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The energy levels of a quasicontinuous spectrum in mesoscopic systems fluctuate in positions and the
distribution of the fluctuations reveals information about the microscopic nature of the structure under con-
sideration. Here, we investigate mesoscopic fluctuations of a secondary gap that appears in the quasiclassical
spectrum of a chaotic cavity coupled to one or more superconductors. Utilizing a random matrix model, we
compute numerically the energies of Andreev levels and access the distribution of the gap widths. We mostly
concentrate on the universal regime ETh � �, with ETh being the Thouless energy of the cavity and � being the
superconducting gap. We find that the distribution is determined by an intermediate energy scale �g with the
value between the level spacing in the cavity δs and the quasiclassical value of the gap Eg. From our numerics
we extrapolate the first two cumulants of the gap distribution in the limit of large level and channel number. We
find that the scaled distribution in this regime is the Tracy-Widom distribution: the same as found by Vavilov
et al. [Phys. Rev. Lett. 86, 874 (2001)] for the distribution of the minigap edge in the opposite limit ETh � �.
This leads us to the conclusion that the distribution found is a universal property of chaotic proximity systems at
the edge of a continuous spectrum in agreement with the known random matrix models featuring a square root
singularity in the density of states.
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I. INTRODUCTION

Normal metals connected to one or more superconductors
are subject to the so-called proximity effect [1], which arises
due to the penetration of superconducting correlations into the
normal metal. Its influence is most striking for the properties
of structures with the normal metal part’s size being of the
order of the superconducting coherence length, which is the
length scale for the decay of superconducting correlations
inside the normal part. Whereas systems with more than one
superconductor involved can host equilibrium supercurrents
[2], the most eye-catching observable which is strongly mod-
ified by the proximity of even a single superconductor is
the local density of states (LDOS) in the normal part [3,4].
Besides the emergence of a gap around the Fermi energy EF

[5], which is known as the minigap, another secondary gap
was recently reported for a special class of normal structures
consisting of a chaotic cavity connected to superconductors
via ideally transmitting ballistic channels [6].

Such disordered systems are known to exhibit a universal
behavior in the sense that the statistical properties of the
spectrum in the quasiclassical limit do not depend on micro-
scopic details of the system, such as the exact distribution of
impurities or the exact shape of a ballistic cavity with chaotic
scattering at the boundaries. Rather, they are determined by
the presence or absence of fundamental symmetries [7] in the
Hamiltonian of the system. This assumption is only true if
the system is sufficiently chaotic. For the time an excitation

spends inside the normal region before reentering a connector
towards a superconductor, the dwell time τdwell must be much
larger than the ergodic time τerg required to explore the whole
phase space system [7]. The only parameter describing the
normal metal properties is thus the energy scale related to the
inverse dwell time: the Thouless energy [8],

ETh = h̄/τdwell.

The fundamental symmetries in the system are time-reversal
symmetry, which can be broken by an external magnetic field,
and spin rotation symmetry, which is broken in systems where
spin-orbit interaction plays a role [9,10]. In this study, we re-
strict ourselves to the case where both symmetries are present.

This universality makes possible a description in terms
of random matrices respecting the appropriate symmetries.
These matrices are either random Hamiltonians in the de-
scription of finite systems or random scattering matrices in
the description of open systems [7]. This method—termed
random matrix theory (RMT)—turned out to be a powerful
tool in the description of average properties [11], as well as in
the description of mesoscopic fluctuations of average values
[12]. So far most interest was attributed to the description
of the minigap and its statistical properties [13,14]. In the
regime ETh � � the system can be described by an effective
Hamiltonian [15], whose smallest eigenvalue indicates the gap
with an average given by ETh. This eigenvalue was found
to be distributed according to the universal Tracy-Widom
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distribution function, which is generally valid for random
Hermitian matrices [12,16–18] at the edge of a spectral gap.

In this article, we address the opposite regime ETh � �.
No effective Hamiltonian description of Andreev energy lev-
els below the superconducting gap edge � is possible in
this case. The energy positions are found numerically as the
roots of a complex determinant equation rather than as the
eigenvalues of a matrix. We concentrate on the properties
of the secondary gap in the spectrum, confirm the results of
the quasiclassical approach for the average density of states,
and investigate the averaged mesoscopic fluctuations of the
secondary gap width.

This secondary gap has been discovered by the authors
[6,19] several years ago. We have shown that this gap opens up
near the edge of the continuous spectrum E = � in a chaotic
cavity coupled to one or more superconductors, in addition to
the usual minigap opening at Fermi energy. As a consequence
of the characteristic phase dependence in the case of two cou-
pled superconductors it was referred to as the “smile” gap in
our previous works [6,19]. The condition ETh � � is required
for this secondary gap. This gap has a universal behavior at
ETh � � [6], where its width is Eg ≈ 0.0147�3/E2

Th. In this
limit, the whole subgap density of states has a universal shape
not depending on ETh. Similar finite-energy gap structures
have been found in the multiterminal junction and could be
related to topological properties [20,21].

