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Superconductivity in a system of interacting spinful semions
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Noninteracting particles obeying certain fractional statistics have been predicted to exhibit superconductivity.
We discuss the issue in an attractively interacting system of spinful semions on a lattice by numerically
investigating the presence of off-diagonal long-range order at zero temperature. For this purpose we construct a
Hubbard model wherein two semions with opposite spin can virtually coincide while maintaining consistency
with the fractional braiding statistics. Clear off-diagonal long-range order is seen in the strong coupling limit,
consistent with the expectation that a pair of semions obeys Bose statistics. We find that the semion system
behaves similarly to a system of fermions with the same attractive Hubbard U interaction for a wide range of U ,
suggesting that semions also undergo a BCS to BEC crossover as a function of U .
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I. INTRODUCTION

The topology of configuration space determines the
possible quantum statistics of a system of identical par-
ticles [1]. In two dimensions, the fundamental group of
the many-particle configuration space is the braid group,
which allows exotic particles, namely anyons [2], that obey
statistics beyond bosons and fermions. The emergence of
anyons as elementary excitations is a defining feature of
the so-called topological order [3], which has demonstrated
how topology enriches phases of matter beyond Landau’s
symmetry-breaking paradigm. A typical example of topologi-
cally ordered phases is the fractional quantum Hall effect [4].
Special properties such as (non-Abelian) anyon excitations
[5–7], fractional charges [8], and the topological degeneracy
[9,10] are closely related to each other [3,11–14]. Quantum
spin liquids [15–17] and topological superconductors [18–23]
are also promising platforms that harbor anyons, which are not
only fundamentally interesting in their own right but also have
attracted considerable attention for their potential for quantum
computation [24,25].

Understanding the behavior of quantum anyon gases is a
fundamentally interesting problem. An exchange of n Abelian
anyons with statistical angle θ gives the phase factor ein2θ .
This implies that p-tuples with θ = π (1 − 1/p) behave as
bosons and thus may condense to form a superfluid [26–29].
Historically, anyon superconductors, especially with θ = π/2
(semions), have been extensively studied for their possible
relevance to the high-Tc superconductivity of the copper
oxides [30–32]. In theoretical studies, the identification of off-
diagonal long-range order (ODLRO) is convincing evidence
of superconductivity. The system of semions may be mapped
to the ν = 2 integer quantum Hall system by trading the statis-
tical fluxes for uniform magnetic ones. This mean field theory
produces algebraic ODLRO in the two-body reduced density
matrix [33,34]. There also exists an exactly solvable model
of spinful semions beyond the mean field description, which

exhibits (not just algebraic) ODLRO [35,36]. In this paper we
revisit this problem by developing a method to construct the
Hubbard model of anyons.

The main goal of this work is to numerically confirm
ODLRO for attractively interacting spinful semions in a lat-
tice system. When fermions attractively interact, BCS pairs
develop which are appropriately described by Bose-Einstein
condensation (BEC) in the strong coupling limit [37,38].
Correspondingly, their ground states are expected to exhibit
ODLRO in the two-body reduced density matrix. By com-
paring the behavior of ODLRO for semions and fermions,
we investigate whether the BCS-BEC crossover occurs in
semionic systems. In the limit of large interaction strength, the
system of semions is expected to exhibit the same behavior as
a system of fermions with large Hubbard interaction strength,
since pairs of semions and pairs of fermions both obey
mutual Bose statistics. In the weakly interacting regime, sys-
tems of fermions behave differently from the BEC state and
there is no clear connection between semionic and fermionic
systems.

We start with a construction of the Hubbard model of
anyons with tunable on-site interactions. This is not a straight-
forward generalization of the tight-binding model for spinless
anyons [39–45] into a spinful problem. Since anyons carry
fractional statistics, two particles may not coincide even if
their spins are different, which makes it nontrivial to set up
a model with a finite on-site Hubbard U interaction. We
overcome this difficulty by virtually splitting sites for each
spin, thereby fixing the way that particles with different spin
pass one another. Within this framework we present a care-
ful construction of the Hubbard model of anyons and define
the reduced density matrix for two semions. We numerically
demonstrate clear ODLRO for semions in the strong coupling
limit. We find that the reduced density matrices for semions
and for fermions behave similarly in a wide range of U .
This suggests that a BCS-BEC crossover occurs in semionic
systems.
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FIG. 1. (a) Sketch of a 6×4 lattice with N = 7 particles with the
string gauge (green arrows). The brown lines represent the cuts A
and B. (b1) Rule θi j : (i). (b2) Rule θi j : (ii). (b3) Rule θi j : (iii).

