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Role of the Berry curvature on BCS-type superconductivity in two-dimensional materials
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We theoretically investigate how the Berry curvature, which arises in multiband structures when the electrons
can be described by an effective single-band Hamiltonian, affects the superconducting properties of two-
dimensional electronic systems. Generically, the Berry curvature is coupled to electric fields beyond those created
by the periodic crystal potential. A potential source of such electric fields, which vary slowly on the lattice scale,
is the mutual interaction between the electrons. We show that the Berry curvature provides additional terms in
the Hamiltonian describing interacting electrons within a single band. When these terms are taken into account
in the framework of the usual BCS weak-coupling treatment of a generic attractive interaction that allows for the
formation of Cooper pairs, the coupling constant is modified. In pure singlet and triplet superconductors, we find
that the Berry curvature generally lowers the coupling constant and thus the superconducting gap and the critical
temperature as a function of doping. From an experimental point of view, a measured deviation from the expected
BCS critical temperature upon doping, e.g., in doped two-dimensional transition-metal dichalcogenides, may
unveil the strength of the Berry curvature.
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I. INTRODUCTION

A large variety of superconducting materials can be theo-
retically understood within the standard BCS theory proposed
by Bardeen, Cooper, and Schrieffer [1,2]. Within this frame-
work, the metallic electrons of a single, partially filled band
are considered to be bound into (Cooper) pairs by a weak at-
traction, while other bands are discarded based on the premise
that they are much more remote in energy than the typical
energy scale set by the attractive interaction. Indeed, the at-
tractive interaction between electrons is, within the standard
BCS theory, mediated by phonons via the electron-phonon
coupling. Within the weak-coupling limit, the typical energy
scale for superconductivity is then a fraction of the Debye
temperature kBTD that is itself in the 10–100 meV range, while
the Fermi energy and the typical band gaps are of the order of
∼1 eV [2]. In spite of its great success, BCS theory is not ca-
pable of explaining all occurrences of superconductivity and
finds severe limitations, e.g., in the case of strongly correlated
materials, such as heavy-fermion superconductivity [3,4] or
high-Tc superconductivity [5], where even the origin of the
attractive interaction is still debated.

While the above-mentioned energy-scale consideration has
remained unchallenged for a long time, the advent of topo-
logical band theory [6,7] and its success in the theoretical
description of a plethora of materials [8], such as topological
insulators [9,10], topological superconductors [11,12], and
Weyl and Dirac semimetals [13], has shown that the cou-
pling between energy bands is not only governed by energy

scales, but by more subtle geometric quantities, such as the
Berry curvature or the quantum metric. Several recent pa-
pers have investigated the role of the latter, namely, in the
presence of flat bands in which the quantum metric can be
the dominant contribution to the superfluid weight [14–17].
The Berry curvature has been theoretically shown to play a
relevant role in a two-body problem that is closely related
to the Cooper pair, namely, in the physics of excitons. For
example, in two-dimensional (2D) semiconducting transition-
metal dichalcogenides (TMDC) [18], excitons, i.e., bound
electron-hole pairs, are formed in the vicinity of the K and K ′
points of the first Brillouin zone, where the Berry curvature
reaches its maximal value [19]. Experimentally, a first hint
to the relevance of band-geometric effects came from the
failure of the effective hydrogen model, which had been ex-
tremely successful before in the theoretical understanding of
the measured exciton spectra [20,21]. It was later shown that
the Berry curvature affects the exciton spectra, contrary to the
one-particle case, because it couples to the electric field that
is generated by the attractive interaction between the electron
and the hole forming the bound exciton state [22–25]. This
is a consequence of the intrinsic Dirac character of the low-
energy charge carriers in these materials, which are commonly
described in terms of a 2D massive Dirac equation [26,27].
Excitons in 2D TMDC and potentially other bound pairs then
inherit this Dirac character [28].