We show by a numerical study that this universal behavior
holds also for the gap width fluctuations. The distribution is
universal and coincides in rescaled units with the universal
distribution of the fluctuations of the minigap width [12].
Hence this distribution is characteristic for the superconduct-
ing spectral properties close to a gap.

We stress that this statement is neither straightforward nor
obvious. From a mathematical point of view the problem is
significantly different, since the energies of the levels cannot
be associated with eigenvalues of a random Hermitian matrix
in the way it was done in [17,18] and utilized in [12]. There
are also differences in the physical setups: the minigap opens
at zero energy and is subject to electron-hole symmetry of the
spectrum, while the secondary gap is far from zero energy
abutting the edge of the continuous spectrum at E = �, which
could affect the level statistics.

This article is structured as follows. In Sec. II we introduce
a random matrix model that describes the setup under con-
sideration and derive the determinant equation for the level
energies. In Sec. III we evaluate the semiclassical density of
states in this model demonstrating the equivalence with the
results of the Green’s function approach implemented in [6].
In Sec. IV we consider the numbers of Andreev levels in
energy intervals. Combining numerical and analytical results,
we prove that the secondary gap opens at the N th Andreev
level, N being the number of transport channels opened to
the superconductors. This allows us to concentrate on the
distribution of energies of this part. In Sec. V we numeri-
cally calculate the distribution of the secondary gap for finite
dimensions of the random matrix model and extrapolate to
the limit of infinite dimensions to find an accurate corre-
spondence with the universal distribution. We conclude in
Sec. VI.

II. MODEL

In this section, we motivate and specify the random matrix
model in use. In general, random matrix models permit eval-
uation of the average density of states (e.g., Ref. [15]), where
the results in the limit of the large dimension of the matrices
are equivalent to the results of quasiclassical Green’s function
calculations. Random matrix models also permit evaluation
of mesoscopic fluctuations, for instance, the fluctuations of
energy positions of Andreev levels and their statistics [12].

The energy positions of Andreev levels in a generic
proximitized nanostructure are determined by solutions of
Beenakker’s determinant equation [22,23]

det
[
1 − Ŝe

N (E )Ŝeh
A (E )Ŝh

N (E )Ŝhe
A (E )

] = 0. (1)

They are thus determined by an energy-dependent electron
scattering matrix Ŝe

N (E ) inside the normal region (N). This
is an N × N matrix in the space of all transport chan-
nels coming into or going out of the nanostructure. The
scattering matrix for holes is related to that of electrons,
Ŝh

N (E ) = Ŝe∗
N (−E ). The transport channels are opened to su-

perconducting terminals where electrons are converted into
holes and vice versa. This is described by Andreev scatter-
ing matrices Ŝeh,he

A (E ) that can be chosen to be diagonal,
[Ŝeh,he

A (E )]ii = exp[−i arccos(E/�i )] exp(±iφi ), with �i, φi

being the modulus and phase of the superconducting order
parameter in a terminal to which the channel i belongs. For
the same phase and modulus in all terminals, [Ŝeh,he

A (E )] =
exp[−i arccos(E/�)], the Andreev scattering matrices can be
just replaced by an energy-dependent phase factor.

If the nanostructure is sufficiently short so that ETh � �,
one can neglect the energy dependence of the scattering ma-
trix. For ballistic transport in a chaotic cavity, ŜN can be
taken as a random member of one of the circular ensembles
of RMT [7,24]. In this work, we assume time reversibility
and, hence, assume a time-reversible scattering matrix that is
a member of the circular orthogonal ensemble. However, the
existence of the secondary gap implies ETh � �, so the energy
dependence of the scattering matrix cannot be neglected. To
model the situation, we adopt a Hamiltonian representation of
the scattering matrix proposed in [25] and utilized in [13,26]
in the superconducting context,

ŜN = 1 − 2π iŴ †(E − Ĥ + iπŴŴ †)−1Ŵ . (2)

Here, the Hamiltonian Ĥ is an M × M Hermitian matrix
describing the M electron levels in an isolated cavity. For a
chaotic cavity, this Hamiltonian is a member of the Gaus-
sian orthogonal ensemble, whose probability distribution is
defined by[27,28]

P (Ĥ ) ∼ exp

(
− π2

4δ2
s M

TrĤ2

)
, (3)

with δs being the mean level spacing of the isolated cavity.
The N × M matrix Ŵ describes the connection between

the electron states in the cavity and terminals via N transport
channels with transmissions Tn. It is defined upon unitary
transformations in the spaces of channels and states. The
transmission coefficients of the N transport channels are
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related to the N eigenvalues of Ŵ †Ŵ ,

w2
n = Mδs

π2Tn
(2 − Tn ± 2

√
1 − Tn). (4)

For ballistic connectors, Tn = 1 and w2
n = Mδs/π

2. The sim-
plest way to choose Ŵ is to set Wnm = δnmwn.

It has been shown in [13,26] that Eq. (1) with this scattering
matrix can be transformed to

det[E 1̂ − Ĥ + Ŵ (E )] = 0. (5)

