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Surface state of the interorbital pairing state in the Sr2RuO4 superconductor
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We study the (001) surface state of a recently proposed Eg symmetry interorbital-odd spin-triplet s-wave
superconducting (SC) state in Sr2RuO4. We confirm that this pair potential is transformed into a chiral d-wave
pair potential and a pseudo-Zeeman field in the band basis for a low-energy range. Because of the chiral d-wave
pair potential, the surface states appear near zero energy in the momentum range enclosed by the nodal lines of
the chiral d-wave pair potential for each band at the (001) surface. Nevertheless, the pseudo-Zeeman field gives
band splitting of the surface states, and its splitting energy is much smaller than the SC energy gap. The local
density of states (LDOS) at the (001) surface of the SC state has a pronounced peak structure at zero energy
because of the surface states near zero energy when the order of the resolution is lower than the splitting energy.
This peak structure is robust against perturbations, such as an orbital Rashba coupling or an Eu SC pair potential
at the surface.
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I. INTRODUCTION

The superconducting (SC) symmetry in Sr2RuO4 (SRO)
has been a central issue in condensed-matter physics since
its discovery [1]. Spin-triplet chiral p-wave (kx + iky wave)
was long considered the leading candidate for SC symmetry
because of the observations of the constant spin-susceptibility
(NMR [2] and neutron scattering [3]) and time-reversal sym-
metry breaking (TRSB) (μSR [4] and Kerr effect [5]). In
addition, numerous theoretical studies have supported the
realization of the kx + iky-wave state [6–19]. Recently, how-
ever, Pustogow et al. [20] pointed out that there had been
a heating issue in the previously reported NMR experiment.
When this problem was solved, spin susceptibility under an
in-plane magnetic field was suppressed at temperatures below
Tc in both NMR and μSR measurements [20–23]. These re-
cent results appear to be inconsistent with the kx + iky-wave
state. However, ultrasound and thermodynamics experiments
suggest multiple degenerate-order parameters [24–26], and
several theoretical studies focused on the two-component
order parameters with TRSB in SRO have been reported
[27–37]. In general, TRSB SC states are composed of two
different components that belong to two different irreducible
representations (irreps) or to the same irrep. In cases where
two different irreps are mixed, the possibility of certain com-
binations has been proposed, such as s′ + idx2−y2 wave [28],
dx2−y2 + igxy(x2−y2 ) wave [29–32], and s + idxy wave [33,34].
However, in the same irreps case, the allowed pair symmetry
has been reported to be only Eg irrep by Refs. [20–23] in
D4h [38]. The most simple basis function of Eg symmetry
is the kz(kx + iky) wave (i.e., the chiral d-wave). However,
this simple chiral d-wave pairing forms Cooper pairs between
the electrons in different layers of an SRO crystal, which
has a nearly two-dimensional electronic structure; therefore,
the formation of such Cooper pairs has been considered
difficult. Nevertheless, when the orbital degree of freedom

is considered, on-site Eg SC pairing states, which can re-
solve the aforementioned problems, are possible. Actually,
an interorbital-odd spin-triplet s-wave pairing state in the Eg

irrep has recently attracted attention [35–37]. This pair has an
energy-gap structure similar to that of a chiral d-wave pairing
but differs in that it has a Bogoliubov Fermi surface. This state
is one of the most promising candidates because it can explain
the μSR experiments under both hydrostatic pressure [39] and
in-plane uniaxial strain [40].

In this paper, we calculate the dispersion of the surface
state and the local density of states (LDOS) at the (001)
surface (hereafter referred to as the top surface) of the Eg

interorbital SC state by the recursive Green’s function formula
[41]. The surface states appear near zero energy with splits
by a much smaller energy scale than that of the SC gap. The
physical origin of this surface state can be understood by an
effective low-energy Hamiltonian characterized by an effec-
tive chiral d-wave pair potential and a pseudo-Zeeman field.
As a result, the LDOS has a pronounced zero-energy peak
when the order of the resolution is lower than the splitting
energy. This peak structure is robust against perturbations at
the top surface, such as an orbital Rashba coupling or a chiral
p-wave SC pair potential.

II. ANALYTICAL DESCRIPTION

A. Model Hamiltonian

Let us start with a model Hamiltonian for an interor-
bital superconducting state of SRO, as originally proposed in
Ref. [36]. We focus on the t2g orbitals of the Ru ions (i.e., the
dyz, dzx, and dxy orbitals), which dominate the bands near the
Fermi level. The corresponding Bogoliubov-de Gennes (BdG)
Hamiltonian is given by

H = 1

2

∑
k

�
†
k Ȟ (k)�k (1)
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with

Ȟ (k) =
(

ĤN (k) �̂(k)
�̂†(k) −ĤT

N (−k)

)
, (2)

and

�
†
k = (C†

k,CT
−k),

C†
k = (c†

k,↑,yz, c†
k,↑,zx, c†

k,↑,xyc†
k,↓,yz, c†

k,↓,zx, c†
k,↓,xy), (3)

where c†
k,σ,χ

creates an electron with momentum k and spin σ

in orbital χ . The normal-state Hamiltonian is described by

ĤN (k) =
(

ξ̄ + λ̄0 + λ̄3 λ̄1 + iλ̄2

λ̄1 − iλ̄2 ξ̄ + λ̄0 − λ̄3

)
,

ξ̄ =
⎛
⎝ξyz 0 0

0 ξzx 0
0 0 ξxy

⎞
⎠, λ̄0 =

⎛
⎝ 0 h10 h20

h10 0 h30

h20 h30 0

⎞
⎠,

λ̄ j=1,2,3 =
⎛
⎝ 0 −ih4 j −ih5 j

ih4 j 0 −ih6 j

ih5 j ih6 j 0

⎞
⎠, (4)

where ξ̄ + λ̄0 contains the spin-independent hopping inte-
grals and the chemical potentials and λ̄ j=1,2,3 describe the
interorbital spin-orbit couplings. The explicit forms of the
matrix elements hi j and the corresponding band parameters
are summarized in Appendix A. The proposed interorbital pair
potential associated with the Eg irrep is denoted by

�̂ =
(

0 �̄

�̄ 0

)
, �̄ = �

(
L̄x + iL̄y

)
,

L̄x =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠, L̄y =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (5)

where L̄x and L̄y are the orbital angular momentum operators
in the orbital space and � (� 0) denotes the magnitude of the
pair potential. We assume that � is constant with respect to k.
The present pair potential describes spin-triplet superconduc-
tivity, where the d vector is directed along the c axis of SRO.
Notably, this interorbital superconducting state is stabilized by
the spin-orbit couplings of h53 and h63 [36].

B. Approximate low-energy Hamiltonian

In this subsection, we derive an approximate Hamiltonian
that enables us to grasp the essential properties of the present
model. For this purpose, although we lose quantitative accu-
racy, we treat the interorbital hybridizations of λ̄i=0,1,2,3 as the
perturbation. On the basis of the second-order perturbation
theory, we can deform the Hamiltonian in an approximate
band basis as

