hamiltonian (12). One could expect that such kind
of transition becomes available on the strong-pairing (BEC)
side of the bare crossover. In contrast to the aforementioned
transition to the conventional state within the weak-pairing
scheme, the new transition should occur at high magnetic
fields, where the time reversal is effectively broken. However,
the condition (11) is no longer fulfilled, so that one cannot
employ the drastic simplifications made above to achieve the
canonical p-wave BCS form (17). Not to say that the very
BCS approach remains valid only qualitatively on the BEC
side. The problem represents an apparent challenge for the
theory.

IV. PAIRING FORMALISM

A. Motivation

Consider a system of two fermions in vacuum. There are
four basis states |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 whose linear com-
binations realize the states Sz = +1, 0,−1 of the total spin
Sz = sz,1 + sz,2. We notice that since the effective magnetic
field �( p̂i ) lies in the structure plane, the sum �( p̂1) · ŝ1 +
�( p̂2) · ŝ2 does not commute with S2

z . Hence, the SO coupling
may change the spin state of a pair by flipping the spin of
either of the two particles.

We have just seen in Sec. III that in a strong magnetic field
such spin flips are at the origin of the pairing instability in
a nominally normal polarized Fermi sea. In the two-fermion
language the surface of the sea may be regarded as an open
channel for the (quasi)particle scattering. Equations (12),
(15), and (17) suggest that the p-wave attraction in the open
channel can be seen as due to the SO coupling to the closed
molecular channel: the magnetic-field detuned s-wave bound
state of the pairing potential V↑↓(r). On the BCS side of the
bare crossover, the closed channel is energetically well above
the scattering threshold in the open channel. On the BEC
side, in contrast, the strongly bound state may come into reso-
nance with the polarized Fermi sea. The two-fermion picture
adopted in this section seems to be particularly convenient for
description of such situation.

In principle, the above hints alone are sufficient to
construct the corresponding two-body scattering theory in
vacuum. A more advanced formalism based on the second
quantization that we develop below aims at solution of the
full many-body problem. As an important first step, one may
follow the standard Bogoliubov prescription consisting in re-
placement of second-quantized operators by c-numbers. We
shall see that in the strong-pairing limit our theory maps
onto the two-channel Fano-Anderson model [27,28] of a spin-
less resonant p-wave superfluid, thoroughly investigated in
the context of ultracold atoms [31]. Many interesting con-
clusions then follow immediately. Our pairing formalism
may also serve as a basis and, simultaneously, a valuable
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guidance for the development of a diagrammatic theory and
study of the beyond-mean-field effects. The proper two-
body scattering theory will follow automatically as a limiting
case.

B. Pairing Hamiltonian

We start with the single-particle Hamiltonian used to con-
struct the second-quantized equation (1):

Ĥi = K̂i + Ĥω,i, (23)

where

K̂i = − h̄2∇2
i

2m
1̂i (24)

with

1̂i =
[

1 0
0 1

]
i

(25)

being the unity matrix and

Ĥω,i =
[ − 1

2μBgB h̄�( p̂i ) · s↑↓
h̄�( p̂i ) · s↓↑ 1

2μBgB

]
i

, (26)

where the index i labels the particle and we have used the spin-
up |↑〉 and spin-down |↓〉 basis introduced previously. We
build the 4 × 4 matrix by performing the so-called Kronecker
summation of the single-particle 2 × 2 Hamiltonians (23) for
two particles

Ĥ = Ĥ1 ⊕ Ĥ2 ≡ Ĥ1 ⊗ 1̂2 + 1̂1 ⊗ Ĥ2. (27)

This composite matrix will play the same role in our pair
second-quantization procedure as the Hamiltonian (23) in the
conventional second quantization. The pair Hamiltonian ad-
mits the useful decomposition

Ĥ = Ĥc.m. + Ĥrel, (28)

where Ĥc.m. acts on the center-of-mass (c..m.) coordinate of
the two particles

R = r1 + r2

2
(29)

and Ĥrel acts on the coordinate of the relative motion

r = r1 − r2. (30)

The two-body interaction in the new basis is represented by a
diagonal matrix

V̂ =
∑
σ,σ ′

Vσσ ′ (r) |σσ ′〉 〈σσ ′| . (31)

The bound states of the potential V↑↓(r) are the solutions of
the one-channel Schrödinger equation

〈↑↓| (Ĥrel + V̂ ) |↑↓〉 ϕn(r) = εnϕn(r), (32)

where the index n stands for a full set of possible quantum
numbers.

We now have all ingredients to proceed with the second
quantization. We introduce the (free) pair creation and annihi-
lation operators

Ĉ†
σ1σ2,k,K = â†

σ1k+K/2â†
σ2,−k+K/2,

Ĉσ1σ2,k,K = âσ2,−k+K/2âσ1k+K/2,
(33)

where k = (p1 − p2)/2 and K = p1 + p2 are the relative and
c..m. momenta, respectively. By virtue of the anticommutation
relations (4) one has

Ĉσ1σ2,k,K = −Ĉσ2σ1,−k,K . (34)

Next, we define the molecular operators

Ĉ↑↓,n,K =
∑

k

φn(k)Ĉ↑↓,k,K, (35)

where the function φn(k) is the Fourier image of the molecular
wave function of the relative motion

ϕn(r) = 1√
S

∑
k

φn(k)eikr, (36)

with S being the quantization area.