Here, an extra 2 × 2 Nambu structure has been introduced and
the matrices Ĥ and Ŵ are defined as

Ĥ = H σ̂3, (6)

Ŵ (E ) = π√
�2 − E2

(
EWW † �WW †

�WW † EWW †

)
. (7)

While Eq. (5) may resemble an eigenvalue equation defining
a spectrum of a Hamiltonian, it is not precisely one since the
Hamiltonian Ĥ of the isolated normal part is accompanied
by the energy-dependent self-energy Ŵ (E ). This significantly
complicates the numerical solution and is in stark contrast to
the previously investigated case of the minigap [12] in which
the energy dependence can be neglected in the limit E � �.

For this model, the 2M × 2M Green’s function can be
defined as follows:

Ĝ(z) =
〈

1̂

z1̂ − Ĥ + Ŵ (z)

〉
. (8)

After averaging over the random Ĥ according to Eq. (3), the
Green’s function is diagonal in the space of electron states.

The average density of states can be computed from this
Green’s function as

ρ(E ) =
∑

n

〈δ(E − En)〉

= − 1

π
Im〈Tr[(1̂ + dŴ/dE )Ĝ(E + iδ+)]〉, (9)

where the first sum is a sum over Andreev levels. The factor
(1̂ + dŴ/dE ) has to be incorporated to account for evanes-
cent propagation of Andreev states into the superconducting
terminals. We can also define the local DOS in the normal
region that can be immediately measured by a tunnel contact
connected to the normal part. In this case, each Andreev bound
state is weighted with probability Pn to be in the normal re-
gion. The local DOS is expressed by a similar relation without
the factor

ρloc(E ) =
∑

n

〈Pnδ(E − En)〉

= − 1

π
Im〈Tr[Ĝ(E + iδ+)]〉. (10)

In our numerics, the energies of Andreev levels are com-
puted by finding the roots of the determinant given by Eq. (5).
For Andreev levels close to the secondary gap [6] with en-
ergies EA � �, there is no obvious possibility to reduce this
problem to an eigenvalue problem of an effective Hamilto-
nian. This was possible in similar studies [12] of the level

statistics of the minigap in the limit ETh � � and appeared
to simplify the calculations greatly.

For the model under consideration, ETh = Nδs/(2π ). To
account for constant density of normal electron states at
E < � the width of the spectrum of Ĥ , 
Mδs, should signif-
icantly exceed �. This is why the semiclassical regime with
ETh � � implies M � N � 1.

III. AVERAGE DENSITY OF STATES

In this section, we evaluate the average DOS for the RMT
model formulated in the previous section. We will show ex-
plicitly the equivalence of the results with those obtained by
the semiclassical Green’s function method employed in [6].
We thus prove the occurrence of the secondary gap in an RMT
model.

In our treatment of the RMT model, we follow the ap-
proach by Melsen et al. [15] modifying it for a calculation that
is valid in the whole energy interval [0,�] and gives both the
full and local densities of states in the system. We will work
in the limit M � N � 1 using the perturbation expansion in
1/M to average over the Hamiltonians of the Gaussian orthog-
onal ensemble. We introduce the average Green’s function
that is a matrix in Nambu space and, upon the sign change
of the elements, it is equivalent to the quasiclassical Green’s
function used in [6]:

Ĝ(z) = δs

π

(
TrG11 TrG12

TrG21 TrG22

)
. (11)

Gi j are the M × M subblocks of the matrix G from Eq. (8).
To compute this matrix, we employ a traditional self-

consistent Born approximation valid for M � 1,

Ĝ(z) = δs

π

M∑
n=1

1(
Ĝ(0)

n
)−1 − 	̂

, (12)

(
Ĝ(0)

n

)−1 = z + πw2
n√

�2 − z2

(
z �

� z

)
, (13)

	̂ = Mδs

π

(
G11 −G12

−G21 G22

)
. (14)

We note the following relations of the elements [15]:

G11 = G22, G12 = G21, G2
12 = 1 + G2

11. (15)

To proceed, we implement a simple model of a transmission
distribution where all channels have the same transmission T
and therefore the same wn ≡ w given by Eq. (4). With this,
the sum over n can be readily computed. With the help of the
relations (15) three out of four components of Eq. (12) are
solved and the remaining equation can be written as (see the
Appendix)

zG12

√
1 − z2(T − 2) − T (zG11 + G12)

G11 + zG12
= T Nδs

2π
. (16)

This model has been also used in Ref. [6]. In the following
steps, we introduce the Thouless energy ETh = T Nδs/(2π ),
express G12 via G11, and identify G11 = −ig, where g is the
quasiclassical Green’s function as defined in Refs. [6,19].
With this, Eq. (16) becomes precisely equal to Eq. (2) in
Ref. [6]. We have therefore demonstrated the equivalence of
RMT and quasiclassical Green’s functions approaches.
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With this, we can compute the local DOS. To evalu-
ate the full DOS, we have to account for the term arising
from the coupling to the superconductors ∼dŴ/dE that is
expressed as