Based on the above-mentioned exciton example, it is there-
fore natural to consider that the Berry curvature might also
affect the formation of the Cooper pair due to the mutual
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interaction between the two electrons. This is the main mo-
tivation of the present theoretical study, where we show
that the effective electron-electron interaction is generically
weakened when one includes energy terms in the Hamilto-
nian that take into account the effect of the Berry curvature.
We consider conventional BCS-type superconductivity in 2D
materials, such as the above-mentioned 2D semiconducting
TMDC for a moderate doping range. We emphasize that
we do not investigate topological superconductivity [12] that
arises when one considers the quasiparticle bands, the mutual
coupling of which is at the origin of the emergent topolog-
ical properties. Here, we rather treat the role of the Berry
curvature of the normal state, which affects the formation
of Cooper pairs in conventional BCS theory. Within topo-
logical band theory, the related wave-vector (�k)-dependent
Berry connection An(�k) modifies the electrons’ positions �r
when the latter are projected by the projectors Pn to the nth
band, �r → Pn�rPn = �r + An(�k). This yields a dipole that inter-
acts with the electric field, and this dipolar structure, which
the Cooper pair inherits, is at the origin of the weakened
Cooper pairing. More precisely, the projection yields two
extra terms, which affect the electron-electron interaction, to
the one-body Hamiltonian. One of them is reminiscent of
the spin-orbit coupling if one interprets the Berry curvature
in terms of a spin, and the second one corresponds to the
Darwin term, which arises within a Dirac-fermion treatment
of the two bands in the vicinity of the direct gap [29]. We
show that the latter is responsible for a reduced effective BCS
coupling constant that results in a smaller superconducting
BCS gap, while the former spin-orbit-type term does not play
a role in s-wave nor other types of pure singlet or triplet
pairing.

The paper is organized as follows. In Sec. II, we briefly
revisit, along the lines exposed in Ref. [25], the emergence
of corrective terms to the one-body Hamiltonian of a charge
projected to a single band. We present two complementary
approaches: one based on a generalized version of the Peierls
substitution, in Sec. II A, and yet another one based on a
treatment within the continuum two-band model of massive
Dirac fermions in the vicinity of the direct gap, where the
role of the Berry curvature is most prominent. This treat-
ment is the basis of the two-body problem, which we present
in Sec. III. After some general considerations (Sec. III A),
Sec. III B shows how the Cooper pair and its binding energy
are modified by the extra terms, while Sec. IV presents the
BCS theory of conventional s-wave-type superconductivity in
the presence of the corrective terms due to the Berry curvature.
In the calculations, we consider a Fermi level that is extremely
close to the conduction-band bottom, and we then discuss the
role of stronger doping on Cooper pairing and BCS super-
conductivity in Sec. V. In Sec. VI, we briefly discuss how
our theoretical picture of superconductivity in the presence
of nonzero Berry curvature evolves in other pairing symme-
tries, be they singlet or triplet. The last section (Sec. VII)
is devoted to possible experimental implications of our
theoretical studies. There, we compare the superconduct-
ing gap and the critical temperature in the absence and
the presence of the weakened interaction due to the Berry
curvature.

II. ONE-BODY HAMILTONIAN: CORRECTIVE TERMS
DUE TO THE BERRY CURVATURE

Before discussing the role of possible geometric terms on
the superconducting properties of a 2D material, let us briefly
revisit the emergence of these terms within a one-particle
description. More precisely, we consider a band structure with
N bands described by the Bloch Hamiltonian. The Berry
curvature may be viewed as the action of virtual interband
transitions of electrons that are otherwise restricted to a single
band, while there are no true (quantum) transitions in the
adiabatic limit. Notice that there are no geometric terms in
the Hamiltonian in the absence of a local electric potential
V (�r) different from the periodic one that gives rise to the
Bloch bands, and the Hamiltonian is then reduced to the bare
band dispersion En(�k) of the nth band which the electrons are
projected to.

In the presence of a local potential V (�r) which acts on our
single electron, the simple reduction of the Hamiltonian to
the band dispersion is no longer valid—in the following, we
consider this potential to be generated by the second electron
to which the first one is bound in a Cooper pair, but our
arguments are not restricted to this case. Indeed, V (�r) directly
couples the different bands and thus needs to be taken into
account prior to the adiabatic projection to a single band. This
yields extra terms to the Hamiltonian that can be discussed
within two complementary approaches that we briefly review
in this section. The first one is based on a generalized Peierls
substitution [23–25,30–32]. It yields a corrected (quantum)
Hamiltonian that reproduces the semiclassical equations of
motion. This approach has the advantage of providing a trans-
parent physical interpretation of the role played by the Berry
curvature, namely, in the formation of a dipolelike term that
arises due to the projection to a single band. This approach
is similar to the magnetic field case when the electron motion
is restricted to a single Landau level [33,34], but it does not
provide all corrective terms, even at linear order in the Berry
curvature. In order to obtain the missing term, which is anal-
ogous to the Darwin term in relativistic quantum mechanics,
we interpret the Berry curvature in terms of a two-band model,
which describes the band structure locally in reciprocal space
in terms of a massive Dirac Hamiltonian.