In terms of the free-pair and molecular operators the second-quantized pairing Hamiltonian can be written as

Ĥ = 1

2

∑
σ ′

1σ
′
2σ1σ2

∑
k′,n′,k,n

∑
K ′,K

Hk′(n′ ),K ′,k(n),K
σ ′

1σ
′
2σ1σ2

Ĉ†
σ ′

1σ
′
2,k

′(n′ ),K ′Ĉσ1σ2,k(n),K, (37)

where we have used the obvious notation Ĉσ1σ2,n,K ≡ δσ1σ̄2Ĉ↑↓,n,K with σ̄ meaning the reverse of σ , i.e., for σ =↑ one has σ̄ =↓
and vice versa. From a mathematical viewpoint, the form (37) is dictated by the principle of asymptotic completeness of the
ensuing scattering theory [32]. The matrix elements

Hk′(n′ ),K ′,k(n),K
σ ′

1σ
′
2σ1σ2

=
∫

ψ∗
k′(n′ ),K ′ (r, R) 〈σ ′

1σ
′
2| Ĥ |σ1σ2〉 ψk(n),K (r, R)dr dR (38)

are taken on the free and bound state wave functions

ψkK (r, R) = 1

S
eikr+iKR, (39a)

ψn,K (r, R) = 1√
S

eiKRϕn(r). (39b)

C. Discussion

Let us analyze Eq. (37) in more detail. For simplicity,
we let B = 0 (no Zeeman splitting). Consider first diago-
nal contributions to Eq. (37). These consist of the terms
due to the scattering states and the terms due to the bound
state. The diagonal contribution due to the scattering states

214523-5



S. V. ANDREEV PHYSICAL REVIEW B 106, 214523 (2022)

FIG. 2. Particle occupation configuration used to demonstrate
the duality between the diagonal part of the pairing Hamiltonian and
the conventional construction in terms of the particle operators âσ,k.

reads as

1

2

∑
σ1,σ2

∑
k,K

[Kc.m.(K ) + Krel(k)]Ĉ†
σ1σ2,k,KCσ1σ2,k,K

+ 1

2S

∑
σ1σ2

∑
k,k′,K

Vσ1σ2 (k′ − k)Ĉ†
σ1σ2,k

′,KCσ1σ2,k,K, (40)

where we have used the obvious notations Kc.m.(K ) =
h̄2K2/2m and Krel(k) = h̄2k2/m for the kinetic energies of the
c..m. and relative motion, respectively. The first term is the
overall kinetic energy in a system of free particles counted by
pairs. It can be rewritten in the usual way as∑

p,σ

K (p)â†
σ,pâσ,p, (41)

where K (p) = h̄2 p2/2m is the standard kinetic energy matrix
element. To see this, consider the configuration shown in
Fig. 2. For the sake of transparency, we assume all pairs hav-
ing K = 0. In this case Krel(k) = K (k) + K (−k). We omit the
corresponding index in the pair operators Ĉσσ ′,k,0 ≡ Ĉσσ ′,k.
The energy counting by using the first sum in the line (40)
yields

1

2

∑
k

Krel(k)Ĉ†
↑↑,kĈ↑↑,k = 1

2
[K (q) + K (−q)] × 2,

1

2

∑
k

Krel(k)Ĉ†
↓↓,kĈ↓↓,k = 1

2
[K (p) + K (−p)] × 2,

1

2

∑
k

Krel(k)Ĉ†
↑↓,kĈ↑↓,k = 1

2
[K (k) + K (−k)] × 1

+1

2
[K (k′) + K (−k′)] × 1,

1

2

∑
k

Krel(k)Ĉ†
↓↑,kĈ↓↑,k = 1

2
[K (−k′) + K (k′)] × 1

+ 1

2
[K (−k) + K (k)] × 1. (42)

The sum of the above results is identical to that obtained
by using Eq. (41). The second sum in the line (40) yields
the interaction energy accumulated in the scattering states.
Consider the “σ σ̄” channels. By using the relations (34) and
the symmetry of the interaction potential with respect to the
time reversal

V↑↓(k′ − k) = V↓↑(−k′ + k),

we write

1

2S

∑
k′k

[V↑↓(k′ − k)Ĉ†
↑↓,k′Ĉ↑↓,k + V↓↑(k′ − k)Ĉ†

↓↑,k′Ĉ↓↑,k]

= 1

S

∑
k′k

V↑↓(k′ − k)Ĉ†
↑↓,k′Ĉ↑↓,k.

By denoting Ĉ↑↓,k ≡ b̂k and V↑↓(k′ − k) ≡ Vk′k one gets
the so-called reduced Hamiltonian employed by Bardeen,
Cooper, and Schrieffer in their seminal work [33]:

Ĥred =
∑

k

h̄2k2

m
b̂†

kb̂k + 1

S

∑
k′k

Vk′kb̂†
k′ b̂k.

Let us now consider the diagonal contribution due to the
bound states. In the frame of our toy model introduced in
Sec. II, the potential V↑↓(r) has a unique s-wave bound state.
We denote the corresponding operator and the eigenvalue as
Ĉ↑↓,1s,K ≡ Ĉ↑↓,K and ε1s ≡ ε, respectively. We make use of
Eq. (35) and the relation (34) to obtain∑

K

[Kcm(K ) + ε]Ĉ†
↑↓,KĈ↑↓,K .