II. HUBBARD MODEL FOR ANYONS

A. Spinless anyons on a torus: The string gauge

We begin by reviewing the hopping Hamiltonian of spin-
less anyons on a torus [39–41,43]. The statistical angle is
set as θ/π = n/m with n, m coprime. The Hilbert space for
the system with N particles is spanned by the basis |{rk}; w〉,
where {rk} labels N occupied sites and w labels an additional
internal degree of freedom required by topology of the torus.
The label w takes integer values from 1 to m. By modeling
anyons as bosons with statistical fluxes, the Hamiltonian with
nearest-neighbor hopping is given by [39–41,43]

H = −t
∑
〈i j〉

c†
i eiθi jWi jc j, (1)

where c†
i is the creation operator for a hard-core boson on

site i. The hard-core condition is necessary to ensure con-
sistency with the braid group: if particles can coincide, the
system allows only Bose statistics [1]. The phase factor eiθi j

describes the statistical phase for a particle exchange. Wi j is an
m-dimensional matrix associated with the degree of freedom
w, which describes phase factors arising from global moves
of anyons on a torus. For θ/π = 1, eiθi j produces the sign
±1, resulting in H reducing to the standard Hamiltonian of
noninteracting fermions.

The assignment of θi j is obtained by strings placed on the
lattice as shown in Fig. 1(a). These strings emanate from the
origin represented by Oθ , and terminate in the lower-right
plaquette adjacent to each particle. They run first from right to
left and then turn in the vertical direction at a proper plaquette.
We also set cuts labeled A and B as shown in Fig. 1(a). Using
these strings, we first assign θi j and Wi j for a hopping that does
not cross the cuts:

θi j :(i) If an anyon hops from left to right across a string, it
acquires the phase factor eiθ [Fig. 1(b1)].

θi j :(ii) If a string sweeps another anyon in the process of
hopping, the phase factor is gained as if the anyon crosses the
string [Fig. 1(b2)].

Wi j :(i) The index w does not change. This corresponds to
Wi j = 1m (m-dimensional identity matrix).

These rules ensure that the basis states |{rk}; w〉 acquire
the statistical phase eiθ whenever one takes two anyons and

swaps their positions without crossing the cuts. For a hopping
across the cuts, we need to set other rules as follows. (Here we
assume that an anyon hops across the cut A upward or the cut
B from left to right.)

θi j :(iii) (Cut A) The phase factor ei2θ (not eiθ ) is gained if
an anyon crosses a string [Fig. 1(b3)].

θi j :(iv) (Cut A) eiXθ is given, where X is the number of
other anyons that have the same x coordinate as the hopping
anyon.

θi j :(v) (Cut B) One determines the phase factor obeying the
rules (i) and (ii) and then rearranges the horizontal part of the
string.

θi j :(vi) (Cut B) The phase factor ei(N−1)θ occurs.
Wi j :(ii) (Cut A) The phase factor eiwθ is given (w is the

additional internal degree of freedom mentioned above). This
corresponds to

Wi j = Wy ≡ diag[ei2θ , ei4θ , . . . , ei2mθ ]. (2)

Wi j :(iii) (Cut B) The index w is changed to w − 1. This
corresponds to

Wi j = Wx ≡

⎡
⎢⎢⎣

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
1 0 . . . 0

⎤
⎥⎥⎦. (3)

The above rules for θi j imply that θi j can be written in the
following form:

θi j =
∑
k �=i, j

Ak
i jnk, (4)

where Ak
i j is a real number determined from the rules given

above and nk = c†
kck . The rules Wi j : (ii) and (iii) are required

for some algebraic constraints of the braid group on a torus:
operators τi and ρi that move the ith particle along a non-
contractible loop in the x and y direction, respectively, satisfy
ρ−1

i τ jρiτ
−1
j = Bi j , where Bi j is an operator that moves the ith

particle around the jth particle along a closed loop. This is
consistent with the fact that we have Bi j = ei2θ and

W −1
y WxWyW

−1
x = ei2θ . (5)

The rules θi j : (iii) and (vi) also play a role to remove the arti-
ficial twisted boundary condition caused by the anyon fluxes.
The twisted boundary conditions are introduced by modifying
the matrices as Wx → eiηxWx and Wy → eiηyWy, where ηx and
ηy are the twisted boundary condition angles.

B. Generalization to spinful system

Let us generalize the above formulation into a system of
spinful anyons on a lattice. The statistical phase for an ex-
change of anyons with the same spin is set as eiθ . Note that
the statistical phase is not well defined for an exchange of
opposite spins since this operation does not form a closed loop
in configuration space. Instead, two consecutive operations,
which is equivalent to a move of a spin ↑ around a spin ↓ or
vice versa (this is referred to as “local move” below), forms
a closed loop in the configuration space. We assign to this
the phase factor ei2θ , i.e., a local move of a particle around
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another particle produces the phase factor ei2θ whether or not
they have the same spin.