A. Generalized Peierls substitution: Emergence
of the Berry dipole

Let us first recall how to incorporate the magnetic field to
describe the dynamics of an electron in the nth band En(�k) via
the Peierls substitution (in the absence of a Berry curvature).
Because the wave vector �k = −i∇�r is not a gauge-invariant
quantity, it needs to be replaced by its gauge-invariant form,

h̄�k −→ �� = h̄�k + e �A(�r), (1)

in terms of the vector potential �A(�r) which yields the magnetic
field, �B(�r) = �∇�r × �A(�r). Here we consider electrons of charge
−e (e > 0). From a semiclassical point of view, one obtains
the equations of motion,

�̇rn = �vn = 1

h̄
∇�kEn and h̄�̇k = −e�vn × �B, (2)
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where �rn and �vn are the average position and velocity, respec-
tively, of the electron in the nth band. One justification of
the Peierls substitution is that the Hamiltonian thus obtained,
H ( ��) = En( ��), yields the same equations of motion if one
uses the quantum Heisenberg equations of motion,

ih̄�̇ j = [� j, H ( ��)], (3)

with the help of the commutation relations [�x,�y] =
−ih̄2/l2

B, in terms of the magnetic length lB = √
h̄/eB. Indeed,

one then obtains

�̇ j = − h̄

l2
B

ε jl
∂H

∂�l
, (4)

where ε jl is the antisymmetric Levi-Civita tensor. The
quantum Hamiltonian H ( ��) therefore yields Heisenberg
equations of motion that are the same as the semiclassical
ones if we identify the (semiclassical) wave vector �k with the
gauge-invariant quantity ��/h̄, as it is precisely stipulated by
the Peierls substitution.

The generalized Peierls substitution follows the same spirit
when considering a system with a nonzero Berry curvature in
the presence of a spatially varying potential V (�r), thus starting
from the band energy Hn = En(�k) + V (�r). In this case, the
semiclassical equations of motion read [7,35]

�̇rn = �vn = 1

h̄
∇�kEn + 1

h̄
∇�rV (�r) × �Bn(�k) (5)

and h̄�̇k = −∇�rV − e�vn × �B, (6)

where �Bn(�k) = ∇�k × An(�k) is the Berry curvature of the nth
band in terms of its Berry connection An(�k). Similarly to
the case discussed above, one can obtain these equations of
motion from a quantum Hamiltonian,

H ( ��, �R) = En( ��) + V ( �R), (7)

where we have replaced not only the wave vector by its gauge-
invariant expression (1), but also the position by its expression
projected onto the nth band [7,35,36],

�r −→ �R = �r + �An(�k), (8)

which involves the Berry connection An(�k). Similarly to the
Peierls substitution (1), the position �r on the right-hand side
of this expression should be interpreted as a reciprocal-space
derivative �r = i∇�k . The replacement (8) may be viewed as a
generalized Peierls substitution [23,25,30–32]. The semiclas-
sical equations of motion are then retrieved as the Heisenberg
equations of motion not only for ��, but also for �R = (X,Y ) on
the basis of the Hamiltonian (7) and the induced commutation
relations [X,Y ] = iBn(�k) [25].