Next, we consider the off-diagonal terms. Start with the
scattering states. By taking the nonzero matrix elements in
the uppermost row and right column of the matrix presented
in the left panel of Fig. 3 and using Eqs. (34) we get

−
∑
k,K

h̄�(k + K/2) · [s↑↓(Ĉ†
↑↑,k,KĈ↓↑,k,K + Ĉ†

↑↓,k,KĈ↓↓,k,K )

+ s↓↑(Ĉ†
↓↓,k,KĈ↑↓,k,K + Ĉ†

↓↑,k,KĈ↑↑,k,K )].

One can easily see that in terms of the particle operators this
contribution is just the term describing SO coupling in the
original Hamiltonian (1). Furthermore, by using the analogous
matrix elements for the transitions involving the bound state
(right panel in Fig. 3) we obtain

−1

2

∑
k,K

φ∗(k)Ĉ†
↑↓,K[h̄�(−k + K/2)

− h̄�(k + K/2)] · s↓↑Ĉ↑↑,k,K,

−1

2

∑
k,K

φ∗(k)Ĉ†
↑↓,K[h̄�(k + K/2)

− h̄�(−k + K/2)] · s↑↓Ĉ↓↓,k,K,

and their complex conjugation. In what follows, we shall
use the shorthand notation Ĉ↑↓,0 ≡ Ĉ↑↓ for the bound state
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FIG. 3. The matrix elements Hk′ (n′ ),K′,k(n),K
σ ′

1σ ′
2σ1σ2

involving the scattering states (ss) and the bound state (bs) of the four possible two-body

scattering channels characterized by the orthogonal spin states |σσ ′〉. The |σσ 〉 channels involve only scattering states. The right panel (bs)
shows the matrix elements between such states (i.e., 2D plane waves to the zeroth order in the corresponding scattering potentials) and the
unique s-wave bound state of the |↑↓〉 (or, equivalently, |↓↑〉) channel. Formally, a combination of the |σσ 〉 spin state and the bound state
wave function under the integral in Eq. (38) is allowed, but is excluded from the Hamiltonian by our definition of the relevant operator
Ĉσ1σ2,n,K ≡ δσ1 σ̄2Ĉ↑↓,n,K given below Eq. (37). The highlighted sector corresponds to the projected model employed in Sec. V.

operator with K = 0. We notice that for the effective SO fields
of the type (7) or (8) one has

1
2 [�(−k + K/2) − �(k + K/2)] = �(a)(k), (43)

so that the quantum amplitude linking the bound state to
the scattering continua does not depend on the c.m. momen-
tum K. This interesting consequence of the Fermi statistics
will prove to be useful for further consolidation of our
formalism.

V. STRONG PAIRING AT HIGH MAGNETIC FIELDS

We now apply the above formalism to the problem of
fermion pairing under SO coupling on the BEC side of the
bare crossover. In the absence of the magnetic field and SO
coupling we have a spin-singlet scattering channel including
the corresponding continuum and a bound state, and three
degenerate channels belonging to the spin triplet. The mag-
netic field splits the triplet with the “↑↑” channel going to the
bottom. We are particularly interested in the situation where
|ε + μBgB| 	 μBgB. In this case we may neglect coupling
to the Sz = 0,−1 scattering states and obtain the following

(grand canonical) model:

Ĥ = 1

2

∑
k

(
h̄2k2

m
− μBgB − 2μ

)
Ĉ†

↑↑,kĈ↑↑,k

+ (ε − 2μ)Ĉ†
↑↓Ĉ↑↓ + 1

2S

∑
k′,k

V↑↑(k′ − k)Ĉ†
↑↑,k′Ĉ↑↑,k

−
∑

k

h̄�(a)(k) · [s↑↓φ(k)Ĉ†
↑↑,kĈ↑↓ + H.c.].

(44)

The last term describes the coherent SO coupling between the
bound state and the continuum of scattering states in the “↑↑”
channel, and has the form anticipated on the basis of general
arguments given in Sec. IV A and our analysis of the BCS
limit in Sec. III.

A. Two-body scattering in vacuum

In vacuum the following commutation relations hold for
the fermion pair operators:

[Ĉσσ,k′ , Ĉ†
σσ,k] = ±δk′,±k,

[Ĉ↑↓,K ′ , Ĉ†
↑↓,K] = δK ′,K . (45)

By using the Hamiltonian (44) with μ ≡ 0 one may then
obtain the following Heisenberg equations of motion:

ih̄
d

dt
Ĉ↑↑,k =

(
h̄2k2

m
− μBgB

)
Ĉ↑↑,k + 1

S

∑
k′

V↑↑(k′ − k)Ĉ↑↑,k′ − 2h̄�(a)(k) · s↑↓φ(k)Ĉ↑↓, (46a)

ih̄
d

dt
Ĉ↑↓ = εĈ↑↓ −

∑
k

h̄�(a)(k) · s↓↑φ∗(k)Ĉ↑↑,k. (46b)
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We make the substitution

Ĉ↑↑,k(t ) →
∑

q

ψ (+)
q (k)Ĉ(+)

↑↑,qe−i(Ek−μBgB+i0)t/h̄, (47a)