Incorporating the on-site interaction between anyons with
opposite spins, we write the Hamiltonian in the form of the
Hubbard model:

H = −t
∑
〈i j〉

∑
α=↑,↓

c†
iαeiθi jαWi jαc jα + U

∑
i

ni↑ni↓, (6)

where niα = c†
iαciα and c†

iα is the creation operator for a spinful
hard-core boson satisfying c†2

i↑ = c†2
i↓ = 0. As in the spinless

case, θi jα depends on the number operators of all sites and,
therefore, eiθi jα generates complicated nonlocal many-body
interactions. This nature makes it quite difficult to apply effec-
tive formalisms such as the Bogoliubov–de Gennes treatment.
The construction of θi jα and Wi jα is described below.

1. U = +∞
The system with the hard-core constraint c†

i↑c†
i↓ = 0

(equivalently U = +∞) is given by a simple generalization
of the formulation for spinless anyons [45]. The Hilbert space
is spanned by the basis |{r j}, {rk}; w〉 with j = 1, . . . , N↑ and
k = 1, . . . , N↓, where Nα is the particle number with spin α,
{r j} and {rk} label sites occupied by spin ↑ and ↓, respec-
tively. Here the sets of positions {r j} and {rk} are disjoint.
One can construct this from the spinless basis |{rl}; w〉 with
l = 1, . . . , N by partitioning positions into two groups of N↑
and N↓ each, where N = N↑ + N↓. Due to the multiple ways
of making this partition, the dimension of the Hilbert space
is N!/(N↑!N↓!) times larger than that for the corresponding
spinless system. Using this basis, we consider the Hamiltonian
in Eq. (6) with

θi j↑ = θi j↓ = θi j, (7)

Wi j↑ = Wi j↓ = Wi j, (8)

where θi j and Wi j have been defined in the spinless problem
[we redefine θi j in Eq. (4) with nk = nk↑ + nk↓]. As ensured
by the above rules (i)–(iii), the phase factors eiθ and ei2θ are
given for an exchange of particles with the same spin and
for a local move of a particle around another, respectively.
This system has SU(2) spin-rotational symmetry since θi jα is
invariant under the transformation c†

i → c†
i u with u ∈ SU(2),

where c†
i ≡ (c†

i↑, c†
i↓).

2. Finite U

The system with finite U allows for double occupancy of
sites as shown in Fig. 2(a). We note here that whether or
not such a system can be well-defined is itself a nontrivial
problem. As mentioned above, moving a spin ↑ around a spin
↓ or vice versa along a closed loop gives the phase factor
ei2θ , implying that the positions of particles are singular points
unless ei2θ = 1. This feature appears to prohibit an unambigu-
ous identification of the phase factor for a local move shown
in Fig. 2(b), where two anyons with opposite spins coincide
in the process. This ambiguity can be resolved by virtually
splitting the sites and thereby fixing the way the particles
pass around each other. As shown in Fig. 2(c), let us shift
the sites for spin ↓ particles infinitesimally in the southeast

(a) (c)

Virtual splitting

ei2θei0Phase factor?

Spin

Spin

(b) (d) (e)

FIG. 2. (a) Sketch of a 4×4 lattice with the particle numbers
N↑ = N↓ = 3. (b) Local move of an anyon with spin ↑. The red
arrows represent the direction of the hopping. The phase factor is
generally not well-defined due to the coincidence of spin-up and
spin-down particles along the path of the spin-up particle. (c) Virtual
splitting. (d) and (e) Local moves of anyons with (d) spin ↑ and (e)
spin ↓. The bold lines and their arrows represent the paths and the
direction of the hoppings. Because of the virtual splitting, each phase
factor is uniquely determined.

direction. This configuration enables us to see whether anyons
are enclosed or not for a given local move. Accordingly, the
phase factor is uniquely determined since the path of the spin
↑ particle does not enclose the spin ↓ particle in Fig. 2(d),
whereas the path of the spin ↓ particle encloses the spin ↑
particle, as seen in Fig. 2(e). We have not included terms with
niα or n jα in θi jβ in Eq. (7) so far because of the hard-core
nature of the anyons. To incorporate the virtual splitting, we
now add terms such as θi jα = θi j + Di jα , where

Di j↑ = Ai↓
i j ni↓ + Aj↓

i j n j↓, (9)

Di j↓ = Ai↑
i j ni↑ + Aj↑

i j n j↑. (10)