Let us now discard the magnetic field, which we have
only discussed in order to remind the reader of the Peierls
substitution and to justify its generalized form and expand
the Hamiltonian (7) to lowest order in the Berry connection.
This expansion is legitimate as long as the external potential
V (�r) varies slowly on a length scale that is set, in orders of
magnitude, by the Berry connection and that can be related
to an effective Compton length, as we discuss below. The
Hamiltonian then becomes

H = En(�k) + V (�r) + �An(�k) · �∇�rV (�r). (9)

The last generated term is interesting. First, it can be inter-
preted as the energy of an electric dipole, −e �An(�k), in an
electric field �E (�r) = ∇V (�r)/e. We therefore call this term the
Berry dipole term. Second, this term can be understood as an
effective spin-orbit coupling if we use the symmetric gauge
for the Berry connection,

�An(�k) = 1
2

�Bn(�k) × �k, (10)

in which case the corrective term reads

�An(�k) · �∇�rV (�r) = 1
2 ( �Bn(�k) × �k) · �∇�rV (�r). (11)

This expression is interesting for the following reason. The
Berry curvature is often viewed as the analog of a magnetic
field in reciprocal space, while the extra term in Eq. (9) has the
same form as the spin-orbit-coupling term, which arises when
one projects the relativistic Dirac equation onto the electron
(or positron) branch [37]. In this analogy, one would, however,
need to identify the Berry curvature with an emergent spin
rather than with a magnetic field.

B. Nonrelativistic limit of the Dirac equation

In many situations, the role of the Berry curvature in
semiconducting materials can be approached in terms of a
massive Dirac equation that describes two coupled bands in
the vicinity of a reciprocal-space point, where the band gap is
smallest and the Berry curvature has a maximum [19,38]. In
this picture, coupling to other bands is not, per se, excluded,
but we consider that it only gives rise to a negligible contribu-
tion to the respective Berry curvatures of the two bands. This
situation arises, e.g., in 2D semiconducting TMDC in which
two spin-orbit-coupled families of band pairs form a direct
gap at the K and K ′ points. In the vicinity of these points, the
two bands are described by the generic Dirac Hamiltonian,

H =
(

�ξσσ0 h̄vD(ξσkx − iky)
h̄vD(ξσkx + iky) −�ξσσ0

)
+ E0

ξσ + V (�r),

(12)
where ξ indicates the valley index (ξ = + for the K valley
and ξ = − for the K ′ valley in the case of 2D TMDC or,
generally, two time-reversal-symmetry related points ±�kD)
and σ = ± represents the physical spin. In the presence of
spin-orbit coupling and time-reversal symmetry, the band gaps
2�ξσ of the two valleys are locked and depend only on the
product ξσ of the spin and valley index, and so does the
shift in energy E0

ξσ , which does not play any topological or
dynamical role. Anticipating spin-singlet pairing discussed
below in the framework of BCS theory, the pairs consist of
electrons (or holes) with opposite spin in opposite valleys at
the same energy. In the absence of the external potential V (�r),
one obtains the four bands

ελ,ξσ (�k) = E0
ξσ + λ

√
�2

ξσ + (h̄vDk)2, (13)

which are depicted in Fig. 1. The index λ refers to the conduc-
tion (λ = +) and the valence (λ = −) bands. Note that there
are only four bands since the spin and valley are locked—they
enter into the expressions only as the product label ξσ—as it
is required by time-reversal symmetry. The associated Berry
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FIG. 1. Low-energy band structure of massive Dirac fermions in two different valleys ξ = ±, in the presence of spin-orbit coupling, as
one typically encounters in 2D semiconducting TMDC. There are generally two different gaps that depend on the product ξσ between the spin
and the valley degree of freedom, as a consequence of time-reversal symmetry.

curvatures are given by [35,38]

�Bλ,ξσ (�k) = −λξσ

2

λ̄2
ξσ(

1 + λ̄2
ξσ k2

)3/2 �ez, λ̄ξσ = h̄vD

�ξσ

, (14)

where �ez denotes the unit vector in the z direction. The last ex-
pression λ̄ξσ represents the characteristic length scale, which
we have already mentioned in the previous section and that
yields the order of magnitude for the displacement and thus
the dipole as a consequence of projection onto a single band. It
is inversely proportional to the band gap �ξσ and constitutes
a lower bound for all length scales. It is reminiscent of the
Compton length in high-energy physics [37,39]. Indeed, if
we rewrite the gap in terms of the band masses mξσ , �ξσ =
mξσ v2

D, one retrieves its more familiar form λ̄ξσ = h̄/mξσ vD.
Physically, it represents a limiting length below which the
Compton effect erratically transforms photons into electron-
positron pairs, so that information encoded in the phase of
the light field can no longer be used for spectroscopic means.
In condensed-matter physics, the interpretation of this length
is similar: processes of characteristic length scales below λ̄ξσ

inevitably yield interband transitions that drive the system out
of the regime of validity of the adiabatic approximation, which
provided us with the semiclassical equations of motion (5).