Tr[(dŴ/dE )Ĝ] ∝ TrN [G11] + (E/�)TrN [G12]. (17)

Here TrN (. . .) indicates a trace over the first N diagonal
components in the particular block Gi j , where the wn are
nonzero. We define a Green’s function that involves only this
summation:

ĝ = δs

π

(
TrNG11 TrNG12

TrNG21 TrNG22

)
, (18)

which is readily expressed as

ĝ(z) = δs

π

N∑
n=1

1(
Ĝ(0)

n
)−1 − 	̂

. (19)

In the model of a constant T , we find

g11(z) + z

�
g12(z) = − 1

w2π

�z√
�2 − z2

G12(z), (20)

with w being given by Eq. (4). Substituting this into Eq. (9)
we finally find for the full DOS

ρ(E ) = − 2

δs
Im

[
G11(E ) − E�

�2 − E2
G12(E )

]
. (21)

In addition to the contribution to the full DOS from the part
of the Andreev states located inside the normal part, that is
proportional to G11, there is also a contribution from the parts
leaking into the superconductors. This contribution is related
to the anomalous component of the Green’s function G12,
which is caused by the proximity of the superconductors. This
contribution is energy dependent and diverges for energies
close to �, which reflects the fact that Andreev states with
energies EA ≈ � are mainly located in the superconductors.

IV. NUMBER OF ANDREEV LEVELS
IN ENERGY INTERVALS

Before addressing the fluctuations of the gap, we need to
know how many Andreev levels are situated in the energy
interval between the minigap and the secondary gap so we
know which levels are separated by the secondary gap. In this
section, we present our numerical and analytical results that
concern the number of Andreev levels in energy intervals.

In our numerical calculations, we fix the number of lev-
els inside the cavity to M = 500 and the level spacing to
δs = 0.1�. We generate 2000 pseudorandom Hamiltonian
matrices with the distribution given by Eq. (3). For each re-
alization, we solve Eq. (5) to find the energy levels at various
ETh that is tuned by varying the number of channels N opened
to the superconductor. Changing N from 0 to 100 corresponds
to ETh being increased from 0 to approximately 1.6�.

The results are presented in Fig. 1. The color plot in Fig. 1
shows the fluctuations (mean deviation) of the number of
levels in an interval [0, E ] as a function of ETh (x axis) and as a
function of energy E (y axis) close to the gap edge. Generally,
the fluctuations are of the order of 1 as expected from the spec-
tral rigidity of the random matrices. The solid red lines show

FIG. 1. (a) Fluctuations of the number of Andreev levels in an
energy interval [0, E ] as a function of the number of channels N .
The solid red lines indicate the secondary gap edges in quasiclassical
approximation. The fluctuations are strongly suppressed but nonzero
in the quasiclassically forbidden domain. (b) The fluctuations and
average number of Andreev levels in the interval [0,�]. For ETh > �

the fluctuations are suppressed and the number of levels is pinned to
N . For N → 0, the cavity is uncoupled from the superconductors and
the average number of levels is 2�/δs.

the boundaries of the secondary gap found from the above
quasiclassical calculations. We see the strong suppression of
the fluctuations in the quasiclassically forbidden domain yet
they are still nonzero corresponding to single isolated Andreev
levels that enter the domain as fluctuations. These fluctuations
decrease at larger Thouless energies ETh > �.

Figure 1(b) shows detailed results for the energy interval
[0,�]. Here, we plot the fluctuations of the number of An-
dreev levels along the average number of levels. Till ETh ≈
0.8� the number of Andreev levels fluctuates at usual scale.
This indicates that in this regime the discrete spectrum of
Andreev levels is not separated from the continuum; a level
can merge with the continuum or come back as a result of a
fluctuation. At bigger ETh the fluctuations decrease rapidly.
For the parameters M, δs chosen we see no fluctuations
above ETh = 1.2� and the number of the bound states is
exactly N corresponding to the number of open channels.
This indicates a perfect separation of continuous and discrete
spectrum. These values of ETh correlate with ETh = � at
which the upper boundary of the secondary gap merges with
the continuum, which is the same tendency we see in the
ETh dependence of an average number of levels. At ETh = 0,
where the normal region is isolated from the superconduc-
tors, the average number of levels is given by 2�/δs (the
factor 2 arises since both electron and hole states are counted
as Andreev levels). Upon increasing N , the average number
grows slower than N , becomes equal to N at about ETh = �,
and does not change any further being pinned to the number
of channels. This suggests that the secondary gap opens up
exactly between the N th and N + 1st level.