Ĉ↑↓(t ) → Ĉ↑↓e−i(Ek−μBgB)t/h̄ (47b)

with the standard notation Ek ≡ h̄2k2/m for the kinetic
energy of the relative motion, eliminate Ĉ↑↓ from Eq. (46a) in
favor of Ĉ↑↑,k(t ), and replace the sums by integrals according
to the standard rule ∑

k

→ S

(2π )2

∫
dk. (48)

It will also be convenient to count the energy from the bottom
band by introducing the detuning

δ̄ ≡ ε + μBgB. (49)

This way, we arrive at the Lippman-Schwinger equation

|q+〉 = |q+〉bg

+ G0
↑↑(Eq + i0)�†G↑↓(Eq)� |q+〉 (50)

for the stationary scattering state ψ (+)
q (k) = 〈k|q+〉 in the

Sz = +1 (open) channel. Here

|q+〉bg = |q〉 + G0
↑↑(Eq + i0)V↑↑ |q+〉bg (51)

describes distortion of the wave function by the background
potential V↑↑(r),

G0
↑↑(z) = (z − Krel )

−1, (52a)

G↑↓(E ) = |ϕ〉 〈ϕ|
E − δ

(52b)

are the Green’s operators of the (free) relative motion in the
open-channel and the closed-channel bound state |ϕ〉, respec-
tively, and we have defined

� ≡
√

2
∫

h̄�(a)(k) · s↑↓ |k〉 〈k| dk. (53)

As usual, we are interested in the low-energy scattering Eq →
0. For our illustrative purposes, we may safely put |q+〉bg ≡
|q〉 in this case.1 By using the relation

|q+〉 = |q〉 + G0
↑↑(Eq + i0)T↑↑(Eq + i0) |q〉 (54)

one may obtain from Eq. (50)

T↑↑ = V (eff )
↑↑ (E ) + V (eff )

↑↑ (E )G0
↑↑T↑↑, (55)

where

V (eff )
↑↑ (E ) = �†G↑↓(E )�. (56)

By expanding Eq. (55) into an infinite geometrical series and
summing it up, we find

〈k′| T↑↑(Ek + i0) |k〉 = 〈k′| �† |ϕ〉 D(Ek) 〈ϕ| � |k〉
1 − �(Ek + i0)D(Ek)

(57)

1In principle, one may show that, quite generically, the contribution
of the background potential V↑↑(r) is negligible in 2D.

FIG. 4. Four-leg vertex function for the scattering of two
fermions in vacuum. The topmost inset shows the dictionary used to
construct the graphs. An unconventional element is the SO coupling
of a pair of spin-↑ fermion lines (solid arrows) to the molecular
propagator (smashed line) represented by a pair of dashed lines.
Each of these connecting lines can be regarded as an effective field
acting in the spin subspace. The antisymmetrization of the molecular
spin state is accomplished by ascribing opposite signs to the corre-
sponding spin-flip amplitudes. The two processes add up to produce
the antisymmetrized effective field �(a)(k) [Eq. (14)] that does not
depend on the c.m. momentum K. This makes possible the usual
identification of the vertex �↑↑↑↑(k′, k, K, Ek ) with the two-body
scattering T matrix T↑↑(k′, k, Ek + i0).

with

�(z) =
∫

dq
〈ϕ| � |q〉 〈q| �† |ϕ〉

z − Eq
(58)

and D(E ) ≡ 〈ϕ| G↑↓(E ) |ϕ〉.
In terms of the four-leg vertex function �↑↑↑↑(k′, k, K, Ek ),

the above result can be expressed by introducing momentum-
dependent connecting (dashed) lines between the single-
fermion lines and the molecular propagator in the corre-
sponding Bethe-Salpeter equation (Fig. 4). In the absence of
two-body interaction, such lines would realize dressing of the
spin-↑ fermions with their spin-↓ partners due to the SO cou-
pling. In the two-particle picture, they connect the scattering
states in the spin-triplet and -singlet scattering channels. Ap-
pearance of the tightly bound state in the singlet channel due
to the attractive interaction V↑↓(r) allows one to neglect the
SO coupling to the higher-energy scattering states of the same
channel and consider only coupling of the bare spin-↑ fermion
lines with p1,2 = ±k + K/2 to the molecular propagator. An-
tisymmetrization of the molecular spin state requires that we
add up the corresponding amplitudes with opposite signs. As
a result, one gets the antisymmetrized effective field �(a)(k)
[Eq. (14)] that does not depend on the c.m. momentum K. The
vertex function �↑↑↑↑(k′, k, K, Ek ) is then K independent as
well and can be readily identified with the two-body scattering
T matrix given by Eq. (55):

�↑↑↑↑(k′, k, Ek ) = (2π )2T↑↑(k′, k, Ek + i0). (59)
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By virtue of the relationship (14) the antisymmetry of the
fermion vertex (59) with respect to the exchange of the two
outgoing legs (k′ → −k′) is ensured automatically.