For transport properties, including superconductivity, the
most important electrons are those in the vicinity of the Fermi
level, which we consider here to be close to the bottom of the

conduction band, i.e., we consider a moderately doped semi-
conductor. We can already anticipate that the Berry curvature
may play a role as long as the Fermi wave vector kF satisfies
λ̄ξσ kF � 1 since it vanishes algebraically for λ̄ξσ → ∞ [see
Eq. (14)]. We therefore project the Hamiltonian (12) onto the
conduction-band bottom, 0 < δE = E − �ξσ − E0

ξσ � �ξσ

(see Fig. 1), with the help of the Foldy-Wouthuysen transfor-
mation to keep track of the electric potential V (�r) [29]. This
yields the effective one-band Hamiltonian,

H 
 E0
ξσ + �ξσ + h̄2�k2

2mD
+ V (�r)

+ξσλ̄2
ξσ

4
(�ez × �k) · �∇�rV + λ̄2

ξσ

8
�∇2

�r V, (15)

which, apart from the last term, is identical to the one (9)
which we have obtained with the help of the generalized
Peierls substitution if we make use of the expression (14) for
the Berry curvature to lowest order in the wave vector and if
we redefine the energy with respect to the band bottom. The
last term may also be written in terms of the Berry curvature
as

λ̄2
ξσ

8
�∇2

�r V (�r) = 1

4
|Bλ,ξσ (0)| �∇2

�r V (�r), (16)

and corresponds to the Darwin term in high-energy physics.
While it does not play any role in the semiclassical
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equations of motion, it is relevant, namely, at very short
ranges, and has been shown to strongly affect, e.g., the spec-
tra of s-state excitons in 2D TMDC [22–25]. This is best
seen in the case of the 2D Coulomb potential in which case
∇2

�r V = e2δ(�r)/ε, i.e., it is relevant for pair wave functions
with a nonzero amplitude at the origin (s-wave states) such
as the BCS wave functions, which we discuss below.

III. TWO-BODY PROBLEM: GENERAL CASE
AND COOPER PAIR

With the Cooper-pair problem in mind, we now consider
how the extra terms discussed within the one-particle picture
presented in the preceding section evolve in the case of two
electrons at the bottom of the conduction band λ = + at the
same energy. This choice to consider a Fermi level slightly
above the bottom of the conduction band is perfectly arbitrary,
but the results obtained in the following sections remain valid
for Cooper pairs formed from holes in the valence band. We
consider again the spin to be locked to the valley index so that

there is only one effective label ξσ , which we represent by the
valley index (ξ1 for the first electron and ξ2 for the second one)
to simplify the notations. Furthermore, we consider a two-
body potential V that depends only on the relative position
of the two electrons �r1 − �r2, such as is the case for the BCS
potential.

A. General case

Because the two-body interaction potential only depends
on the relative distance �ρ = �r1 − �r2 between the electrons,
we introduce relative and center-of-mass (CoM) coordinates.
Since both electrons have the same mass, we have

Relative: �ρ = �r1 − �r2, �k = �k1 − �k2

2
, (17)

CoM: �R = �r1 + �r2

2
, �K = �k1 + �k2. (18)

Separation of the CoM and relative coordinates yields the
Hamiltonian

H2e− = 2�b + h̄2 �K2

4mD
+ h̄2�k2

mD
+ V (�ρ ) + 1

4
[ ��ξ1,ξ2

+ ( �K, �k) × �K] · �∇V (�ρ) + 1

2
[ ��ξ1,ξ2

− ( �K, �k) × �k] · �∇V (�ρ)

+1

2
|B(0)| �∇2V (�ρ ) with ��ξ1,ξ2

± ( �K, �k) = �B+,ξ1

(
1

2
�K + �k

)
± �B+,ξ2

(
1

2
�K − �k

)
(19)

within the parabolic approximation, and where we have made
use of the Dirac mass mD = �ξσ /v2

D. Since we no longer
consider k-space gradients, we omit the index �r at the gradient
∇�r = ∇ from now on. It is interesting to notice that when
moving to CoM/relative coordinates, the Berry dipole term
splits into two dipoles acting on the electron pair. One is asso-
ciated with its center-of-mass motion and the sum of the two
Berry curvatures and the other is associated with its relative
motion and the difference of the two Berry curvatures. To gain
further insight into the physical meaning of these two terms,
we can calculate the Heisenberg equations of motion,

.