This result can also be obtained from the quasiclassical
density of states. We consider here the limit ETh � �. It was

214513-4



UNIVERSAL PROPERTIES OF MESOSCOPIC … PHYSICAL REVIEW B 106, 214513 (2022)

FIG. 2. Comparison of the local DOS inside the normal cavity
(solid red line) and the full density of states, which accounts for
Andreev levels localized inside the superconductors (dashed blue
line) in the limit ETh/� → ∞ and for ballistic coupling (T = 1).
The difference is most important at Andreev energies EA close to �.

shown in [6] that in this limit all quantities in Eq. (16) can
be rescaled with factors (ETh/�)k of appropriate power k in a
way that the Thouless energy drops out of this equation and
the rescaled density of states has a universal shape. In order
to calculate the total number of Andreev levels from this
result one has to pay special attention to the fact that in this
limit all Andreev levels have energies close to �, given by
� − EA ∼ �3/E2

Th. These states are mostly localized in the
superconductors. In terms of Eq. (21) for the full density of
states this means that E�/(�2 − E2) � 1 is the dominant
contribution. To find the total number of Andreev levels, the
anomalous Green’s function G12 is expressed via G11 via the
normalization condition; then this expression is expanded in
1/G11 ∼ 1/ETh, which is small in the limit ETh → ∞:

G12 = −
√

1 + G2
11 ≈ −G11 − 1/(2G11).

Introducing rescaled quantities δ = (� − E )/� =
x(�/ETh)2 and G11 = yETh/�, the leading order contribution
to the full DOS becomes

ρ(E ) = − NT

πETh

(
ETh

�

)3

Im
( y

2x

)
. (22)

The difference between the full DOS and the local DOS is
shown in Fig. 2. The scaling of both curves with ETh/� is
different and for large ETh the local DOS can be neglected in
comparison with the full one. We make use of the solution
for y, found in [6] and [19], and integrate Eq. (22) from
the minigap edge δmini to the secondary gap edge δc. In the
universal limit ETh/� → ∞ these boundaries are given by

δb
mini = (17/2 + 6

√
2)(�/ETh)2, (23)

δb
c = (17/2 − 6

√
2)(�/ETh)2. (24)

For a more general case of constant contact transmission
T , these boundaries are computed in [19]. For tunnel contacts,
they are given by

δt
mini = 8(�/ETh)2, (25)

δt
c = 0. (26)

There is no secondary gap for the tunnel case. Both for ballis-
tic and tunnel cases, the integration can be done analytically.

For the case of general transmission, the integration has to be
done numerically. In any case, the integration yields exactly N
Andreev levels for any value of T . This perfectly agrees with
our numerical calculations. The statistics of the secondary gap
is thus the statistics of the level spacing between the N th and
N + 1st Andreev level.

V. STATISTICS OF THE SECONDARY GAP

In this section, we present the results of numerical investi-
gation of the distribution of the secondary gap. We concentrate
on the limit of large Thouless energies, where the average
density of states is given by an analytical expression and has
a universal shape. In this limit, the upper gap edge is fixed to
the edge of the continuum spectrum � and, as shown in the
previous section, no levels from the continuum enter the gap
region. Thus the gap is given by the energy of the highest An-
dreev level. For M � N � 1 we expect a universal behavior
not only for the average DOS, but also for the fluctuations
of the gap. In previous complementary studies [12] of the
minigap statistics in the limit of small ETh, the latter condition
was automatically satisfied by reducing the problem to an
eigenvalue problem of an effective Hamiltonian. In this case
the only two parameters affecting the result are M and N . For
the case in hand, the situation is slightly more complicated,
since the condition ETh/� � 1 is not fulfilled automatically.
There are three parameters to vary: the number of levels M,
the number of channels N , and furthermore the level spacing
inside the normal part δs. They have to be chosen such that the
condition ETh = Nδs/(2π ) � � is fulfilled.

Like in the case of [12], the energy scale governing the
fluctuations should be the same as the one for the average
density of states. In the limit M � N � 1 where the quasi-
classical calculation is valid we expand the universal result
for the full DOS below the gap in a series to find in lowest
order a square-root behavior near the gap egde,

ρ(E ) ≈ 1

π

√
Ec − E

�3
g

, (27)

where the energy scale �g is given by

�g = cE4/3
s δ2/3

s /�. (28)

Here, Es = � − Ec is the secondary gap and c ≈ 1.19 is a
numerical prefactor. This energy scale is thus of the order
of the energy spacing between the last Andreev levels at the
gap edge. The definition of �g is similar to the definition in
[12], with the minigap energy Emini being replaced by E4

s /�3.
There are two reasons for this difference. The first reason is
as follows: for the minigap in the limit ETh/� � 1 Andreev
levels are close to 0 and the contribution from the super-
conductors to the DOS is negligible. It is thus sufficient to
consider the local DOS in the normal part. For the secondary
gap it is essential to consider the full density of states to de-
termine �g, since the secondary gap is situated close to � and
Andreev levels are mostly localized in the superconductors.
The second reason is the different scaling of Es with ETh for
ETh � �.