The coefficients Aiα
i j are assigned as follows. We put an anyon

with spin ↓ on a site, see Fig. 3(a). We then design rules of Ai↓
i j

so that the phase accumulated by moving spin ↑ along each
adjacent plaquette matches with the virtual splitting. Each
phase is listed on the right in the figure. We also determine
Ai↑

i j in the same way, see Fig. 3(b). These conditions regarding
only four adjacent plaquettes are sufficient to design Aiα

i j as can
be seen from the following example. An exchange operation
shown in Fig. 3(c), where double occupancy occurs, can be
decomposed into several operations that are well-defined in
the above framework: an exchange operation involving no
double occupancy and local moves along a plaquette. This
implies that the exchange operation before the decomposition
should give the proper phase that reflects the virtual splitting.
Other operations in which double occupancy occurs also give
proper phase factors since these can be decomposed in the
same way as above. We now give an explicit construction
of Aiα

i j by modifying the rules for the strings. Figure 4(a)
pictorially shows the strings attached to each particle with
the virtual splitting. The assignment of strings is almost the
same as the spinless case, since we do not change the form of
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FIG. 3. (a) and (b) Four plaquettes adjacent to an anyon with
(a) spin ↓ and (b) spin ↑. Each plaquette is labeled by I,. . .,IV. The
hoppings of (a) spin ↑ and (b) spin ↓ along each plaquette give the
phase factors as listed on the right in each figure. (c) An exchange
operation of two anyons with spin ↑ is decomposed into four parts:
an exchange with no double occupancy on any site and local moves
involving the double occupancy. The numbers written next to the
arrows indicate the order of operation.

θi jα in Eq. (7) except for the addition of new terms Di jα . The
difference is in the vicinity of particles as shown in Figs. 4(b)
and 4(c), where we introduce a new orange string around spin
↑. Using these, we employ the previous rules θi j : (i)–(vi), but
change only the rule θi j : (iii) as

θi j :(iii’) (Cut A) The phase factor ei2θ (eiθ ) is given if an
anyon crosses a green (orange) string.

We still use Eq. (8) for Wi jα without any modification.
The above rules clearly produce the phase factor shown in
Figs. 3(a) and 3(b). Figure 5 shows the hopping phases
assigned to each link. Here we assume 3 � iy � Ny (no re-

(b)

(c)

1 2 3 4 5

1

2

3

4

ix

iy

Oθ Cut A

Cut B
(a) SpinSpin

FIG. 4. (a) Sketch of a 5×4 lattice with N↑ = N↓ = 3 with the
string gauge (green or orange arrows). The brown lines represent the
cut A and the cut B. (b) and (c) String for (b) spin ↑ and (c) spin ↓.

ix+1ix-1 ix

iy+1

iy-1

iy

ix+1ix-1 ix

iy+1

iy-1

iy

(a) (b)Hopping of       (spin ) Hopping of       (spin )

FIG. 5. Hopping phases of an anyon with (a) spin ↑ and (b) spin
↓. The label of the site (ix, iy ) satisfies 3 � iy � Ny (no restriction on
ix). The sum of phases along each link is consistent with the virtual
splitting.

striction on ix), where ix(y) is the label of sites, see Fig. 4(a).
Clearly the sum of the hopping phases along each plaquette
matches with the virtual splitting. Other situations (namely, �i
with any ix and 1 � iy � 2) are discussed in Appendix A.

Because of the virtual splitting, θi jα no longer takes the
form

∑
k �=i, j Ak

i j (nk↑ + nk↓). This breaks SU(2) spin-rotational
symmetry unless θ/π is an integer. If particles are fermions or
bosons, our model reduces to the standard Hubbard model or
the spinful Bose-Hubbard model with hard-core interactions
between bosons with the same spin. Although the absence
of SU(2) symmetry for anyons is just an artificial effect due
to the virtual splitting, we stress that the fractional statistics
is well-defined without ambiguity in our model. This method
enables us to effectively investigate an interplay between the
short-range interaction and the fractional statistics for systems
that we can deal with using the exact diagonalization method.

3. U � −1

Let us discuss the effective Hamiltonian in the strong inter-
action limit U � −1. We denote the first and second terms in
Eq. (6) by Hkin and Hint, respectively, and we consider Hkin as
a perturbation to Hint. In the unperturbed problem, the ground
state forms pairs of anyons at each site. This macroscopic
degeneracy is lifted by the second-order perturbation: H ′ =
PHkinQ 1

E0−Hint
QHkinP, where P is the projection operator to

the degenerate ground state, HintP = E0P and Q = 1 − P.
For θ/π = 1 (fermions), we have H ′ = (2t2/U )

∑
〈i j〉 b†

i b j

as shown in Appendix B, where b†
i is the creation operator for

a hard-core boson. We ignore a term which is constant when
the particle number is fixed. The boundary conditions of H ′
and H satisfy (η′

x, η
′
y) = (2ηx, 2ηy). The expression of H ′ for

general θ is complicated but we can deduce it by considering
the statistics of a pair. For instance, pairs of semions with
θ/π = 1/2 behave like bosons, implying that the effective
Hamiltonian is given by