�K = �0,

.

�R = h̄ �K
2mD

+ 1

4h̄
�∇V (ρ) × ��ξ1,ξ2

+ ( �K, �k), (20)

.

�k = −1

h̄
�∇H2e− ,

.

�ρ = 2
h̄�k
mD

+ 1

2h̄
�∇V (�ρ) × ��ξ1,ξ2

− ( �K, �k).

(21)

The CoM momentum is a conserved quantity, owing to the
fact that H2e− does not depend on �R. We also see that the two
dipoles induce two Karplus-Luttinger-type velocities: �+,
which is associated to the CoM dipole, generates a drift ve-
locity of the CoM coordinate, and �−, which is associated to
the relative dipole, yields another drift velocity of the relative
coordinate of the Cooper pair.

Before discussing the special case of the Cooper pair, we
may already discuss here the relative role of the two quantities
��+ and ��− as a function of the two different valleys, i.e.,
in the case of intravalley pairing as compared to intervalley

pairing. Indeed, they determine the dipolar moments

�d± = −e( ��± × �q)/2, (22)

where �q = �K for the CoM dipole (sign +) and �q = �k for the
relative dipole (sign −). In the case of intravalley pairing
(ξ1 = ξ2), which corresponds to triplet superconductivity as
a consequence of the spin-valley locking, the relative dipole
�d− is negligible to lowest order in the wave vectors, while
the CoM dipole is of the order of �d+ ∼ −eB+,ξ1 (0) × �K .
Their roles are inverted in the case of singlet-type intervalley
pairing, in which case �d+ 
 0 while �d− ∼ −eB+,ξ1 (0) × �k.

B. Revisiting the Cooper problem

We are now in a position to study the effect of the Berry
curvature on a Cooper pair, the building block of supercon-
ductors. To do so, we revisit the Cooper problem following the
lines of Ref. [40] and standard textbooks [2]. The Hamiltonian
we consider here is Hc = H2e− ( �K = �0), i.e., our two-body
Hamiltonian (19) in the rest frame,

Hc = 2ε+(�k) + V (�ρ) + 1
2

[ ��ξ1,ξ2
− (�0, �k) × �k] · �∇V (�ρ)

+ 1
2 |B(0)| �∇2V (�ρ), (23)

where �− can be rewritten as

��ξ1,ξ2
− (�0, �k) = −(ξ1 − ξ2)

λ̄2
ξσ

2
(
1 + λ̄2

ξσ k2
)3/2 �ez = ��ξ1,ξ2

− (�k).

(24)
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As mentioned above, one notices that for the Berry dipole
term to be nonzero, the two electrons of the Cooper pair need
to be taken in different valleys and thus with opposite spin,
as is usual for s-wave singlet superconductivity. In contrast to
this, we have �

ξ1,ξ2
+ (0, �k) ∝ (ξ1 + ξ2), i.e., one needs electrons

in the same valley, but even then, the intravalley CoM dipolar
term in the Hamiltonian vanishes unless �K �= 0. We therefore
consider henceforth only the relative dipolar term and the case
of intervalley pairing.

Let us now take a closer look at the wave function of the
Cooper pair ψ (�ρ), which is a solution of Hcψ (�ρ) = Eψ (�ρ).
We then decompose ψ and V in a Fourier series,

ψ (�ρ) =
∑

�k
g�kei�k·�ρ, (25)

V (�ρ) =
∑
�k �k′

V�k �k′ei(�k−�k′ )·�ρ. (26)

Following the steps of Ref. [2], we find the self-consistent
equation

[E − 2ε+(�k)]g�k =
∑

�k′

V eff
�k �k′ g �k′ (27)

for the coefficients g�k , in terms of the effective interaction,

V eff
�k�k′ =

{
1 + i

2
[ ��ξ1,ξ2

− (�k) × �k] · �k′ − 1

2
|B(0)|(�k − �k′)2

}
V�k�k′ .