ǔ†Ȟ (k)ǔ =

⎛
⎜⎝
H̆α V̆αβ V̆αγ

V̆βα H̆β V̆βγ

V̆γα V̆γ β H̆γ

⎞
⎟⎠ + O(λ3), (6)

with

H̆ν =
(

ε̃ν ψ̃ν

ψ̃†
ν −ε̃ν

)
,

ε̃ν = ενσ̃0, ψ̃ν = ψν (iσ̃2), (7)

and

V̆νν ′ =
(

0 D̃νν ′

−D̃∗
νν ′ 0

)
,

D̃νν ′ = (ψνν ′ + dνν ′ · σ̃ )(iσ̃2),

dνν ′ = (d1,νν ′ , d2,νν ′ , d3,νν ′ ), (8)

for ν, ν ′ = α, β, and γ , where σ̃ = (σ̃1, σ̃2, σ̃3) and σ̃0 rep-
resent the Pauli matrices and the unit matrix in pseudospin
space, respectively, and O(λn) represents the Landau symbol
with respect to the nth order of the matrix elements in λ̄i. The
explicit forms of the matrix elements and the unitary operator
ǔ are given in Appendix B. We construct the unitary matrix
ǔ to diagonalize the normal-state Hamiltonian ĤN within the
second-order of λ̄i. In addition, the diagonal components of
εα , εβ , and εγ give the kinetic energies of three different
bands, which constitute three separated Fermi surfaces. Thus,
the unitary transformation in Eq. (6) changes the basis of the
Hamiltonian from the original orbital basis to the approximate
band basis. Then, ψν,ν ′ iσ̃2 and dν,ν ′ · σ̃iσ̃2 (dν,ν = 0) are the
spin-singlet and -triplet pair potentials, respectively. Param-
eters d1,νν ′ , d2,νν ′ , and d3,νν ′ are the x, y, and z components
of the d vector, respectively. These pair potentials have mo-
mentum dependence even though the original pair potential
does not. To check the validity of this approximation, we
show the Fermi surfaces in the approximate band basis and
the numerical band basis, which are obtained by the numerical
diagonalization of the normal-state Hamiltonian in Figs. 1(a)
and 1(b). In Fig. 1, the lattice constant of the conventional
unit cell in the in-plane directions and the z direction are
represented by a and c, respectively, and c is twice the distance
between nearest-neighbor layers. The approximate Fermi sur-
faces (dotted lines) and the numerical Fermi surfaces (solid
lines) nicely correspond. Figure 1(c) shows the numerical
Fermi surfaces projected onto the surface Brillouin zone (BZ).
The dashed and dotted lines indicate the Fermi surfaces at
kzc = 0 and kzc = 2π , respectively. As we will show later,
the property of the projected Fermi surfaces is related to the
emergence of the low-energy surface states at the top surface.

We here proceed with a further approximation to construct
a low-energy effective Hamiltonian for each band. According
to the argument in Refs. [36,42–44], the low-energy excitation
in the vicinity of the Fermi surface of the ν band can be
evaluated by

H̆eff
ν = H̆ν +

∑
ν ′ �=ν

V̆†
ν ′ν τ̆zV̆ν ′ν

εν − εν ′
, (9)

where τ̆z = diag[1, 1,−1,−1]. A detailed derivation of
Eq. (9) is presented in Appendix B. Eventually, we obtain the
low-energy effective Hamiltonian for the ν-band within the
second-order perturbation of λ̄i,

H̆eff
ν =

[
h̃ν (k) ψ̃ν (k)
ψ̃†

ν (k) −h̃T
ν (−k)

]
,

h̃ν = (εν − γν )σ̃0 + mν · σ̃, (10)
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(a) (b) (c)

FIG. 1. (a) The Fermi surface at kzc = 0, where the arrow shows the kd a axis, which is the diagonal line on the kxky plane. (b) The kz

dependence of the Fermi surface on the kd a line shown in (a). Solid lines are in the approximated band basis, and dotted lines are in the
numerical band basis. (c) The numerical Fermi surface projected into the surface Brillouin zone in the range enclosed by the square shown in
(a). Dotted and dashed lines show the numerical Fermi surface at kzc = 2π and kzc = 0, respectively.

with

γν =
∑
ν ′ �=ν

|ψν ′ν |2 + |dν ′ν |2
εν − εν ′

, (11)

mν =
∑
ν ′ �=ν

2Re[ψν ′νd∗
ν ′ν] − idν ′ν × d∗

ν ′ν

εν − εν ′
, (12)

where γν describes the modulation in the kinetic energy and
mν represents the pseudo-Zeeman potential.

We now describe the essential properties of the present
model, which is clarified using the effective low-energy
Hamiltonian H̆eff

ν . Remarkably, the effective pair potential ψν

acting on each band can be decomposed as

ψν = Xν (k) + iYν (k), (13)

where the real functions of Xν (k) and Yν (k) obey

Xν (−kx, ky, kz ) = Xν (kx, ky,−kz ) = −Xν (k),

Xν (kx,−ky, kz ) = Xν (k), (14)

and

Yν (kx,−ky, kz ) = Yν (kx, ky,−kz ) = −Yν (k),

Yν (−kx, ky, kz ) = Yν (k), (15)

respectively. (See also Eq. (B101) in Appendix B). The pair
potential of ψν has both real and imaginary parts, where the
real (imaginary) part of the pair potential, i.e., Xν (Yν), is
an odd function with respect to kx (ky), even function with
respect to ky (kx), and odd function with respect to kz. Thus,
the pair potential of ψν has the symmetry property equivalent
to the chiral d-wave gap function, i.e., � ∝ kz(kx + iky). This
implies that the effective pair potential ψν has chiral d-wave
pairing symmetry similar to the kz(kx + iky)-wave pair po-
tential. The pair potential vanishes at kzc = 0 and kzc = 2π .
Thus, in the absence of the pseudo-Zeeman potential (i.e.,
mν = 0), H̆ν exhibits the line nodes at kz = 0 and kzc = 2π ,
where the location of the line nodes corresponds to the dashed
and dotted lines in Fig. 1(c). In addition, the pair potential
has mirror-odd nature with respect to kz [i.e., ψν (kx, ky, kz ) =
−ψν (kx, ky,−kz )], which enables us to expect the formation

of low-energy surface states at the top surface [44–52]. More-
over, it has been already shown that, for a kz(kx + iky)-wave
superconductor, we obtain topologically-protected flat-band
zero-energy surface states at the top surface [45,53–55]. More
specifically, the relevant topological invariant predicts that
the flat-band zero-energy surface states appear at momenta
enclosed by the nodal lines in the surface BZ (see also the
detailed discussion in Appendix D). Thus, on the basis of
the analogy between the kz(kx + iky)-wave superconductor
and the present superconductor characterized by the effective
chiral d-wave pair potential, we expect that, if the pseudo-
Zeeman potential is absent, flat-band zero-energy surface
states will appear in the momentum range enclosed by the
dashed and dotted lines in Fig. 1(c). Nevertheless, in the
present model, the emergence of the pseudo-Zeeman potential
is inevitable. The energy eigenvalue of H̆eff

ν is given by

E±,s = ±Ecd + s|mν |,
Ecd =

√
(εν + γν )2 + |ψν |2, (16)

for s = ±. The pseudo-Zeeman potential clearly shifts the
bands of ±Ecd, which originally exhibit the line nodes at
momenta satisfying εν + γν = 0 and |ψν | = 0. In particular,
the line nodes in E+,− = Ecd − |mν | and E−,+ = −Ecd + |mν |
are inflated to the Bogoliubov-Fermi surfaces by the pseudo-
Zeeman field [42,43]. Moreover, we infer that exact flat-band
zero-energy surface states can no longer exist because of the
energy splitting from the pseudo-Zeeman field. Even so, the
energy splitting in the surface states would be substantially
smaller than � because the pseudo-Zeeman potential |mν | is
proportional to �2.

Summarizing the previous discussion, we can expect the
present model to display nearly zero-energy surface states
at the top surface in the momentum range enclosed by the
dashed and dotted lines in Fig. 1(c), where the energy splitting
of the surface states is due to the pseudo-Zeeman potential
mν ∝ �2. In the next section, we will confirm this statement
by examining the surface energy dispersion and the surface
LDOS numerically.
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III. DETAILED PROPERTIES OF SURFACE STATES

A. Recursive Green’s function techniques

In this section, we consider the open boundary condition
in the z direction and the periodic boundary condition in the
x and y directions to calculate the surface Green’s function
for the semi-infinite system. In addition, we consider flat
surfaces and do not consider surface reconstructions. Then,
the momentum parallel to the surface k‖ ≡ (kx, ky) becomes a
good quantum number, and the problem is reduced to a one-
dimensional problem along the z direction at each momentum
k‖. The BdG Hamiltonian Ȟ (k) in Eq. (2) includes interlayer
hopping up to the next-nearest layer. Thus, the Hamiltonian
of a system with n layers stacked in the z direction can be
written as

Hn(k‖) =
n∑

j=1

∑
α,β

C†
j,α,k‖ {h0(k‖)}α,βCj,β,k‖

+
n−1∑
j=1

∑
α,β

[C†
j,α,k‖ {t1(k‖)}α,βCj+1,β,k‖ + H.c.]