Using the relations Es ∼ �3/E2
Th, which is valid for

ETh � � and ETh ∼ Nδs, we find that Es/�g ≈ N2/3 in this
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regime. Thus in universal units of �g the secondary gap Es

only depends on N . In the following consideration, the ener-
gies are normalized to �g and expressed as x = (� − E )/�g.
The value for �g is universal only in the limit M � N � 1.
In the following, we use this definition for finite values of M
and N . It turns out that this mostly affects the average position
of the gap edge, while the distribution only weakly depends
on the exact values of M and N .

A. Gap distribution for M/N = 5

Here we consider the gap distribution for a fixed finite ratio
M/N = 5 allowing us to perform extensive numerical simula-
tions. We take N = 200 and five different values for δs ranging
from δs = 0.1� to δs = 0.5�. We calculate the distribution
of the gap from 104 random realizations of the normal part
Hamiltonian H . The results are presented in Fig. 3(a). The
energies are measured relative to the quasiclassical gap energy
Ec and are normalized on the corresponding �g. The extent
of the secondary gap Es is thus not visible on the scale of
the figure, while different values of δs give rise to different
Thouless energies and thus to different values of Es. We thus
confirm that in the universal energy units the gap distribution
does not depend on δs, same as the quasiclassical value of the
gap. We observe however that the averages of the distributions
are shifted by several �g from the quasiclassical value of the
gap edge.

Next, we fix the level spacing to δs = 0.4� and compute
the gap distributions for several different values of N ranging
from N = 150 to N = 600. Each distribution was obtained
from 104 random Hamiltonians generated. The results are
presented in Fig. 3(b). As before, the energies are measured
from the quasiclassical gap edge Ec and normalized to the
particular value of �g. The strong differences in the distri-
butions are due to N-dependent shifts. The shapes of the
distributions are indistinguishable with numerical accuracy.
This behavior is similar to that of the mesoscopic minigap
fluctuations [12]. To account for the shifts, we fit the average
values with �shift(N ) = a + bN2/3, with a and b being the
fitting parameters. The fit is within several percent as shown
in Fig. 3(c). The constant term a in this expression recalls the
constant shift for the universal minigap distributions. The term
∼N2/3 should come from the N2/3 scaling of the quasiclassical
gap Es: not only Es in units �g scales like N2/3, but also
the average mesoscopic shifts have this scaling. In the limit
N → ∞ the first term can be neglected in comparison with
the N2/3 term. With these shifts, the distributions for different
N are in perfect agreement, as shown in Fig. 3(d).

B. Gap distribution in the limit M � N � 1

It remains unclear if the finite M/N = 5 distributions pre-
sented in the previous subsection are close to the distributions
in the limit M → ∞ and N → ∞. In this subsection, we
investigate this considering the limit ETh � � at bigger ratios
M/N . We approach the task as follows: for a fixed value of
N we calculate the distribution of the gap for a range of
large M. To combine this with large ETh, we fix the level
spacing to δs = 0.5�. We have learned from the previous
results that the distributions collapse at this δs. The largest

FIG. 3. Distributions of the energy of the highest (N th) Andreev
level at a fixed ratio M/N = 5. (a) The number of channels is fixed
to N = 200 while the level spacing δs is changing from δs = 0.1� to
δs = 0.5�. The distributions are identical but shifted by ≈5�g with
respect to the quasiclassical edge. (b) The level spacing is fixed to
δs = 0.4�. The distributions are computed for different values of N
ranging from N = 150 to N = 600. (c) The fit of N dependence of
the average values of these distributions. (d) Shifting the distributions
with the values obtained from the fitting model confirms the agree-
ment of the distributions for different N . The inset in this plot shows
the ratio of the quasiclassical gap and the shift at M/N = 5.

values of M and N we are able to reach are M = 6000 and
N = 200. The resulting distribution of the rescaled gap width
x = (� − Ec)/�g is shown in Fig. 4. The red curve in Fig. 4
shows the universal distribution function [18], derived in [12]
for the distribution of the minigap. We observe the agreement
between our numerical data and the universal distribution,
although the system under consideration cannot be reduced to
an effective Hamiltonian. To reach the agreement, we shift the
average of our numerical data, x → x − x
. This is justified by
the results of [12], where the main effect of finite M and N was
shown to be a shift of averages not affecting the shape of the
distribution.

To quantify the agreement even further, we compute the
average 〈x〉 and the variance σ 2 for finite M and N and extrap-
olate to the limit M → ∞. We repeat this for different values
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FIG. 4. Distribution of the secondary gap for M = 6000 and
N = 200 with a level spacing of δs = 0.5� compared to the universal
distribution found in [12] for the minigap in the regime ETh � �,
where the system can be described by an effective Hamiltonian. The
average of the numerical distribution was shifted, as described in the
text, in order to reach good agreement with the universal curve. This
is possible since the average value seems to be the only cumulant
having a strong dependence on M and N .