(28)
This equation is one of the main results of our paper. Qual-
itatively, we see that the two terms appear with opposite
signs. The second term stems from the Berry dipole term
in Hamiltonian (19) and may increase or decrease the inter-
action potential and thus the strength of the Cooper pairing
depending on the sign of ��−. As for the last (Darwin) term,
it is negative irrespective of the valley index, meaning that it
tends to weaken the electron-electron interaction and thus the
superconducting phase. On a more practical level, the above
expressions tell us that the calculations for the energy of the
Cooper pair in the presence of a Berry curvature are the same
as in the conventional pairing case [2], but in terms of the
effective interaction (28).

In a second step, we need to solve the self-consistency
equation

∑
�k

〈
V eff

�k �k′

〉
E − 2ε+(�k)

= 1, (29)

where we have defined the average

〈O( �k′)〉 =
∑

�k′ O( �k′)g �k′∑
�k′ g �k′

(30)

with respect to the weighting coefficients g�k . The term 〈V eff
�k �k′ 〉

may be rewritten as〈
V eff

�k �k′
〉 =

[
1 − 1

2
|B(0)|�k2

]
〈V�k �k′ 〉+

[
|B(0)|�k + i

2
��ξ1,ξ2

− (�k) × �k
]

· 〈 �k′V�k �k′ 〉 − 1

2
|B(0)|〈 �k′2V�k �k′ 〉. (31)

To illustrate the role of the additional terms due to
the Berry curvature, let us consider the BCS potential,
defined as

V�k �k′ =
{
−V < 0 if εF � ε+(�k), ε+( �k′) � εF + h̄ωD

0 otherwise,
(32)

where εF is the Fermi energy and h̄ωD the Debye energy. We
can compactly rewrite it as

V�k �k′ = −V1D(�k)1D( �k′), (33)

where 1D is the indicator function of the set,

D = {�k ∈ R2|εF � ε+(�k) � εF + h̄ωD}. (34)

With this in mind, we write

〈 �k′V�k �k′ 〉 ∝
∑
�k′∈D

�k′V�k �k′g �k′ . (35)

From Eq. (33), we see that V�k;−�k′ = V�k �k′ . Moreover, for BCS

superconductivity, we have g−�k′ = g �k′ so that �k′V�k �k′g �k′ is an

odd function of �k′. Because summing an odd function over
the set D gives zero, we have 〈 �k′V�k �k′ 〉 = �0 so that the Berry
dipole term does not affect the Cooper pair, which is then
solely affected by the Darwin term. Therefore, if we remem-
ber the competition between the dipolar and Darwin terms,
this suggests that the effect of the Berry curvature is to weaken
the Cooper pair.

As for 〈V eff
�k �k′ 〉, we are left with〈

V eff
�k �k′

〉 = [
1 − 1

2

∣∣B(0)
∣∣�k2

]〈V�k �k′ 〉 − 1
2 〈|B(0)| �k′2V�k �k′ 〉. (36)

Remember that V eff
�k �k′ is nonzero only for �k, �k′ ∈ D, and from

the definition of D, we rewrite the energy as ε+(�k) = εF +
η�k h̄ωD with η�k ∈ [0, 1]. Furthermore, we suppose that the
Debye frequency is smaller than the Fermi energy measured
from the bottom of the conduction band, h̄ωD � εF − �ξσ ,
so that the interaction does not couple electrons to unphysical
states in the band gap. From this and the expression of ε+(�k),
we obtain

|B(0)|�k2 = εF − �ξσ

�ξσ

+ η�k
h̄ωD

�ξσ

. (37)

Now, for many 2D materials (including any TMDC), the band
gap is in the 1 eV range (see, e.g., Ref. [41]), while for most
crystals, h̄ωD ∼ 0.01 eV [42]. One therefore obtains a ratio
h̄ωD
�b

∼ 0.01, so that we may neglect the corresponding term
and thus make the approximation

|B(0)|k2 
 |B(0)|k2
F , |B(0)|k′2 
 ∣∣B(0)

∣∣k2
F . (38)