+
n−2∑
j=1

∑
α,β

[C†
j,α,k‖ {t2(k‖)}α,βCj+2,β,k‖ + H.c.],

(17)

where α and β denote the internal degrees of freedom: spin,
orbital, and particle-hole; C†

j,α,k‖ and Cj,α,k‖ are the creation
and annihilation operators at the jth site in the z direc-
tion, respectively, and h0(k‖) and t1(2)(k‖) are the intralayer
element and the interlayer hopping between the (next) nearest-
neighbor layers of the Hamiltonian, respectively.

To obtain the surface Green’s function of the top layer, we
use the recursive Green’s function technique. By formulat-
ing the recursion relation using the Möbius transformation,
we can calculate the surface Green’s function in a semifi-
nite system [41]. This technique is developed for the
system with up to nearest-neighbor hopping, whereas the
Hamiltonian in Eq. (17) includes next-nearest-neighbor hop-
ping. Thus, we treat the n-layers system as the n′(=
n/2)-layers system by treating two adjacent original layers as
a single layer. The Green’s function of the 2n′-layers system
is given by Gn′

(z, k‖) = [zI − H2n′ (k‖)]−1. Then, the (n′, n′)
and (n′ − 1, n′ − 1) components of the Green’s functions Gn′

n′

and Gn′
n′−1 satisfy the next equation,

Gn′
n′ (z, k‖) = [

zI − h(k‖) − t†(k‖)Gn′
n′−1(z, k‖)t (k‖)

]−1
, (18)

where z = ε + iδ and I is the unit matrix. Parameter ε is a
real frequency, and δ is an infinitesimal imaginary part. Here,
h(k‖) and t (k‖) are given by

h =
(

h0 t1
t†
1 h0

)
(19)

and

t =
(

t2 0
t1 t2

)
, (20)

respectively. By taking the limit n′ → ∞ with the Möbius
transformation, we obtain the top-surface Green’s function
for the semi-infinite system [41], ġs = limn′→∞ Gn′

n′ , where
ġs is a 24×24 matrix with the orbital, spin, particle-hole,
and layer degrees of freedom. The details are given in
Appendix C. The energy dispersion of the surface states
within the bulk energy gap can be determined by examining
the poles of the Green’s function. Thus, we can obtain the
dispersion of the surface state from the pole of ġs. In the same
manner, we can obtain the bottom-surface Green’s function,
ġs,btm = limn′→∞ Gn′

1 from Gn′
1 = [zI − h − tGn′

2 t†]
−1

. From
ġs and ġs,btm, we can obtain the Green’s function in the bulk,

ġ = (zI − h − t†ġst − t ġs,btmt†)
−1

. (21)

The LDOS of the top surface Ns(ε) and the DOS of the
bulk N (ε) are given by

Ns(ε) = −1/N
∑
k‖,i

1/π [Imġs
ii(k‖, ε)], (22)

N (ε) = −1/N
∑
k‖,i

1/π [Imġii(k‖, ε)], (23)

respectively. Here, we take the summation of i within the
electron part in the one layer. Parameter N is the number of
sites in the xy plane.

B. Surface energy spectrum

First, we consider the energy dispersion on the diagonal di-
rection of the surface BZ. We choose � to be the same order of
Tc in SRO. � = |t (xy,xy)

z ×10−4|, where t (xy,xy)
z = −262.4 meV

is an interlayer hopping parameter shown in Appendix A.
Figures 2(a)–2(c) show the dispersion of the surface states by
the solid lines and the continuous energy levels in the bulk
by the shaded areas for the α, β, and γ bands, respectively.
The surface states at the momentum between the points where
the SC gap closes are very close to zero energy [56]. In
addition, the surface states are not exactly at zero energy, as
shown in Figs. 2(d)–2(f), when viewed at a higher energy
resolution. Parameters δEα,β,γ in Figs. 2(d)–2(f) show the
width of the band splitting at each representative point on the
kd a line for the α, β, and γ bands, respectively. As shown
in Fig. 3, the � dependence of δEα,β,γ is proportional to
�2. We demonstrate that the presence of nearly zero-energy
surface states is due to the effective chiral d-wave-symmetry
pair potential, whereas the tiny energy splitting proportional
to �2 is inevitable because of the pseudo-Zeeman potential,
as shown in the previous section.

C. Surface local density of states

Second, we calculate momentum-resolved LDOS at ε = 0,
−1/π

∑
i Imġs

ii(k‖, 0). Figures 4(a), 4(e), and 4(i) show color
plots of the momentum-resolved LDOS in the range shown
in Fig. 1(c). In Figs. 4(a-d), 4(e-h), and 4(i-l), we choose δ =
�×10−2, �×10−5, and �×10−7, respectively. The parameter
of δ characterizes the resolution of the LDOS with respect
to the energy; roughly speaking, the variations in the LDOS
within the energy range of δ are smeared. Figures 4(b)–4(d),
4(f)–4(h), and 4(j)–4(l) show enlarged maps surrounded by
the squares in Figs. 4(a), 4(e), and 4(i), respectively. The
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(a) (d)

(b) (e)

(c) (f)

FIG. 2. The surface states in the (a) α, (b) β, and (c) γ bands.
Solid lines are the surface state, and shaded areas are the continuous
energy levels in the bulk. The surface states between the dotted and
dashed lines are shown in Fig. 1(c) in a tiny energy range for (d) α,
(e) β, and (f) γ bands. δEα,β,γ are the width of the band splitting at
kd a = 3.27, 2.58, 2.80.

dotted and dashed lines show projected Fermi surface at
kzc = 0 and kzc = 2π onto the surface BZ, respectively. For
δ = �×10−2, the spectral weight increases at the momenta
between the dotted and dashed lines for the β and γ bands.
The spectral weight for the α band is weaker than those for
the other bands. One reason for this weak spectral weight
might be the longer localization length of the surface state
due to the smaller bulk energy gap in the momentum range
enclosed by the dotted and dashed lines for this band. Even
outside the enclosed range, a weak spectral weight is observed
near the dashed line. This spectral weight arises from the
inner-gap surface states outside of the enclosed momentum
range, whose energy dispersion becomes closer to zero energy
as the momenta approaches the dashed lines, as shown in
Fig. 2(a). The γ band also has the inner-gap surface states
outside the enclosed momentum range, as shown in Fig. 2(c).
However, these surface states are further from the zero en-
ergy than those of the α band. When δ is set to a value

FIG. 3. Common logarithm plot of the � dependence of δEα,β,γ

shown in Figs. 2(d)–2(f). The dotted line is proportional to �2.
�0 = |t (xy,xy)

z ×10−4|.

close to the splitting energy scale shown in Figs. 2(d)–2(f),
the obtained spectral weight inside the momentum range en-
closed by the dotted and dashed lines clearly increases in each
band in Figs. 4(e)–4(h). For δ values much smaller than the
splitting energy scale, the spectral weight at zero energy be-
comes weaker, as shown in Figs. 4(i)–4(l), because no surface
states exist within the energy range less than δ, as shown in
Figs. 2(d)–2(f).

Figures 5(a) and 5(b) show the DOS of the bulk and the
LDOS at the top surface, respectively, where we take � =
|t (xy,xy)

z ×10−4| and δ = �×10−2. The DOS and the LDOS are
normalized by those values at the Fermi energy in the normal
state denoted by Nn and Ns

n , respectively. As a result of the
momentum-resolved LDOS for ε = 0 shown in Fig. 4(a), a
pronounced peak structure appears in the LDOS of the top
surface at ε = 0, in contrast to the V-shaped structure in the
DOS of the bulk. As we have explained, the surface state is
not exactly at zero energy. Therefore, if we take a sufficiently
small δ to distinguish the surface state energy level shown
in Figs. 2(d)–2(f), the peak structure splits. However, such a
small resolution is challenging in actual experiments.