of N and finally extrapolate to the limit N → ∞. The results
are presented in Fig. 5, where we consider the sets N = 25,
N = 50, N = 75, N = 100, and N = 200. For each value of
N we calculate the distribution of the gap for different values
of M, where we always choose M � N . From these distribu-
tions we calculate the averages 〈x〉 [Fig. 5(a)] and variances
[Fig. 5(b)] and plot them as a function of M−1. Employing the
linear fit, we determine the M → ∞ limit from the crossing
of the fit with the y axis. At the second step, we fit these
results for finite N with a linear fit, assuming N−1 and N−1/2

corrections for the average and variance, respectively. The fits
are shown in insets of Fig. 5. From this procedure, we find
〈x〉univ ≈ 1.47 and σuniv ≈ 1.18. This we need to compare with
the cumulants of the universal distribution: σuniv ≈ 1.27 and
〈x〉univ ≈ 1.21. We observe the correspondence within 10%
for the variation. The discrepancy in 〈x〉univ is about two times
larger and can be attributed to the uncertainty in the shifts.

VI. CONCLUSION

In conclusion, we have studied the statistics of the
secondary gap in the spectrum of superconducting nanos-
tructures. We employ a random matrix model. However,
the Andreev levels in this case cannot be directly associ-
ated with eigenstates of a single random Hamiltonian and
are determined from the roots of a spectral determinant.
Its construction involves two matrices: an M × M matrix
representing the normal-state region and an N × M matrix
representing its connection to the superconducting leads (M >

N). While computing the secondary gap width distribution
for finite matrices, we have found that the finite matrix di-
mensions M and N strongly influence only the average of
this distribution, while its shape is hardly sensitive to their
concrete values; the distribution becomes universal in the
limit M, N → ∞. This way, we have demonstrated that the
statistics of the secondary gap edge satisfy the universal
Tracy-Widom distribution for the edge of an RMT eigenvalue
spectrum.

Remarkably, the statistics of the width of the secondary
gap, which we investigated in the limit ETh � �, is the same

FIG. 5. Averages (a) and variances (b) of the secondary gap dis-
tribution for different values of N ranging from N = 25 to N = 200
as a function of M−1. The fit of a straight line for each N allows
one to estimate the limit M → ∞. Averages as well as variances
seem to be only weakly N dependent. Especially for the averages the
crossing points with the y axis seem to coincide. The insets in (a) and
(b) contain plots of the M → ∞ extrapolated values of 〈x〉 and σ for
finite N as a function of N−1 and N−1/2, respectively. The averages
seem to be almost constant as a function of N . The N dependence
of σ is well approximated by fitting a straight line to the data. This
allows one to estimate the limit N → ∞. The functional form of the
fits are given in both cases. For the limit M → ∞ and N → ∞ we
estimate the first two cumulants as 〈x〉univ ≈ 1.47 and σuniv ≈ 1.18,
which are quite close to the first two cumulants of the universal curve
of Fig. 4.

as the one found in [12] for a more familiar minigap formed at
ETh � � around the Fermi level. In distinction from [12], the
universal energy scale �g for the fluctuations of the secondary
gap depends not only on the average level spacing δs: instead,
it is a combination of the width of the secondary gap Eg and
the level spacing δs.

Our findings confirm the universality of the Tracy-Widom
distribution in the spectrum of superconducting nanostruc-
tures with very different origins forming the edge of a
quasicontinuous spectrum. It will be interesting to establish
the connections of our findings with the universal singulari-
ties occurring at the gap closures in the theory of fine-tuned
random matrices uncovered in [29], as well as with the phase
transitions within the random-matrix theory description of
large-N lattice gauge theories [30].

An experimental observation of the secondary gaps by
means of conventional tunneling spectroscopy [31–35] seems
challenging due to the small gap widths. However, the recent
progress in scanning tunneling spectroscopy techniques due
to functionalized superconducting tips [36–38] could help to
resolve in principle features down to the μeV scale. Another
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possible access to the gap structure is via multiple Andreev re-
flection experiments [39–43]. This route is yet to be developed
theoretically.
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APPENDIX: QUASICLASSICAL AVERAGE RESULTS
FROM RANDOM MATRIX THEORY

In this Appendix a detailed derivation of the four equa-
tions (15) and (16) determining the matrix Green’s functions
(18) from Eq. (12) is presented. Equation (12) is given by

Ĝ(z) = δs

π

M∑
n=1

⎛
⎜⎝z

(
1 + πw2

n√
�2−z2

)
− Mδs

π
G11

πw2
n�√

�2−z2 + Mδs
π

G12

πw2
n�√

�2−z2 + Mδs
π

G21 z
(

1 + πw2
n√

�2−z2

)
− Mδs

π
G22

⎞
⎟⎠

−1

.