To proceed, let us make some explicit choices for the main
ingredients of our model. A natural form of the pair wave
function in the strong-pairing regime is the Gaussian ansatz

| 〈k|ϕ〉 |2 = a2

π
e−(ka)2

, (60)

the microscopic radius a thus setting an ultraviolet cutoff for
our low-energy theory. The Gaussian ansatz has been widely
used in the BCS-BEC crossover problem [20]. Evaluation
of the pair polarization bubble (58) by using the Rashba
expression (8) for the SO field then yields

�(Ek + i0) = −mυ2
R

2
[1 − e−xx Ei(x) − iπe−xx] (61)

with Ea = h̄2/ma2, x ≡ Ek/Ea, and Ei(x) being the
exponential integral [34]. By substituting the low-energy
expansion of this result into Eq. (55) one may obtain the
on-shell 2D scattering amplitude for two spin-↑ fermions in
vacuum f↑↑,k′ (k) = −(2π )2m/2h̄2 〈k′| T↑↑(Ek + i0) |k〉:

f↑↑,k′ (k) = − 2πei(θ ′−θ )

Ek−δ
βEk/Ea

+ ln(Eae−γ /Ek ) + iπ
, (62)

where β = mυ2
R/2, δ = δ̄ − β, γ is the Euler-Mascheroni

constant, and Ea = h̄2/ma2. The scattering amplitude has
the genuine p-wave form. Being considered as a complex
function of the energy E it has a pole at

Ẽ = δ̃ + β̃Ẽ ln(Ẽeγ ) − iπβ̃Ẽ , (63)

where we have adopted the dimensionless quantities
Ẽ ≡ E/Ea, etc. This pole is a p-wave resonance at positive
detuning δ > 0 and a bound state of the two-channel
Hamiltonian (44) at δ < 0. In the relevant regime

β̃ = β/Ea 	 1 (64)

the resonance is narrow. The significance of this observation
will be clarified later. The position of the resonance is
shifted toward lower energies with respect to the bare
bound state level ε by the amount β. By recasting the bare
detuning (49) in the form δ̄ = μBg(B − B0) and, consistently,
δ = μBg(B − Bc) with

Bc = B0 + β/μBg, (65)

we plot schematically in Fig. 5 the (real) energy E of the pole
as a function of the magnetic field B over the whole range.
At B 	 Bc and B � Bc the function E (B) approaches the
asymptote E (B) = μBg(B − B0) (dashed line). In the narrow
resonance limit (64) one has E (0) = ε. The most interesting
phenomenon occurs at B → Bc, where the derivative

∂E

∂B
= − μBg

β̃ ln Ẽ
(66)

slowly approaches 0. A synthetic p-wave halo emerging from
the nominally s-wave bound state in this limit is the subject
of the next subsection.

FIG. 5. The pole E of the scattering amplitude f↑↑,k′ (k) as a
function of the magnetic field B. The full equation (61) for the pair
polarization bubble with β̃ = 0.5 has been used. At B > Bc only
the real part of E is shown. The dashed line indicates the asymp-
tote E (B) = μBg(B − B0). In the adopted scale the slow logarithmic
running of the tangent slope ∂E/∂B toward 0 at B → Bc is not
discernible.

B. Synthetic p-wave halo

Let us write the relative motion Hamiltonian Hrel which
can be used to obtain the truncated second-quantized version
(44) following the standard prescription

Ĥ = 〈�̂|Hrel |�̂〉 (67)

with 〈�̂| = (〈ψ̂↑↑| , 〈ϕ̂|), where the two components are the
projections onto |↑↑〉 and |m〉 = 1√

2
(|↑↓〉 − |↓↑〉) in the pair

spin subspace. The molecular field operator is just |ϕ̂〉 =
Ĉ↑↓ |ϕ〉. By noticing that the normalization relation for the
open-channel pair operators can be recast as

N̂↑↑ ≡ 〈ψ̂↑↑|ψ̂↑↑〉 = 1

2

∑
k

Ĉ†
↑↑,kĈ↑↑,k, (68)

we conclude that the proper expansion of ψ̂↑↑(r) = 〈r|ψ̂↑↑〉 in
terms of Ĉ↑↑,k should read as

ψ̂↑↑(r) = 1√
2S

∑
k

Ĉ↑↑,keikr. (69)

We thus find

Hrel =
(

Krel + V↑↑ �

�† δ̄ |ϕ〉 〈ϕ|
)

, (70)

where the operator � is given by Eq. (53). This form may
also be seen to provide the highlighted sector of the matrix
Hamiltonian shown in Fig. 3.

The relative motion Hamiltonian (70) possesses a synthetic
bound state corresponding to the real negative pole (63) of
the scattering amplitude f↑↑,k′ (k) found in Sec. V A. The two-
component wave function

|�〉 =
(|φ↑↑〉

|φ〉
)

(71)
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of this state is a solution of the eigenvalue problem with
E < 0:

(Krel + V↑↑) |φ↑↑〉 + � |φ〉 = E |φ↑↑〉 , (72a)

�† |φ↑↑〉 + δ̄ |ϕ〉 〈ϕ|φ〉 = E |φ〉 . (72b)

By using Eqs. (52) we obtain

|�〉 = 1√
1 + 〈ϕ| �†G2

↑↑(E )� |ϕ〉

(
G↑↑(E )� |ϕ〉

|ϕ〉
)

.

One can easily sea that

〈ϕ| �†G2
↑↑(E )� |ϕ〉 = −∂�(E )

∂E
,

where �(E ) is given by Eq. (58). On the other hand, �(E ) =
E − δ̄. We thus obtain that the quantity

w2 = (μBg)−1 ∂E

∂B
(73)

defines the relative weight of the bare bound state wave func-
tion in the composite state |�〉. According to Eq. (66), w → 0
as B → Bc.