D. Eu-symmetry perturbations

Finally, we study the stability of the zero-energy peak of
the LDOS against the perturbations due to inversion sym-
metry breaking, which is inevitable near the surface; such
perturbations include orbital Rashba coupling that induces the
Rashba-type spin-orbit coupling through the L · S coupling
[57,58] or an Eu symmetry SC pair potential. For the former
case, we introduce the orbital Rashba coupling described by

Ĥso = 2tso(L̄yσ̃0 sin(kxa) + L̄xσ̃0 sin(kya)) (24)

at the top surface. This coupling originates from the hopping
integral due to the shift of the oxygen sites. In the bulk, O and
Ru atoms are on the same plane due to the balance of forces
from the upper and lower planes. On the other hand, on the
(001) surface, only the force from the lower planes acts, so the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 4. The momentum-resolved LDOS at ε = 0 in the momentum range shown in Fig. 1(c) for (a) δ = �×10−2, (e) δ = �×10−5, and
(i) δ = �×10−7. [(b)–(d), (f)–(h), (j)–(l)] Enlarged maps for (a), (e), and (i) for each band in the range surrounded by the squares, respectively.
Dotted and dashed lines show the Fermi surface at kzc = 2π and kzc = 0, respectively.

z coordinates of O and Ru are different due to the difference
in bonding strength. Then, the coupling between px − (py−)
orbitals in oxygens and the yz − (xz−)orbital arises along
the x − (y−) direction. The resulting effective hopping in
t2g subspace has the form given in Eq. (24) as explained
in Ref. [58]. We assume that those induced coupling at the
surface is much smaller than the original coupling between
px − (py−) orbitals in oxygens and xy− orbital. Therefore,
we set tso to approximately one-tenth the value of t (xy,xy)

x .
The obtained LDOS is shown in Fig. 6. As evident in this
figure, the zero-energy peak remains under this range of tso.
We confirm that the energy levels of the nearly zero-energy
surface states do not change against this term. However, its
peak height is suppressed, possibly because the localized po-
sition of the surface state moves farther into the interior of
the crystal. For the latter case, we introduce the chiral Eu SC
pair potential at the top surface instead of the Eg interorbital

SC pair potential. The dependence of the LDOS on the pair
potential and the gap amplitude are shown in Appendix E.
Here, we set the amplitude of the gap as the order of Tc. In this
case, the change of the resultant LDOS in Fig. 9 is too small
for them to be distinguished from the original ones given in
Fig. 5(b).

IV. DISCUSSION

In scanning tunneling microscopy (STM) observations of
the top surface of SRO [59,60], the differential conductance
spectrum shows a V-shaped structure rather than a zero-bias
peak structure, which appears to contradict the presence of
nearly zero-energy surface states. Therefore, at face value, the
interorbital Eg SC state seems to be excluded by the STM
observations. Nevertheless, we also remark several concerns
for making the definitive conclusion.
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FIG. 5. (a) The DOS of the bulk and each band’s contribution
to the DOS. (b) The LDOS at the top surface and each band’s
contribution to the LDOS.

First, we have only considered the clean surfaces preserv-
ing k‖ as a good quantum number. In actual experiments,
surface roughness would inevitably break translational sym-
metry. When the surface roughness is substantial, for a kz(kx +
iky)-wave superconductor, the zero-energy surface states at
the top surface are highly vulnerable [61]. In addition, in
some experiments, surface reconstruction breaking fourfold
rotation symmetry at the top surface of SRO has been ob-

FIG. 6. The tso dependence of the LDOS under the orbital Rashba
coupling at the top surface.

served [39,62,63]. Thus, examining the effect of surface
roughness/reconstruction on the surface states of the present
model would be an important future task.

Second, structure of the tip may affect observations of
the differential conductance. Actually, a junction consisting
of a one-dimensional normal-metal lead wire and a two-
dimensional dxy-wave superconductor has been shown to
exhibit a V-shaped conductance spectrum even in the presence
of flat-band zero-energy surface states at the junction interface
[64–70]. In general, this V-shaped spectrum is due to the sign
change in the pair potential with respect to the momentum
parallel to the surface; that is,

�dxy (kx, ky) = −�dxy (kx,−ky ),

where �dxy ∝ kxky with kx(y) representing momentum per-
pendicular (parallel) to the interface. More specifically, the
Andreev reflection at the junction interface is substantially
suppressed because of the destructive interference between
the transmission channels feeling �dxy (kx, ky) and that feel-
ing �dxy (kx,−ky ) = −�dxy (kx, ky). In the present model, the
effective pair potential satisfies

ψν (k‖, kz ) = −ψν (−k‖, kz ), (25)

where k‖ corresponds to the momentum parallel to the top
surface. Thus, as in the case of one-dimensional normal-
metal/two-dimensional dxy-wave superconductor junctions,
the Andreev reflection between the STM tip and SRO top
surface may be significantly suppressed owing to the similar
destructive interference. To resolve this stalemate, micro-
scopic studies on the transport properties of the present model
are strongly desired.

Summarizing above discussion, the STM results of the
top surface of SRO [59,60] appears inconsistent with
the interorbital Eg SC state in SRO. Nevertheless, to be
more conclusive, microscopic studies on the effects of surface
roughness/reconstruction and the destructive interference of
the Andreev reflection in STM measurements are highly de-
sired. Importantly, other candidate states in SRO, such as
s′ + idx2−y2 wave [28], dx2−y2 + igxy(x2−y2 ) wave [29–32], and
s + idxy wave [33,34] have two-dimensional nature (i.e., their
pair potential are insensitive to kz), while mirror-odd nature
of the pair potential with respect to kz is responsible for the
emergence of zero-energy surface states at the (001) surface
[45,46,49] (see also Appendix D). Namely, we cannot expect
the zero-energy peak structure in the top surface LDOS except
for the interorbital Eg SC state. As a result, tunneling spec-
troscopy with suppressed surface roughness/reconstruction
and with large junction area enables us to distinguish the in-
terorbital Eg SC state from other candidate states conclusively.

We also remark that several theoretical papers have argued
the difficulty of the interorbital Eg SC state in SRO owing
to the necessity of large Hund’s coupling and large interlayer
spin-orbit coupling [71,72]. Nonetheless, interorbital pairings
can be realized with the help of the electron-phonon interac-
tion [56], which is not considered explicitly in Refs. [71,72].
Investigating the interorbital Eg SC state in the system
including the electron-phonon interaction is an important
future work.
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V. SUMMARY AND CONCLUSIONS

We have studied the surface state of the interorbital-odd
spin-triplet s-wave pairing at the (001) surface in SRO. We
have demonstrated the presence of nearly zero-energy surface
states due to the effective chiral d-wave symmetry pair po-
tential, whereas the tiny energy splitting proportional to �2

is inevitable because of the pseudo-Zeeman potential. As a
result, the surface LDOS exhibits a pronounced zero-energy
peak when the order of the resolution is lower than the split-
ting energy shown in Figs. 2(d)–2(f). We have also shown that
the zero-energy peak is robust against perturbations due to
inversion symmetry breaking at the surface, such as the orbital
Rashba coupling and the Eu symmetry pair potential.
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APPENDIX A: MODEL HAMILTONIAN
OF THREE-DIMENSIONAL Sr2RuO4

IN THE NORMAL STATE

We describe the three-dimensional Hamiltonian of
Sr2RuO4 (SRO) in the normal state [36],

ĤN (k) =
∑

l j

hl j (k)λ̄l ⊗ σ̃ j . (A1)

The Gell-Mann matrices λ̄l=0−8 are defined by

λ̄0 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, λ̄1 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

λ̄2 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, λ̄3 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

λ̄4 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, λ̄5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

λ̄6 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, λ̄7 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠,

λ̄8 = 1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠.

hl j (k) are

h00(k) = 1
3 [ξyz(k) + ξzx(k) + ξxy(k)], (A2)

h70(k) = 1
2 [ξyz(k) − ξzx(k)], (A3)

h80(k) = 1

2
√

3
[ξyz(k) + ξzx(k) − 2ξxy(k)], (A4)

h10(k) = g(k)