Two different terms appear in the sum: N terms with wn = w �= 0 and M − N terms with wn = 0. After the matrix inversion and
evaluation of the sum there are four equations:

G11 =δs

π

{
Nu

[
z

(
1 + πw2

√
�2 − z2

)
− Mδs

π
G22

]
+ (M − N )v

[
z − Mδs

π
G22

]}
, (A1)

G22 =δs

π

{
Nu

[
z

(
1 + πw2

√
�2 − z2

)
− Mδs

π
G11

]
+ (M − N )v

[
z − Mδs

π
G11

]}
, (A2)

G12 =δs

π

{
Nu

( −πw2

√
�2 − z2

− Mδs

π
G12

)
− (M − N )v

Mδs

π
G12

}
, (A3)

G21 =δs

π

{
Nu

( −πw2

√
�2 − z2

− Mδs

π
G21

)
− (M − N )v

Mδs

π
G21

}
. (A4)

Here, we introduced the abbreviations u and v, which are defined according to

u−1 =
(

z

[
1 + πw2

√
�2 − z2

]
− Mδs

π
G11

)(
z

[
1 + πw2

√
�2 − z2

]
− Mδs

π
G22

)
−

(
πw2

√
�2 − z2

+ Mδs

π
G12

)(
πw2

√
�2 − z2

+ Mδs

π
G21

)
,

(A5)

v−1 =
(

z − Mδs

π
G11

)(
z − Mδs

π
G22

)
−

(
Mδs

π
G12

)(
Mδs

π
G21

)
. (A6)

Equations (A1) and (A2) can be inserted into each other, which leads to two equivalent equations for G11 and G22. Both of
them are thus equal: G11 = G22. The same is true for Eqs. (A3) and (A4); thus we have G12 = G21. These are the first two
equations. Eliminating G21 and G22 in Eq. (A1) and Eq. (A3), only two coupled equations for G11 and G12 remain. The sum and
the difference of these two equations are

G11 + G12 =δs

π

⎛
⎜⎝ N

z
(

1 + πω2√
�2−z2

)
− Mδs

π
(G11 − G12) + πω2√

�2−z2

+ M − N

z − Mδs
π

(G11 − G12)

⎞
⎟⎠, (A7)

G11 − G12 =δs

π

⎛
⎜⎝ N

z
(

1 + πω2√
�2−z2

)
− Mδs

π
(G12 + G11) + πω2√

�2−z2

+ M − N

z − Mδs
π

(G12 + G11)

⎞
⎟⎠. (A8)

In the denominators we can neglect terms of the order ∼1 compared to terms of the order ∼M, which is large. From either of
these two equations the third equation of (15) can directly be obtained by neglecting all terms ∼N compared to terms ∼M. The
third equation corresponds to the normalization condition of quasiclassical Green’s functions:

G2
11 − G2

12 = 1. (A9)

In order to derive the fourth equation (16) it is necessary to consider one higher order in the small parameter N/M. Introducing
the abbreviations x = G11 + G12 and y = G11 − G12 we sum up (z − Mδs/πy) × (A.7) − (z − Mδs/πx) × (A.8) and find

z(x − y) = Nδs

π

⎛
⎝−

(z + �) πw2√
�2−z2

(z + �) πw2√
�2−z2 − Mδs

π
y

−
(−z + �) πw2√

�2−z2

(z − �) πw2√
�2−z2 − Mδs

π
x

⎞
⎠. (A10)
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Multiplying Eq. (A10) with the two denominators of the right side it becomes

z(x − y)

(
(z + �)

πw2

√
�2 − z2

− Mδs

π
y

)(
(z − �)

πw2

√
�2 − z2

− Mδs

π
x

)
= w2 NMδ2

s

π

(
x

√
� + z

� − z
+ y

√
� − z

� + z

)
. (A11)

From Eq. (A9) it follows that xy = 1. Using this and multiplying Eq. (A11) with
√

1 − z2 we have

z (x − y)︸ ︷︷ ︸
2G12

{
−

√
�2 − z2

[
(Mδs/π )2 + (πω)2

]
− Mδsw

2
[
z (x + y)︸ ︷︷ ︸

2G11

+ (x − y)︸ ︷︷ ︸
2G12

]}
= ω2 NMδ2

s

π

[
(x + y)︸ ︷︷ ︸

2G11

+z (x − y)︸ ︷︷ ︸
2G12

]
. (A12)

Dividing by 4Mδsω
2/T and using the definition of w2 given in Eq. (4), this equation reduces to

zG12[
√

�2 − z2(T − 2) − T (zG11 + G12)] = T δsN/(2π )︸ ︷︷ ︸
ETh

(G11 + zG12). (A13)

This is the fourth equation (16). Concerning the nonunique definition of w2 it should be mentioned that it does not matter which
sign is used to arrive at Eq. (A13). To see the equivalence with quasiclassical Green’s function calculations explicitly the Green’s
function elements are rotated in the complex plane by substituting G12 = i f and G11 = −ig. Equation (A13) becomes

−i
z f

ETh

[
i
√

1 − z2(2 − T ) + T (zg − f )
]

= g − z f , (A14)

which is equivalent to equations from [6]. For ballistic contacts with T = 1, Eq. (A14) reduces to

−i
z f

ETh
(i
√

1 − z2 + zg − f ) = g − z f . (A15)

This corresponds to [6]. In terms of average results in the regime M � N � 1, RMT is thus equivalent to quasiclassical Green’s
function calculations.
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