In real space the composite state |�〉 can be written as

〈r|�〉 = |↑↑〉 ϒ(r) + 1√
2

(|↑↓〉 − |↓↑〉)wϕ(r), (74)

where ϒ(r) represents the wave function of the so-called
quantum halo [35]: A superposition of the continuum states
in the open channel due to coherent disintegration of the bare
molecule. The halo extends far beyond the tightly bound core
and carries an orbital angular momentum Lz = −h̄. Thus, for
the Gaussian ansatz (60) at B → Bc we obtain

ϒ(r) = w√
2π

mυR

h̄

a

r
(1 − e−r2/2a2

)e−iα, (75)

where r and α are the polar coordinates of the radius vector r.
Note that the logarithmic attenuation of w at the resonance is
compensated by the slow 1/r decay of the wave function (75)
at large distances, so that

2π

∫ λ

0
|ϒ(r)|2r dr → 1 (76)

as λ ∼ √
h̄/2mE → ∞ and the total probability is transferred

from the core to the halo.
The energy E (B) defined by Eq. (63) should not be con-

fused with the dissociation energy of the molecule. The
synthetic wave function (74) itself represents a partially dis-
integrated state, the halo being quantum superposition of the
continuum states in the open channel. Destruction of the cor-
relations responsible for the halo occurs when the thermal
energy kBT becomes comparable with the energy of the co-
herent SO link between the channels, the latter being on the
order of h̄υR/a. For the Bi2212 cuprate supercoductor where
signatures of strong SO coupling have recently been reported
[36], we estimate the corresponding temperature to be several
tens of K, which is comparable with the critical temperature
of such systems.

C. Topological BCS-BEC phase transition

The performed second quantization in the basis of pair
states grants an insight into the collective behavior of the
strongly paired SO coupled fermions in the vicinity of Bc.
Let us rewrite the Hamiltonian in terms of the familiar single-
fermion creation and annihilation operators â†

σ,p and âσ,p,

keeping only the molecular operators Ĉ†
↑↓ and Ĉ↑↓. Following

the considerations presented in Sec. IV C we obtain

Ĥ =
∑

k

(
h̄2k2

2m
− 1

2
μBgB − μ

)
â†

↑,kâ↑,k

+ (ε − 2μ)Ĉ†
↑↓Ĉ↑↓

+ 1

2S

∑
k,k′

â†
↑,k′ â

†
↑,−k′V↑↑(k′ − k)â↑,−kâ↑,k

−
∑

k

h̄�(a)(k) · [s↓↑φ∗(k)Ĉ†
↑↓â↑,−kâ↑,k + H.c.].

(77)

Just like the weakly paired BCS model under the magnetic
field and SO coupling has been shown to map onto a spinless
(i.e., one-component) p-wave BCS superfluid [6] [see Sec. III
and Eq. (17)], we find that the strongly paired molecular BEC
at B → Bc maps onto a spinless resonant p-wave superfluid.
The Hamiltonian (77) is the so-called Fano-Anderson model
[27,28] successfully employed for investigation of ultracold
Fermi gases with Feshbach-resonant interactions [31]. The
role of the coherent Feshbach link in our case belongs to the
SO coupling. In contrast to the BCS side of the bare crossover
discussed in Sec. III, here both weak- and strong-pairing
regimes are accessible upon variation of the magnetic field
across Bc. The effectively broken time-reversal symmetry and
p-wave-like momentum dependence of the coherent coupling
between the channels render that latter crossover a canonical
topological phase transition [17]. Again, this transition has
also been extensively discussed in the literature [18,31,37].

The obtained mapping (77) in its own right should, there-
fore, be regarded as an important insight into the problem
under consideration and the main result of our paper. Here, we
shall only sketch a straightforward way to proceed with the
many-body treatment of Eq. (77) by using the standard Bo-
goliubov prescription. For simplicity, we neglect the repulsive
background potential V↑↑(r) and assume zero temperature.
The bound pairs then form a Bose-Einstein condensate and
the corresponding operator may be replaced by a c-number

Ĉ↑↓ → C↑↓ (78)

with |C↑↓|2 = N/2, N being the total (even) number of the
condensed fermions. We are interested in the in-medium pair
wave function (19) which can be expressed via the Bogoli-
ubov coefficients u↑,k and υ↑,k by Eq. (20), where we should
substitute the gap �−− by

h̄�(a)(k) · s↑↓φ(k)C↑↓ ≈ h̄υRa

2
√

π
C↑↓ike−iθ

at low k and put h̄ω(p) = μBgB in the definition of the quasi-
particle energy (13). As before, we have assumed Eq. (8) for
the effective SO field �(k) and used the Gaussian ansatz (60).
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For −μBgB < 2μ < ε we recover the long-distance behavior
obtained in Sec. III for the BCS regime:

g↑↑(r) ∝
√

N
e−iα

r
, (79)

which we can now associate directly with the analogous
asymptote for the quantum halo (75) in vacuum. Hence, the
Cooper pairs possess synthetic angular momenta. The Pfaffian