= − 4t z
xy sin kx sin ky

− 4t z
xxy(sin 2kx sin ky + sin kx sin 2ky)

+ 8t z
z sin

kxa

2
sin

kya

2
cos

kzc

2
, (A5)

h20(k) = 8t (zx,xy)
z sin

kxa

2
sin

kya

2
cos

kzc

2
, (A6)

h30(k) = 8t (zx,xy)
z sin

kxa

2
cos

kya

2
sin

kzc

2
, (A7)

h43(k) = −λSOC, (A8)

h52(k) = −h61(k) = λSOC, (A9)

h51(k) = −h62(k) = 4λSOC
5162, sin kxa sin kya, (A10)

h52(k) = h61(k) = 2λSOC
5261(cos kxa − cos kya), (A11)

h41(k) = 8λSOC
12z sin

kxa

2
sin

kya

2
cos

kzc

2
, (A12)

h42(k) = 8λSOC
12z sin

kxa

2
cos

kya

2
sin

kzc

2
, (A13)

h63(k) = −8λSOC
56z sin

kxa

2
sin

kya

2
cos

kzc

2
, (A14)

h53(k) = 8λSOC
56z sin

kxa

2
cos

kya

2
sin

kzc

2
, (A15)

with

ξyz = 2t (z,z)
y cos kxa + 2t (z,z)

x cos kya − μz

+ 4t (z,z)
xy cos kxa cos kya

+ 2t (z,z)
yy cos 2kxa + 2t (z,z)

xx cos 2kya

+ 4t (z,z)
xyy cos 2kxa cos kya + 4t (z,z)

xxy cos 2kya cos kxa

+ 8t (z,z)
z cos

kxa

2
cos

kya

2
cos

kzc

2

+ 2t (z,z)
zz (cos kzc − 1), (A16)

ξzx = 2t (z,z)
x cos kxa + 2t (z,z)

y cos kya − μz

+ 4t (z,z)
xy cos kxa cos kya

+ 2t (z,z)
xx cos 2kxa + 2t (z,z)

yy cos 2kya

+ 4t (z,z)
xxy cos 2kxa cos kya + 4t (z,z)

xyy cos 2kya cos kxa

+ 8t (z,z)
z cos

kxa

2
cos

kya

2
cos

kzc

2

+ 2t (z,z)
zz (cos kzc − 1), (A17)
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TABLE I. Parameters for the normal state of the Hamiltonian.
The unit is meV.

t (z,z)
x = −362.4 t (z,z)

y = −134 t (xy,xy)
x = −262.4

t (z,z)
xy = −44.01 t (z,z)

xx = −1.021 t (z,z)
yy = −5.727

t (xy,xy)
xx = 34.23 t z

xy = 16.25 t (z,z)
xxy = −13.93

t (z,z)
xyy = −7.52 t (xy,xy)

xxy = 8.069 t z
xxy = 3.94

λSOC = 57.39 μz = 438.5 μxy = 218.6
t (z,z)
z = −0.0228 t (xy,xy)

z = 1.811 t z
z = 9.975

t (zx,xy)
z = 8.304 t (z,z)

zz = 2.522 t (xy,xy)
zz = −3.159

t (xy,xy)
xy = −43.72 λSOC

56z = −1.247 λSOC
12z = −3.576

λSOC
5162 = −1.008 λSOC

5261 = 0.3779

ξxy = 2t (xy,xy)
x (cos kxa + cos kya) − μxy

+ 4t (xy,xy)
xy cos kxa cos kya

+ 2t (xy,xy)
xx (cos 2kya + cos 2kxa)

+ 4t (xy,xy)
xxy (cos 2kxa cos kya + cos kxa cos 2kya)

+ 8t (xy,xy)
z cos

kxa

2
cos

kya

2
cos

kzc

2

+ 2t (xy,xy)
zz (cos 2kzc − 1). (A18)

We set the parameters as shown in Table I [36].

APPENDIX B: EFFECTIVE LOW-ENERGY MODEL

In this Appendix, we derive a low-energy Hamiltonian of
SRO given by Eq. (10) in the main text. For this purpose, we
first deform the BdG Hamiltonian in an approximate band-
basis [see Eq. (6) in the main text]. Then, we construct a
low-energy effective Hamiltonian for each band by following
Refs. [43,44].

In principle, the Hamiltonian in the band basis is obtained
by employing a unitary operator that diagonalizes the normal
Hamiltonian ĤN . In this paper, owing to the difficulty of the
exact diagonalization, we alternatively utilize a perturbation
theory to diagonalize ĤN approximately. As a preliminary
step, we remove all degeneracy in the diagonal part of ĤN at
the Fermi level as shown in Fig. 7(a). We now define a unitary

operator,

ûp = û1û2. (B1)

The first component of the unitary operator, i.e., û1, is
defined by

û1 =
(

ū1 0
0 ū∗

1

)
, (B2)

ū1 =
⎛
⎝a1 −b∗

1 0
b1 a1 0
0 0 1

⎞
⎠, (B3)

with

a1 = P1 + R1√
2P1(P1 + R1)

, (B4)

b1 = h10 + ih43√
2P1(P1 + R1)

, (B5)

R1 = (ξyz + ξzx )/2, (B6)

P1 =
√

R1
2 + h10

2 + h43
2. (B7)

By applying û1 to ĤN , we obtain

Ĥ ′
N = û†

1ĤN û1. (B8)

The diagonal components of Ĥ ′
N are given by

ε′
1 = Q1 + P1, (B9)

ε′
2 = Q1 − P1, (B10)

ε′
3 = ξyz, (B11)

with

Q1 = (ξyz − ξzx )/2. (B12)

By using the unitary transformation of û1, the degeneracy
between ξyz and ξzx at the Fermi level is lifted as shown in
Fig. 7(b). The second component of ûp, i.e., û2, is defined by

û2 =
(

ā2 −b̄∗
2

b̄2 ā2

)
, (B13)

(a) (b) (c)

FIG. 7. (a) ξyz, ξzx , ξxy at kz = 0 at the Fermi energy. (b) ε′
1, ε′

2, and ε′
3 at kz = 0 at the Fermi energy. (c) ε

(0)
1 , ε

(0)
2 , and ε

(0)
3 at kz = 0 at the

Fermi energy.
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ā2 =
⎛
⎝a2 0 0

0 1 0
0 0 a2

⎞
⎠, (B14)

b̄2 =
⎛
⎝ 0 0 b2

0 1 0
b2 0 0

⎞
⎠, (B15)

with

a2 = P2 + R2√
2P2(P2 + R2)

, (B16)

b2 = −g52 + ig51√
2P1(P1 + R1)

, (B17)

R2 = (ε′
1 − ε′

3)/2, (B18)

P2 =
√

R2
2 + g51

2 + g52
2, (B19)

g51 = (P1 + R1)h51 + h10h61 − h43h62√
2P1(P1 + R1)

, (B20)

g52 = (P1 + R1)h52 + h10h62 + h43h61√
2P1(P1 + R1)

. (B21)

By applying û2 to Ĥ ′
N , we obtain

ĥp = û†
2Ĥ ′

N û2 = ε̂(0) + η̂, (B22)

with

ε̂(0) =
(

ε̄(0) 0
0 ε̄(0)

)
, (B23)

η̂ =
(

η̄0 + η̄3 η̄1 − iη̄2

η̄1 + iη̄2 η̄0 − η̄3

)
, (B24)

with

ε̄(0) =

⎛
⎜⎝ε

(0)
1 0 0
0 ε

(0)
2 0

0 0 ε
(0)
3

⎞
⎟⎠, (B25)

η̄0 =
⎛
⎝ 0 η10 η20

η10 0 η30

η20 η30 0

⎞
⎠, (B26)

η̄3 =
⎛
⎝ 0 −iη43 −iη53

iη43 0 −iη63

iη53 iη63 0

⎞
⎠, (B27)