H ′ = (2t2/U )
∑
〈i j〉

b†
i b j12, (11)

where the identity matrix 12 comes from W 2
x = W 2

y = 12 [see
Eqs. (2) and (3) with m = 2], which leads to a twofold de-
generacy. The boundary conditions satisfy (η′

x, η
′
y) = (2ηx +

π, 2ηy + π ). The shift of π follows from the fact that the
rules we constructed using strings produce the phase factor −1
apart from the twisted boundary conditions when one moves
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a pair of semions along a noncontractible loop in the x or y
direction [46].

C. Two-body reduced density matrix

To investigate the presence of ODLRO for these systems,
we now define the two-body reduced density matrix as [34,36]

ρ(i, j) = 〈
|Ti j |
〉, (12)

Ti j =
∏

〈kl〉∈Li j

[
c†

k↑eiθkl↑Wkl↑cl↑c†
k↓eiθkl↓Wkl↓cl↓

]
, (13)

where |
〉 is the ground state of H and
∏

〈kl〉∈Li j
indicates the

products over all the links of a path Li j , starting from j to i.
For a given basis state |{r j}, {rk}; w〉, we choose the path Li j so
that (i) there is no particle along it except for the site j and (ii)
all paths for any basis states are continuously connected with
each other (i.e., two paths for two basis states always form a
contractible loop on a torus).

The value of ρ(i, j) is independent of the choice of the path
Li j if θ/π = Z/2. To see this, consider two paths Li j and L′

i j .
Since the two paths form a closed loop, denoted by (L′

i j )
−1Li j ,

the corresponding operators Ti j and T ′
i j satisfy

T ′−1
i j Ti j |{rk}, {rl}; w〉 = ei4nθ |{rk}, {rl}; w〉, (14)

where n is the number of anyons enclosed by the closed
loop, and the sites i and j are assumed to be occupied in the
basis state. This implies Ti j |{rk}, {rl}; w〉 = T ′

i j |{rk}, {rl}; w〉
for θ/π = Z/2, i.e., ρ(i, j) is path independent. [For θ/π =
1, ρ(i, j) is equivalent to the standard reduced matrix for
fermions.]

Anyonic systems should be invariant under a many-particle
translation since the statistical gauge field should depend only
on relative coordinates of each pair of particles [2]. This
implies that our Hamiltonian satisfies GT H (ηx, ηy)T †G† =
H (ηx, ηy), where T is a translational operator and G is a gauge
transformation that rearranges the configuration of strings.
Since |ρ(i, j)| is a gauge invariant, the relation |ρ(i, j)| =
|ρ(i + δ, j + δ)| should hold for any translation δ = (δx, δy).
We numerically confirm this as mentioned below.

III. RESULTS

We consider a system with 6 fermions or 6 semions on
a 6×6 lattice by using the above setup. The interparticle
distance is r0 = a

√
(6×6)/6 ≈ 2.45a, where a is the lattice

constant. We set t = 1 and U � 0. The system of attractively
interacting fermions produces superconducting states, which
is demonstrated by the appearance of ODLRO (discussed be-
low). We also compute the superconducting order parameter
in Appendix C. By comparing the reduced density matrix
ρ(i, j) for semions and fermions, we identify the emergence
of semion superconductivity.

A. Spectral flow

We first investigate the energy spectrum for semions. In
Figs. 6(a)–6(e) we plot the energy as a function of the twisted
boundary condition angle in the x-direction ηx. We here set
ηy = 0. The ground state always gives Sz = 0 at any ηx. The

FIG. 6. (a)–(e) Spectral flows for semions at (a) U = 0, (b) U =
−1, (c) U = −3, (d) U = −5, and (e) U = −10. The system size
is 6×6 and the particle number is N = 6. The twist angle in the y
direction is set as ηy = 0. The circles indicate Sz = 0. The squares
that appear only in (a)–(c) indicate Sz = 1. States with larger Sz not
shown here have higher energies outside the figure. The lowest five
energies at each ηx and Sz are plotted. (f) Energy gap between the two
states indicated by the green circles in (a)–(e). (g) and (h) Pictorial
explanation of the unitary operator R: (g) the spin-flip and (h) the π

rotation.

eigenenergies have a periodicity En(ηx, ηy) = En(ηx + π, ηy)
at any U . This follows from a gauge transformation Wx =
eiπ G1WxG†

1 [41], where G1 = diag[1,−1]. This leads to the
relation G1H (ηx, ηy)G†

1 = H (ηx + π, ηy). We also note that in
Figs. 6(a)–6(e) there appears to be a unique low-energy state
separated by a gap except for ηx ≈ 0 (equivalently ηx ≈ π ),
but in fact there are two states as indicated by the green text.
In Fig. 6(f) we plot the energy gap between the two states. At
U = 0, the ground state is doubly degenerate at any ηx. For
U < 0, on the other hand, the gap is very small but finite and
it closes at ηx = π/2 (equivalently 3π/2).