Pf

(
1

zi − z j

)
(80)

with zi = xi + iyi defines the long-distance behavior of the
many-body wave function �(r1, . . . , rN ). Being multiplied by
the composite-fermion “tail” carrying two vortices it becomes
the Moore-Read state for the filling factor 5

2 in the FQHE [17].
As μ hits ε/2, the Cooper pairs start to convert into the

tightly bound molecules of the pairing potential V↑↓(r). From
now on, the chemical potential μ is pinned to the discrete level
ε/2 and a regime 2μ � −μBgB can be reached. This should
be contrasted with Sec. III. The pair wave function g↑↑(r) now
decays exponentially. At the point 2μ = −μBgB the excita-
tion spectrum is gapless and the Bogoliubov coefficients u↑,k

and υ↑,k considered as a map from the k space to the space of
two real parameters2 change their so-called homotopy class.
A topological phase transition takes place.

A transition of this kind has already been anticipated in
an earlier numerical study [11] and the linear scaling of the
critical field Bc with the binding energy |ε| has been reported.
Our conclusions are in line with those results. The coexistence
region interpreted in terms of an interplay between the pop-
ulation imbalance and SO coupling [38] may tentatively be
associated with the resonant BCS-BEC crossover at ε = 2μ >

−μBgB in our approach (not to be confused with the bare
crossover specified in Sec. II). In the course of such crossover
the topologically nontrivial Cooper pair condensate coexists
with the molecular BEC.

A noteworthy qualitative difference of the model (77) from
the analogous constructions employed for genuine p-wave
superfluids [31] is the synthetic origin of the angular momen-
tum. The bare molecules are s wave. Hence, the topological
BCS-BEC transition is accompanied by suppression of the
“pseudorotation” of the condensate. According to Sec. V B,
on the BEC side the angular momentum may persist due to
the quantum halos in the immediate vicinity of Bc. It is an
interesting open question if the critical (quantum) fluctuations
may render the behavior of the synthetic angular momentum
first order.

Finally, we note that the model (77) becomes particularly
useful in the narrow resonance limit (64) where one may
expect an arbitrarily accurate perturbative solution controlled
by powers of the small parameter β̃ [31].

D. Relation to the projected BCS model

We would like to compare the Hamiltonian (44) with
Eqs. (12) and (17) obtained in the weak-pairing limit. By
using Eq. (35) for the molecular operator Ĉ↑↓ we may identify

2We recall that |u↑,k|2 + |υ↑,k|2 = 1 and only the relative phase of
u↑,k and υ↑,k matters.

the second term in Eq. (44) with the weak attraction due to the
separable force (9):

ε ≡ ε, (81a)

χ (k) ≡ φ(k). (81b)

With this identification the (positive) shift of the scat-
tering threshold in the singlet channel with respect to the
lower-energy triplet channel induced by the Zeeman splitting
amounts to the replacement ε → δ̄. We set V↑↑(r) ≡ 0 and
write the Hamiltonian (44) in the form

Ĥ = Ĥ (↑↑)
BCS + (δ̄ − 2μ)Ĉ†

↑↓Ĉ↑↓ (82)

with

Ĥ (↑↑)
BCS = 1

2

∑
k

(
h̄2k2

m
− 2μ

)
Ĉ†

↑↑,kĈ↑↑,k

−
∑

k

h̄�(a)(k) · s↑↓φ(k)Ĉ†
↑↑,kĈ↑↓ − H.c. (83)

In the BCS limit the detuning δ̄ [Eq. (49)] is positive and large,
i.e., δ̄ ≈ μBgB � |ε|. One can then easily see that the second
term in Eq. (83) is identical to the anomalous part in Eq. (17).
The first term in Eq. (83) is just the kinetic energy in the lowest
single-particle band (see Sec. IV C). This way, we identify the
Hamiltonian Ĥ (↑↑)

BCS with the projected BCS model Ĥ (−−)
BCS .

Furthermore, we may take advantage of Eq. (46b) to elim-
inate the molecular operator Ĉ↑↓ in favor of the free-pair
operator Ĉ↑↑,k from Eq. (82). We obtain the first line in
Eq. (12) and our argument on the effective p-wave attraction
represented by Eq. (16) follows immediately.

The form (82) also suggests different origins of the pairing
instability at μBgB � |ε| as compared to the B → 0 limit
of Eq. (21) considered in the earlier works [1]. In that latter
case the instabilities in the SO-split chiral bands are due to
the usual mechanical attraction V↑↓(r) between the k and
−k fermions with opposite spins pointing along the effective
fields shown in Fig. 1. In the frame of the Fano-Anderson
model (82), in contrast, the effective attraction is due to the
virtual spin flips linking the spin-↑ polarized continuum to
the far-positively detuned discrete level.

E. Experimental implementation

Recently, convincing arguments in favor of the BEC-BCS
crossover phenomenology have been provided for high-
temperature cuprate superconductors [30]. In the frame of the
model (1) the cuprates seem to be in the strong-pairing BEC
regime. Spin and angle-resolved photoemission spectroscopy
(ARPES) of the prototypical Bi2212 (Bi2Sr2CaCu2O8) sam-
ple has revealed spin textures in the Brillouin zone [36] akin
to the Rashba-type arrangement of the SO field shown in
Fig. 1. We suggest, therefore, that the cuprates may natu-
rally realize the strong fermionic pairing under SO coupling
touched upon in our work. A challenging issue beyond our
generic consideration would be an interplay of the Zeeman
splitting comparable with the binding energy (on the order of
the characteristic “pseudogap” temperature) and the antiferro-
magnetic order specific for such systems.