η̄ j=1,2 =
⎛
⎝ 0 −iη4 j 0

iη4 j 0 −iη6 j

0 iη6 j 0

⎞
⎠. (B28)

The diagonal components of ĥp is given by

ε
(0)
1 = Q2 + P2, (B29)

ε
(0)
2 = Q1 − P1, (B30)

ε
(0)
3 = Q2 − P2, (B31)

with

Q2 = (ε′
1 + ε′

3)/2. (B32)

The remained degeneracy between ε′
2 and ε′

3 is lifted by û2

as shown in Fig. 7(c). The off-diagonal components of ĥp are
given by

η10 = g51g61 + g52g62√
2P2(P2 + R2)

, (B33)

η20 = g20, (B34)

η30 = (P2 + R2)g30 + g51g41 − g52g42√
2P2(P2 + R2)

, (B35)

η43 = −g51g62 + g52g61√
2P2(P2 + R2)

, (B36)

η53 = g53, (B37)

η63 = (P2 + R2)g30 + g51g41 − g52g42√
2P2(P2 + R2)

, (B38)

η41 = (P2 + R2)g41 − g51g30 − g52g63√
2P2(P2 + R2)

, (B39)

η42 = (P2 + R2)g42 − g51g63 − g52g30√
2P2(P2 + R2)

, (B40)

η61 = (P2 + R2)g61√
2P2(P2 + R2)

, (B41)

η62 = (P2 + R2)g62√
2P2(P2 + R2)

, (B42)

with

g20 = (P1 + R1)h20 − h10h30 − h43h63√
2P1(P1 + R1)

, (B43)

g30 = (P1 + R1)h30 − h10h20 − h43h53√
2P1(P1 + R1)

, (B44)

g4 j = h4 j, (B45)

g53 = (P1 + R1)h53 + h10h63 + h43h30√
2P1(P1 + R1)

, (B46)

g63 = (P1 + R1)h63 − h10h53 + h43h20√
2P1(P1 + R1)

, (B47)

g61 = (P1 + R1)h61 − h10h51 − h43h52√
2P1(P1 + R1)

, (B48)

g62 = (P1 + R1)h62 − h10h52 + h43h51√
2P1(P1 + R1)

. (B49)

In short, all degeneracy at the Fermi level is lifted by the
unitary transformation of ûp, i.e.,

û†
pĤN ûp = ĥp = ε̂(0) + η̂. (B50)

For the BdG Hamiltonian, the corresponding unitary transfor-
mation is represented by

Ȟp = ǔ†
pȞ ǔp =

(
ĥp(k) �̂p(k)
�̂†

p(k) −ĥT
p (−k)

)
(B51)

with

ǔp = ǔ1ǔ2, (B52)

ǔ1 =
(

û1 0
0 û∗

1

)
, (B53)
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ǔ2 =
(

û2 0
0 û∗

2

)
, (B54)

where the pair potential in this basis is given as

�̂p =
(− f̄1 + i f̄2 f̄3 + f̄0

f̄3 − f̄0 f̄1 + i f̄2

)
, (B55)

with

f̄3 =
⎛
⎝ 0 0 f3,13

0 0 i f3,23

− f3,13 −i f3,23 0

⎞
⎠, (B56)

f̄0 =
⎛
⎝ 0 0 f0,13

0 0 −i f0,23

f̄0,13 −i f0,23 0

⎞
⎠, (B57)

f̄ j=1,2 =
⎛
⎝ 0 f j,12 0

− f j,12 0 0
0 0 0

⎞
⎠, (B58)

with

f j,12 = �(φ j,12 + iχ j,12), (B59)

f3,13 = �(φ3,13 + iχ3,13), (B60)

f3,23 = �(φ3,23 + iχ3,23), (B61)

f0,13 = �φ0,13, (B62)

f0,23 = �φ0,23, (B63)

with

φ1,12 = h10g52 − h43g51√
2P1(P1 + R1)

√
2P2(P2 + R2)

, (B64)

χ1,12 = (P1 + R1)g52√
2P1(P1 + R1)

√
2P2(P2 + R2)

, (B65)

φ2,12 = −h10g51 − h42g52√
2P1(P1 + R1)

√
2P2(P2 + R2)

, (B66)

χ2,12 = (P1 + R1)g51√
2P1(P1 + R1)

√
2P2(P2 + R2)

, (B67)

φ3,13 = P1 + R1√
2P1(P1 + R1)

√
2P2(P2 + R2)

, (B68)

χ3,13 = (P1 + R1)g52√
2P1(P1 + R1)

√
2P2(P2 + R2)

, (B69)

φ3,23 = (P1 + R1)(P2 + R2)√
2P1(P1 + R1)(P2 + R2)

√
2P2(P2 + R2)

, (B70)

χ3,23 = (P2 + R2)h10√
2P1(P1 + R1)

√
2P2(P2 + R2)

, (B71)

φ0,13 = h43√
2P1(P1 + R1)

, (B72)

φ0,23 = (P2 + R2)h43√
2P1(P1 + R1)

√
2P2(P2 + R2)

. (B73)

For later convenience, we additionally apply a unitary trans-
formation,

Ȟq = ǔ†
qȞpǔq =

(
ĥq(k) �̂q(k)
�̂†

q(k) −ĥT
q (−k)

)
, (B74)

with

ǔq =
(

ûq 0
0 ûq

)
, (B75)

ûq =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B76)

For the normal part,

ĥq = ε̂(0)
q + η̂q, (B77)

with

ε̂(0)
q =

⎛
⎜⎝ε

(0)
1 σ̃0 0 0
0 ε

(0)
2 σ̃0 0

0 0 ε
(0)
3 σ̃0

⎞
⎟⎠, (B78)

η̂q =
⎛
⎝ 0 η̂12 η̂13

η̂21 0 η̂23

η̂31 η̂32 0

⎞
⎠, (B79)

with

η̂i j =
(

η0,i j + iη3,i j η1,i j − iη2,i j

η1,i j + iη2,i j η0,i j − iη3,i j

)
, (B80)

where

ηα,i j = (η̄α )i j . (B81)

For the pair potential part,

�̂q =
⎛
⎝ 0 �̂12 �̂13

�̂21 0 �̂23

�̂31 �̂32 0

⎞
⎠, (B82)

with

�̂i j =
(−�1,i j + i�2,i j �3,i j + �0,i j

�3,i j − �0,i j �1,i j + i�2,i j

)
, (B83)

where

�α,i j = ( f̄α )i j . (B84)

To proceed the approximate diagonalization of ĤN , we now
consider a perturbation theory with assuming η̂ as a perturba-
tion. The unperturbed term ε̂(0) satisfies

û(0)
1 =

⎛
⎝σ̃0 0 0

0 0 0
0 0 0

⎞
⎠, û(0)

2 =
⎛
⎝0 0 0

0 σ̃0 0
0 0 0

⎞
⎠,

û(0)
3 =

⎛
⎝0 0 0

0 0 0
0 0 σ̃0

⎞
⎠, (B85)

ε̂(0)û(0)
j = ε

(0)
j û(0)

j . (B86)

where ε
(0)
j for j = 1, 2, 3 have no degeneracy at the Fermi

level. Thus, on the basis of the perturbation theory, we can
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diagonalize the perturbed Hamiltonian ĥq within the second
order of η̂ as

ε̂ = û†
r ĥqûr

=

⎛
⎜⎝(ε(0)

1 + μλ,1)σ̃0 0 0
0 (ε(0)

2 + μλ,2)σ̃0 0
0 0 (ε(0)

3 + μλ,3)σ̃0

⎞
⎟⎠

+ O(η3), (B87)

where

μλ,i =
∑
k �=i

|η0,ki|2 + |ηki|2(
ε

(0)
i − ε

(0)
k

) . (B88)

The last term of Eq. (B87), i.e., O(ηn), represents the Landau
symbol with respect to the nth order of the matrix elements in
η̂q. The unitary transformation ûr given by

ûr = û1 + û2 + û3 = 1̂ + Ŵ + Ẑ, (B89)

with

Ŵ =
⎛
⎝ 0 Ŵ12 Ŵ13

Ŵ21 0 Ŵ23

Ŵ31 Ŵ32 0

⎞
⎠, (B90)