The gap closing at ηx = π/2 is explained by symmetry
as follows. Our Hamiltonian satisfies G2RH (ηx, ηy)R†G†

2 =
H (−ηx,−ηy), where the operator R switches the spin orienta-
tion [Fig. 6(g)] and then rotates the system by π [Fig. 6(h)],
and G2 is a gauge transformation that rearranges strings.
Combining it with the gauge transformation G1 discussed
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FIG. 7. (a) Absolute value of the two-body reduced density ma-
trix ρ(i, j) and (b) the density-density correlation function 〈ni↑nj↓〉
as functions of the distance |i − j|. Each are normalized by the
density ρ0 ≡ N/(2NxNy ). The system size is Nx×Ny = 6×6 and the
particle number is N = 6. We set (ηx, ηy ) = (π/4, 0) and (ηx, ηy ) =
(0, 0) for semions and fermions, respectively.

above, one obtains SH (ηx, ηy)S† = H (−ηx − π,−ηy) with
S ≡ G2RG1, i.e.,

[H (π/2, 0), S] = 0. (15)

In order to demonstrate the origin of the gap closing
at ηx = π/2, we would like to identify the simultaneous
eigenstate of S as S|λ j〉 = eiλ j |λ j〉 ( j = 1, 2) at ηx = π/2.
However, this is difficult to do since we do not know an
explicit form of G2. Instead, we now compare the values of
〈
|ni|
〉 and 〈
 ′|ni|
 ′〉, where |
〉 = ∑2

j=1 ψ j |λ j〉 is a gen-
eral state in the doubly degenerate state subspace and |
 ′〉 ≡
RG1|
〉 = ∑2

j=1 eiλ j ψ jG
†
2|λ j〉. Noting that gauge transforma-

tions do not change the physical observables, i.e., G2niG
†
2 =

ni, one obtains 〈
 ′|ni|
 ′〉 = ∑
jk ei(−λ j+λk )ψ∗

j ψk〈λ j |ni|λk〉.
This implies that if λ1 = λ2 we have 〈
 ′|ni|
 ′〉 = 〈
|ni|
〉.
We numerically confirm 〈
 ′|ni|
 ′〉 �= 〈
|ni|
〉 at U = −1
with the site i = (ix, iy) = (1, 1), which leads to λ1 �= λ2

by the contrapositive of the above statement. This demon-
strates that the gap closing in Fig. 6(f) is a result of the
symmetry S.

We briefly mention other degeneracies. As shown in
Figs. 6(a)–6(e), many states are degenerate at ηx = 0. We
expect that this is characterized by some combinations of
operations such as R, a π/2 rotation, mirror transformation
(gauge transformations would also be required to rearrange
strings). As suggested by Fig. 6(e), we obtain a fourfold
(quasi)degeneracy for a sufficiently large interaction with
ηy = 0. This is consistent with the energy spectrum of the
effective Hamiltonian in Eq. (11), where the ground state is
twofold degenerate apart from 12. The origin of the twofold
degeneracy shown in Fig. 6(a) at arbitrary ηx is still an open
question.

B. Two-body reduced density matrix

Let us now discuss the presence of off-diagonal long-
range order. Focusing on the systems at U < 0, we
plot in Fig. 7(a) the two-body reduced density matrix
|ρ(i, j)|/ρ0, where ρ0 = N/(2NxNy) = 1/12 is the density.
We set i = (ix, iy) = (1, 2) and change the other site as j =
(1, 2), (2, 2), (3, 2), . . . , (6, 2), corresponding to | j − i| =
0, 1, 2, . . . , 6. The twisted boundary conditions are set as

(ηx, ηy) = (π/4, 0) to obtain a unique ground state. As a
sanity check for translational symmetry, we confirm that
the values of |ρ(i, j)| at U = −1 with i = (5, 3) and j =
(5, 3), (6, 3), . . . are in agreement with that in Fig. 7(a). In
the figure we also show the result with the same system but
with fermions with (ηx, ηy) = (0, 0) as a reference state of the
superconductor.