The dilute and even mesoscopic regime of the Fano-
Anderson model (77) may potentially be implemented with
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the ultracold atoms under the synthetic SO coupling. The
time-of-flight technique [39] in combination with the spin-
injection spectroscopy [40] could provide access to all key
characteristics of the synthetic p-wave halo and resonance.
These are the presence of the orbital momentum, the unique
nonlinear dependence of the energy E on the magnetic field
B shown in Fig. 5 [compare with the linear growth of E (B)
measured in a 3D sample [39]], the linear scaling of the
resonance width with E (as opposed to the ∝E3/2 dependence
in 3D [39]) and the mixed spin structure of the state (74).
Besides, high-resolution fluorescence measurements recently
applied to a quasi-2D Fermi gas [41] could be used to image
the halo wave function (75). The pristine Rashba form of the
SO coupling (8), however, yet remains to be achieved in a 2D
atomic setting [24].

VI. SUMMARY AND OUTLOOK

We have proposed an alternative formulation of the prob-
lem of 2D fermion pairing under SO coupling in terms of
the second-quantized pair Hamiltonian. In this picture the
effective SO field performs coherent switching between the
two-body scattering channels labeled by the projection of
the pair spin Sz. For a spin-singlet bound state interference of
the quantum amplitudes for k and −k produces a Feshbach-
type decay governed by the antisymmetric field �(a)(k)
[Eq. (14)]. For the physically relevant Dresselhaus [Eq. (7)] or
Rashba [Eq. (8)] types of SO coupling the field �(a)(k) does
not depend on the c.m. momentum K of the pair [Eq. (43)].

An appealing scenario is realized at high transverse
magnetic fields B in the strong-pairing limit, wherein the
lowest-energy Sz = +1 channel comes into resonance with
the tightly bound state of Sz = 0. Our model predicts forma-
tion of p-wave quantum halos and a topological BCS-BEC
phase transition as B is tuned across the critical value Bc de-
fined by Eq. (65). The obtained linear dependence of Bc on the
binding energy is in agreement with the previous numerical
studies [11].

Formally, our main result is demonstration of the mapping
of the problem in the strong-pairing regime onto the Fano-
Anderson model (77) for which the well-established solutions
are known. The many-body physics then proves to be almost
identical to that of resonantly paired p-wave Fermi superflu-
ids [31]. A difference is the synthetic origin of the angular
momentum in our case. Emergence of the angular momentum
for Cooper pairs may be interpreted similarly to the formation
of quantum halo in vacuum: the bare s-wave bound state
becomes dressed by the polarized Fermi sea due to the SO
coupling. Conversely, the SO coupling to the bound state
produces an effective p-wave attraction for the lower-energy
polarized continuum. Such “pseudorotation” of the conden-
sate disappears on the BEC side of the topological transition,
where one is left with the BEC of the bare s-wave molecules.

It would be interesting to see if the quantum fluctuations may
result in abrupt jump of the synthetic angular momentum (i.e.,
render the transition first order).

Another noteworthy direction for future research is to su-
perimpose the SO-induced resonant coupling with a natural
s-wave resonance in the bare potential (the regime with ε > 0
and finite width �, see Sec. II). Such model may apply to
ultracold atomic mixtures with the usual Feshbach-resonant
interactions and artificially created SO coupling. Particular
interest represents the case ε � 2μ � μBgB. In the limit of
vanishing natural width of the resonance � → 0, an instability
of the Fermi sea would be uniquely due to the SO coupling.
In contrast to the two-channel model given by Eq. (77), here
both spin components would experience weak synthetic p-
wave attraction. At zero magnetic field B = 0 the resulting
state would be analogous to the hypothetic planar phase of
the superfluid He3 in thin films [42]. The phenomenology at fi-
nite B and � would follow closely that of polarized resonantly
paired Fermi mixtures [43], except that the inter-component
s-wave pairing would be supplemented with the synthetic p-
wave pairings in each spin component. In contrast to He3, the
relative strengths of attraction in different channels here could
be tuned by varying ε and the magnitude of the SO coupling
υR. We now turn again to our result (43) to notice that the syn-
thetic p-wave pairing would not be affected by the finite c.m.
momenta K of the pair. As such, one may speculate on pos-
sible existence of a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
phase [44,45] with nontrivial topological properties. We note
that the already existing proposals of topological FFLO su-
perfluidity under SO coupling rely on the pairing within a
single branch and require an in-plane magnetic field [46], so
that further investigations along the lines suggested here could
potentially add a new dimension to this interesting topic.

We have also implicitly encountered the folded-resonance
scenario in our recent study of bosonic pairing [26]. The
SO-coupled depairing of a bosonic molecule was shown to
be greatly enhanced at the s-wave unitarity, to the extent that
the pair-breaking excitation spectrum developed a roton-like
minimum signaling a transition to a striped phase. The
affinity of this phase to the spontaneous exciton supercurrent
at the biexciton Mott transition in high magnetic fields was
also discussed [47]. The consideration of fermionic pairing
presented here complements those studies and enlarges the
scope of the subject.
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