Ẑ =
⎛
⎝Ẑ11 Ẑ12 Ẑ13

Ẑ21 Ẑ22 Ẑ23

Ẑ31 Ẑ32 Ẑ33

⎞
⎠, (B91)

where

Ŵi j = η̂i j

ε
(0)
j − ε

(0)
i

, (B92)

Ẑii = −1

2

∑
j �=i

η̂
†
jiη̂ ji(

ε
(0)
j − ε

(0)
i

)2 , (B93)

Ẑi j =
∑
l �= j,i

η̂il η̂l j(
ε

(0)
j − ε

(0)
i

)(
ε

(0)
j − ε

(0)
l

) . (B94)

As a result, we can deform the BdG Hamiltonian in the ap-
proximate band basis as

Ȟr =ǔ†
r Ȟqǔr =

(
ε̂(k) D̂(k)
D̂†(k) −ε̂T(−k)

)
, (B95)

with

ǔr =
(

ûr 0
0 û∗

r

)
, (B96)

where

D̂ =
⎛
⎝D̂11 D̂12 D̂13

D̂21 D̂22 D̂23

D̂31 D̂32 D̂33

⎞
⎠, (B97)

with

D̂i j = �̂i j +
∑
k �=i, j

(−Ŵik�̂k j + �̂ikŴ
∗

k j ) + O(η2). (B98)

We can expand D̂i j as

D̂i j =
(

d1,i j − id2,i j −d3,i j + ψi j

−d3,i j − ψi j −d1,i j − id2,i j

)
, (B99)

where dα,i j are the interband spin-triplet pair potential, and
ψi j are the inter- and intraband spin-singlet pair potential. It
should be noted that intraband pair potential is composed only
of the spin-singlet pair potential, i.e.,

D̂ii =
(

0 ψi

−ψi 0

)
,

ψi = ψii, (B100)

where

ψ1 = 2�

(
−η41χ1,12 + η42χ2,12

ε
(0)
1 − ε

(0)
2

−η20φ0,13 − η53χ3,13

ε
(0)
3 − ε

(0)
1

)

+ i2�

(
η41φ1,12 + η42φ2,12

ε
(0)
1 − ε

(0)
2

− η53φ3,13

ε
(0)
3 − ε

(0)
1

)
,

ψ2 = 2�

(
η41χ1,12 + η42χ1,12

ε
(0)
1 − ε

(0)
2

− η63φ3,23

ε
(0)
2 − ε

(0)
3

)

+ i2�

(
−η41φ1,12 + η42φ2,12

ε
(0)
1 − ε

(0)
2

−η30φ0,23 + η63χ3,23

ε
(0)
2 − ε

(0)
3

)
,

ψ3 = 2�

(
η20φ0,13 − η53χ3,13

ε
(0)
3 − ε

(0)
1

+ η63φ3,23

ε
(0)
2 − ε

(0)
3

)

+ i2�

(
η30φ0,23 + η63χ3,23

ε
(0)
2 − ε

(0)
3

+ η53φ3,13

ε
(0)
3 − ε

(0)
1

)
, (B101)

as also discussed in Eqs. (13)–(15). We note that all compo-
nents of D̂i j are proportional to �. For later convenience, we
additionally apply a unitary transformation,

Ȟs = ǔ†
s Ȟr ǔs =

⎛
⎝H̆α V̆αβ V̆αγ

V̆βα H̆β V̆βγ

V̆γα V̆γ β H̆γ

⎞
⎠, (B102)

with

ǔs =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ̃0 0 0 0 0 0
0 0 0 0 0 σ̃0

0 0 σ̃0 0 0 0
0 σ̃0 0 0 0 0
0 0 0 0 0 σ̃0

0 0 0 σ̃0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B103)

where

H̆ν =
(

ενσ̃0 ψν iσ̃y

−ψ∗
ν iσ̃y −ενσ̃0

)
, (B104)

V̆νν ′ =
(

0 D̂νν ′

−D̂∗
νν ′ 0

)
. (B105)

The notations ν and ν ′ represent α, β, or γ . The unitary
operator ǔ in Eq. (6) of the main text is defined by

ǔ = ǔpǔqǔr ǔs. (B106)
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Next, we construct a 4×4 low-energy effective
Hamiltonian for each band by following Refs. [43,44].
The Green’s function corresponding to Ȟs is defined by

Ǧs = (ωǏ − Ȟs)−1 (B107)

where the Green’s function of the (ν, ν) component is given
by

Ğ−1
ν (k, ω) = ωĬ − H̆ν

− (V̆†
ν ′ν V̆

†
ν ′′ν )

(
ωĬ − H̆ν ′ 0

0 ωĬ − H̆ν ′′

)−1

×
(
V̆ν ′ν
V̆ν ′′ν

)
+ O(V4)

= ωÎ − Ĥeff
ν (ω) + O(V4), (B108)

where

H̆eff
ν (ω) = H̆ν +

∑
ν ′ �=ν

V̆†
ν ′ν (ωĬ − H̆ν ′ )−1V̆ν ′ν . (B109)

We only focus on the low-energy excitation around the Fermi
surface of the ν band, where εν ≈ 0 is satisfied. In addition,
we assume that the ν and ν ′′ bands lie energetically far from
the Fermi surfaces of the ν band, which enables us to ignore
the effect of the pair potential on the dispersion of ε′

ν and
ε′′
ν around at εν ≈ 0. As a result, we can further approximate
H̆eff

ν (ω) as

H̆eff
ν = H̆ν +

∑
ν ′ �=ν

V̆†
ν ′ν τ̆zV̆ν ′ν

εν − εν ′
, (B110)

which represent the effective Hamiltonian we consider
[43,44], τ̆z = diag[1, 1,−1,−1]. The similar argument for
constructing the effective Hamiltonian from the Green’s func-
tion is presented in Ref. [44]; for instance, see Eq. (40) of
Ref. [43]. Specifically, the low-energy effective Hamiltonian
is represented by

H̆eff
ν (k) =

(
h̃ν (k) �̃ν (k)
�̃†

ν (k) −h̃T
ν (−k)

)
,

h̃ν = (εν + γν )σ̃0 + mν · σ̃,

�̃ν = ψν iσ̃y, (B111)

where

mν =
∑
ν ′ �=ν

2Re[ψν ′νd∗
ν ′ν] − i[dν ′ν × d∗

ν ′ν]

εν − εν ′
(B112)

γν =
∑
ν ′ �=ν

|ψν ′ν |2 + |dν ′ν |2
εν − εν ′

, (B113)

which is also given as Eqs. (11) and (12) in the main text. We
note that the pseudo-Zeeman field mν and the correction in the
kinetic energy γν is proportional to �2.

APPENDIX C: RECURSIVE GREEN’S FUNCTION

We can deform the BdG Hamiltonian in Eq. (2) as

Ȟ (k) = ȟ0(k||) + ť1(k||) exp

(
−i

kzc

2

)
+ ť2(k||) exp(−ikzc)

+ ť†
1 (k||) exp

(
i
kzc

2

)
+ ť†

2 (k||) exp(ikzc), (C1)

where k|| is the wave number (kx, ky), and c is the lattice
constant of the conventional unit cell in the z direction. Here
ȟ0 and ť1(2) are the intralayer element and the interlayer
elements between the (next) nearest-neighbor layers of the
Hamiltonian, respectively. When we employ a real space basis
along the z direction, the Hamiltonian with n layers along the
z direction is represented by

Hn = 1

2

∑
k‖

C̃†
n,k‖H̃n(k‖)C̃n,k‖ (C2)

H̃n(k‖) =

⎛
⎜⎜⎜⎜⎜⎝

ȟ0 ť1 ť2 0
ť†
1 ȟ0 ť1 ť2

ť†
2 ť†

1 ȟ0 ť1 · · ·
0 ť†

2 ť†
1 ȟ0
...