The size of the Cooper pair in the fermionic system,
according to mean field theory, coincides with the interparti-
cle distance at U = −2.56 as shown in Appendix C. Based
on this, we show four types of data in Fig. 7(a): the BEC
limit (U = −10), the BEC regime (U = −5), the intermediate
regime (U = −3), and the BCS regime (U = −1). In the
BEC limit (U = −10), ρ(i, j) for semions and fermions has
a quantitatively similar structure, demonstrating off-diagonal
long-range order of semionic superconductivity. In Fig. 7(b)
we plot the density-density correlation function 〈ni↑n j↓〉 in
the same settings as Fig. 7(a). The result for semions at
U = −10 is almost the same as that for fermions and one
can also see 〈ni↑ni↓〉 ∼ ρ0 in both data. These are consistent
with the expectation that a pair of semions obeys Bose statis-
tics. As the interaction becomes weaker, 〈ni↑ni↓〉 becomes
smaller, implying that the size of the pairs is larger [since the
density-density correlation function obeys the normalization
condition

∑
j〈ni↑n j↓〉 = N↑N↓/(NxNy) where N↑ and N↓ are

the number of up-spin and down-spin particles, respectively].
The calculation of 〈ni↑n j↓〉 is useful to estimate the size of
pairs, although the system size that we can currently access is
not large enough to do it quantitatively.

In the BEC (U = −5), the intermediate (U = −3), and
the BCS (U = −1) regimes, ρ(i, j) and 〈ni↑n j↓〉 for semions
behave quantitatively similarly to those for fermions. This
suggests that a BCS-BEC crossover occurs in the semion
superconductor. At U = −5,−3,−1 in Fig. 7(a), ρ(i, j) for
semions is always smaller than that for fermions. Noting the
absence of superconducting states in noninteracting systems
of fermions, one may expect an absence of superconductivity
for semions at U = 0 as well. This is, however, not neces-
sarily correct. For both semions and fermions, the size of a
pair becomes large as U approaches zero and therefore the
influence of finite-size effects becomes non-negligible. Much
larger systems will be necessary to investigate the presence of
superconductivity for semions at U = 0.

IV. CONCLUSION

In this paper we have constructed a formulation that allows
for the Hubbard model of spinful anyons with any values of
the on-site interaction. Virtual splitting of sites, which fixes
the way opposing spins pass each other on a site, allows
for double-spin occupancy. Using this model, we have in-
vestigated the emergence of superconductivity for interacting
semions. Off-diagonal long-range order is numerically con-
firmed in the strong interaction regime. Our numerical results
also suggest that a BCS-BEC crossover occurs in semionic
systems. Recently, density-dependent gauge potentials have
been realized in cold atoms [47–50]. We believe that our
findings will be useful for further explorations in the physics
of semions.
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FIG. 8. Sketch of a 4×5 lattice. The sites are divided into seven
groups.
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APPENDIX A: HOPPING PHASES
AND VIRTUAL SPLITTING

In this Appendix we show that the rules of θi jα and Wi jα

defined in the main text describe virtual splitting. As shown in
Fig. 8, we first divide the sites of the system into seven groups
and then calculate the hopping phases for each case in Fig. 9 as
we did in Fig. 5. For all cases the sum of the hopping phases
along each plaquette matches with the virtual splitting. For
simplicity we impose some conditions of the configuration
of the other N − 2 particles out of the figure without loss of
generality [e.g., there are no particles at ix = Nx in Fig. 9(b)].

Cut A

(a) Group 2

2

Hopping of       (spin ) Hopping of       (spin )

(b) Group 3

2

Hopping of       (spin ) Hopping of       (spin )

(c) Group 4

2(N-2)

Hopping of       (spin ) Hopping of       (spin )

(d) Group 5
Hopping of       (spin ) Hopping of       (spin )

(e) Group 6
Hopping of       (spin ) Hopping of       (spin )

(f) Group 7
Hopping of       (spin ) Hopping of       (spin )

2
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2
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ix+1ix-1 ix
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2
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1
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2
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1

1Nx-1 Nx

2

Ny

1

1Nx-1 Nx

2

Ny

1

ix+1ix-1 ix

3

1

2

ix+1ix-1 ix

3

1

2

N-1{
2(N-1)

2Oθ

Cut B

Cut AN-1{ Oθ

Cut B

2
2(N-1)

Cut AN-2{ Oθ

Cut B

2(N-2)

2(N-2) +

Cut AN-2{ Oθ

Cut B

2(N-2) +2

Cut A2 Cut A2

Cut AN-1{ Oθ

Cut B

2(N-1) 2
Cut AN-1{ Oθ

Cut B

2(N-1) 2

Cut AN-2{ Oθ

Cut B

Cut AN-2{ Oθ

Cut B

2(N-2)

2(N-2) + -

2(N-2)