⎞
⎟⎟⎟⎟⎟⎠ (C3)

C̃†
n,k‖ = (Č†

1,k‖ , Č†
2,k‖ , · · · Č†

n,k‖ ), (C4)

where

ČT
j,k‖ = (c j,yz↑,k‖ , c j,zx↑,k‖ , c j,xy↑,k‖ , c j,yz↓,k‖ , c j,zx↓,k‖ , c j,xy↓,k‖ ,

× c†
j,yz↑,−k‖ , c†

j,zx↑,−k‖ , c†
j,xy↑,−k‖ ,

× c†
j,yz↓,−k‖ , c†

j,zx↓,−k‖ , c†
j,xy↓,−k‖ ) (C5)

is the creation operator of the quasi particles in the jth layer.
We treat the n-layers system as the n′(= n/2) layers system
by treating two adjacent original layers as a single layer.
The Green’s function of the 2n′ layers system is given by
G̃n′

(z, k‖) = [zĨ − H̃2n′ (k‖)]
−1

, where Ĩ is the unit matrix and
z = ε + iδ. ε is a real frequency, and δ is an infinitesimal
imaginary part. We define Ġn′

n′ as the (n′, n′) component of
G̃n′

. Ġn′
n′ is a 24×24 matrix with the orbital-, spin-, particle-

hole-, and layer-degrees of freedom. By taking the limit
n′ → ∞ with the Möbius transformation, we obtain the top-
surface Green’s function for the semi-infinite system [41]:
ġs = limn′→∞ Ġn′

n′ which satisfies

ġs(k||, z) = [zİ − ḣ(k||) − ṫ†(k||)ġs(k||, z)ṫ (k||)]−1,

ḣ =
(

ȟ0 ť1
ť†
1 ȟ0

)
, ṫ =

(
ť2 0
ť1 ť2

)
. (C6)

In the main text, h and t in Eq. (18) correspond to ḣ and ṫ ,
respectively.

APPENDIX D: ONE-DIMENSIONAL WINDING NUMBER

We discuss the (001) surface states of the chiral d-wave
SC state in the single-band model by following Ref. [45]. We
consider the BdG Hamiltonian, H = 1

2

∑
k �

†
k H (k)�k with

�T
k = (ck↑, ck↓, c†

−k↑, c†
−k↓),

H (k) =
(

ε(k) �(k)
�†(k) −εT(−k)

)
, (D1)

where cks is the annihilation operator for a momentum k and
a spin s. We consider the kinetic energy of the normal state as

ε(k) =
[

h̄2

2m

(
k2

x + k2
y

) − 2tz(1 − cos kz ) − μ

]
σ0. (D2)
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(a) (b)

FIG. 8. (a) The kz dependence of the Fermi surface of Eq. (D2)

(tz = 0.1μ) on the kx axis (k′
F =

√
2mμ

h̄2 ). (b) The momentum range

where the zero-energy surface states appear.

where tz is the nearest-neighbor hopping for the c axis, m is
the effective mass of electron in the xy plane, μ is the chemical
potential. By employing a tight-binding approximation along
z direction, we reproduce a cylindrical Fermi surface as shown
in Fig. 8(a), where we choose tz = 0.1μ. The pair potential is
given as

�(k) = �0 sin(kz )(k̄x + ik̄y)iσ2

= �0 sin(kz )eiφk‖ iσ2 (D3)

where k̄x(y) = kx(y)/
√

k2
x + k2

y , φk‖ = tan−1 ( ky

kx
), and k‖ =

kxex + kyey with ex(y) representing the unit vector along
the x(y) direction. The pair potential has sinusoidal depen-
dence with respect to kz and therefore has the line nodes
at kz = 0 and π . The Hamiltonian has particle hole sym-
metry, CH (k)C−1 = −H (−k) with C = σ0τ1K [45]. Here
K is a complex conjugation operator and τ1,2,3 are Pauli
matrices in the particle-hole space. By utilizing a lo-

cal gauge transformation, Uφk‖ = e−i 1
2 φk‖σ0τ3 , we can see

that the Hamiltonian has pseudo-time reversal symmetry,
U †

φk‖
TUφk‖ H (k)U †

φk‖
TUφk‖ = H (−k) with time reversal oper-

ator T = iσ2τ0K . Then, the Hamiltonian has chiral symmetry
that the Hamiltonian anticommutes with a chiral operator
�φk‖ = −iCU †

φk‖
TUφk‖ : {H (k), �φk‖ } = 0. As a result, we can

define a one-dimensional winding number w, which charac-
terizes the topologically protected surface states at the (001)
surface,

w(k‖) = i

4π

∫
dkztr[�φk‖ H−1(k)∂kz H (k)]. (D4)

According to the bulk-boundary correspondence, the nonzero
winding number at k‖ guarantees the zero-energy surface
states at k‖. Thus, when the winding number becomes nonzero
in a finite range with respect to k‖, we obtain the flat-band
zero-energy surface states at the (001) surface [46]. The
Eq. (D4) can be rewritten as [46]

w(k||) = −1

2

∑
�′(kz )=0

sgn[∂kz�
′(kz )] · sgn[ε(kz, k||)]

= −1

2
[sgn[ε(0, k||)] − sgn[ε(π, k||)]]. (D5)

where �′(kz ) = �0 sin (kz ). The summation is taken for kz

satisfying �′(kz ) = 0. We clearly see that the winding number
becomes nonzero in the momentum region where the signs
of ε(0, k‖) and ε(π, k‖) are opposite. Namely, we obtain the
flat-band zero-energy states in the momentum region enclosed
by the nodal lines projected on the surface BZ as shown in
Fig. 8(b). In the main text, we expect that the effective chiral
d-wave SC originated from the Eg interorbital orbital pair
potential can also host the surface states as the pure chiral
d-wave SC.

Finally, we discuss the winding numbers for other candi-
date states in SRO: the (A) s′ + idx2−y2 -wave state [28], (B)
dx2−y2 + igxy(x2−y2 )-wave state [29–32], and (C) s + idxy-wave
state [33,34] described by the pair potentials,

�(k) = (�1 + i�2)iσ2,

�1 =

⎧⎪⎨
⎪⎩

�R(cos kx + cos ky) for (A)

�R(cos kx − cos ky) for (B)

�R for (C)
,

�2 =

⎧⎪⎨
⎪⎩

�I (cos kx − cos ky) for (A)

�I sin kx sin ky(cos kx − cos ky) for (B)

�I sin kx sin ky for (C)

,

(D6)

which can be deformed as

�(k) = �̃0(k‖)eiφ̃k‖ iσ2,

�̃0(k‖) =
√

�2
1 + �2

2, φ̃k‖ = tan−1(�2/�1). (D7)

The corresponding winding number can be evaluated by
Eq. (D5) with replacing �′(kz ) with �̃0(k‖). Nevertheless,

FIG. 9. The �p dependence of the LDOS is plotted as a function
of ε. There is the chiral Eu pair potential state at the top surface
instead of the Eg interorbital pair potential. � = |t (xy,xy)

z ×10−4|.
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since �̃0(k‖) never changes its sign with respect to kz, we soon
obtain w(k‖) = 0 irrelevant to k‖. Consequently, we can not
expect the flat-band zero-energy states at the top surfaces of
the s′ + idx2−y2 -wave, dx2−y2 + igxy(x2−y2 )-wave, and s + idxy-
wave superconductors.

APPENDIX E: LDOS UNDER Eu SC STATE
AT THE TOP SURFACE

In this Appendix, we show the stability of the zero-energy
peak structure in the LDOS against the chiral Eu pair potential
at the surface. Specifically, only at the top surface, we replace

the Eg interorbital pair potential as in Eq. (5) in the main text
with

�̂p =
(

0 �̄p

�̄p 0

)
, �̄p = �pλ̄p,

λ̄p =
⎛
⎝i sin kya 0 0

0 sin kxa
0 0 sin kxa + i sin kya

⎞
⎠, (E1)

where �p is the magnitude of the pair potential. As shown
in Fig. 9, the zero-energy peak structure remains robustly
as long as �p is varied within the order of the bulk pair
potential �.
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