2(N-2) +

FIG. 9. The same as Fig. 5 but for the other groups shown in Fig. 8. (Figure 5 corresponds to Group 1.) Here we do not show the phase
factors given by Wi jα , i.e., the plaquette with Oθ has the additional flux −2θ [see Eq. (5)] other than the sum of the written phases.
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APPENDIX B: EFFECTIVE HAMILTONIAN
FOR FERMIONS AT U � −1

Let us rewrite the Hamiltonian in Eq. (6) for θ/π = 1
(fermions) as H = Hkin + Hint with

Hkin = −t
∑
〈i j〉,α

f †
iα f jα, (B1)

Hint = U
∑

i

N̂i↑N̂i↓, (B2)

where f †
iα is the fermion operator and N̂iα = f †

iα fiα . To see the
expression of H ′ = PHkinQ 1

E0−Hint
QHkinP, we consider a two-

body state:

PHkin
1

E0 − Hint
Hkin f †

j↑ f †
j↓|0〉

= PHkin
−t

U

∑
i

( f †
i↑ f †

j↓ − f †
i↓ f †

j↑)|0〉

= 2t2

U

∑
i

( f †
j↑ f †

j↓ + f †
i↑ f †

i↓)|0〉, (B3)

where
∑

i indicates the summation over the four nearest
sites of j. We have [ f †

i↑ f †
i↓, f j↑ f j↓] = [1 − (Ni↑ − Ni↓)]δi j and

P(Ni↑ − Ni↓)P = 0. Thus, the effective Hamiltonian H ′ is
given by

H ′ = 2t2

U

∑
〈i j〉

b†
i b j + 8t2

U

∑
i

b†
i bi, (B4)

where b†
i is the creation operator for a hard-core boson. The

twisted boundary conditions for H ′ are given by (η′
x, η

′
y) =

(2ηx, 2ηy), where (ηx, ηy) is the angles for fermions in the
original Hamiltonian. The effective Hamiltonian for semions
could be derived using a similar argument, albeit with a mod-
ification of the boundary conditions, as discussed in the main
text.

APPENDIX C: BCS-BEC CROSSOVER

The Hamiltonian in Eq. (6) for θ/π = 1 reproduces the
standard Hubbard model of fermions. In this Appendix we
calculate the value of U for which the BCS-BEC crossover
occurs in the fermionic system.

Assuming U < 0, we rewrite the Hamiltonian in the recip-
rocal space as H = Hkin + V with

Hkin =
∑

k

εkN̂k, (C1)

V = −|U |
NxNy

∑
k1,k2,k

′
1,k

′
2

δk1+k2,k
′
1+k′

2
f †
k1↑ f †

k2↓ fk′
2↓ fk′

1↑, (C2)

FIG. 10. (a) Order parameter �, (b) chemical potential μ, and
(c) the ratio of the size of the Cooper pair ξ0 to the interparticle dis-
tance r0 as functions of the Hubbard interaction |U |. (c) The dashed
line represents ξ0 = r0. The green circle at |U | ≈ 2.56 indicates the
intersection point.

where f †
kα

is the fermionic operator, N̂k = f †
k↑ fk↑ + f †

k↓ fk↓,
and εk = −2t[cos(kxa) + cos(kya)] with t = 1. Here we ex-
plicitly write the lattice constant a. The number of sites is
Nx×Ny. With the condition k1 + k2 = 0, we modify the in-
teraction as

V =
∑
k,k′

V (k, k′) f †
k↑ f †

−k↓ f−k′↓ fk′↑, (C3)

where V (k, k′) = −|U |/(NxNy). Now we consider the gap
equation at T = 0:

�k = −
∑

k′
V (k, k′)

�k′

2Ek′
, (C4)

where �k is the order parameter and Ek =
√

(εk − μ)2 + �2
k.

Since the particle number is fixed in our model, we choose the
chemical potential μ such that∑

k

〈N̂k〉 =
∑

k

[1 − (εk − μ)/Ek] = N. (C5)

Now we assume �k = const. ≡ �. Setting the system param-
eters as Nx = Ny = 6 and N = 6 and solving Eqs. (C4) and
(C5) simultaneously, we generate Figs. 10(a) and 10(b) that
plot the solutions of � and μ as functions of U .

One expects that the BCS-BEC crossover occurs when the
size of the Cooper pair is comparable with the interparticle
distance r0 = a

√
NxNy/N . In the continuum limit, the size of

the Cooper pair is characterized by

ξ0 = h̄vF

π�
= h̄

π�

√
2εF

m
. (C6)

Substituting h̄2/(2m) = ta2 and εF = μ + 4t (here we mea-
sure the kinetic energy relative to the bottom of the band), we
have ξ0 = 2a

√
t (μ + 4t )/(π�). Figure 10(c) plots the ratio

ξ0/r0 as a function of U . One obtains ξ0 = r0 at |U | ≈ 2.56.
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