With this and 〈 �k′V�k �k′ 〉 = �0, we finally obtain〈
V eff

�k �k′
〉 = (

1 − |B(0)|k2
F

)〈V�k �k′ 〉, (39)

in line with our qualitative argument of a weakening of the
electron-electron interaction induced by the Darwin term.
With the BCS potential, 〈V�k �k′ 〉 = −V , one finds∑

�k

1

E − 2ε+(�k)
= − 1[

1 − ∣∣B(0)
∣∣k2

F

]
V

. (40)
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As usual, the sum over the wave vector may be replaced by
an integral over energy with the help of the density of states
ρ(ε) and the BCS coupling constant λ = V ρ(εF ). We finally
find the binding energy of the Cooper pair,

EB = 2h̄ωD

e2/λeff − 1
with λeff = [

1 − |B(0)|k2
F

]
λ, (41)

which is the same as the conventional expression

EBCS
B = 2h̄ωD

e2/λ − 1
, (42)

where we have replaced λ by an effective (lower) coupling
constant. If we set the Berry curvature to zero or if we set
the band gap to infinity, we recover the usual expression, as
expected.

To summarize this section, we highlight two aspects. First,
the effect of the Berry curvature on the Cooper pair reveals
itself through a competition between two terms. On the one
hand, the Berry dipole term, with its dipolar/spin-orbit form,
induces a drift velocity analogous to the Karplus-Luttinger
velocity on the relative position of the electrons of the Cooper
pair. It could, in principle, enhance the electron-electron in-
teraction V�k �k′ . On the other hand, the Darwin term yields a
negative contribution and thus weakens the effective interac-
tion. Second, the Berry dipole term’s contribution to Cooper
pairing turns out to be zero for s-wave superconductivity,
and thus we are only left with a weakened electron-electron
interaction due to the Darwin term. This is clearly seen in
the expression of the binding energy (41). Indeed, since the
interaction V is lowered, so is the BCS coupling λ, thereby
lowering the binding energy of the Cooper pair. In conclusion,
the Berry curvature makes the Cooper pairs less bound and
thus more easily breakable, e.g., by thermal fluctuations. This
means that the critical temperature (and the superconduct-
ing gap) are lowered as well, as we show explicitly in the
following section, where we discuss the action of the Berry-
curvature corrective terms in the BCS many-body approach.

IV. BCS HAMILTONIAN IN THE PRESENCE
OF BERRY CURVATURE

In the previous section, we found that the calculations in
the electron pair problem with Berry curvature were the same
as in its absence, but with an effective interaction. We there-
fore consider, in this part, the BCS Hamiltonian where we
replace the interaction V�k �k′ with the effective one V eff

�k �k′ , which
is given in Eq. (28) and accounts for the corrective terms due
to the Berry curvature,

H =
∑
�kσ

ξ�kc†
�kσ

c�kσ
+

∑
�k �k′

V eff
�k �k′ c

†
�k′↑c†

−�k′↓c�k↑c−�k↓, (43)

where ξ�k = ε+(�k) − εF , and the bare interaction (in
the absence of Berry curvature corrections) is V�k �k′ =
−V1D(�k)1D( �k′) with D = {�k ∈ R2|εF − h̄ωD � ε+(�k) �
εF + h̄ωD}. We also keep the same ground state. Since
this Hamiltonian has the same form as the original BCS
Hamiltonian, the same calculations hold as long as the
interaction is not specified. We thus find the textbook gap

equation [2]

��k = −1

2

∑
�k′

V eff
�k �k′

� �k′√
�2

�k′ + ξ 2
�k′

tanh

(
β

2

√
�2

�k′ + ξ 2
�k′

)
, (44)

with ��k = −∑
�k′ V eff

�k �k′ 〈c†
�k′↑c†

−�k′↓〉 and β = (kBT )−1. In terms

of the auxiliary function

f
β,�k ( �k′) = � �k′√

�2
�k′ + ξ 2

�k′

tanh

(
β

2

√
�2

�k′ + ξ 2
�k′

)
, (45)

the self-consistent gap equation reads

��k = − 1

2

[
1 − 1

2
|B(0)|�k2

] ∑
�k′

V�k �k′ f
β,�k ( �k′)

− 1

2

[
i

2
��ξ1,ξ2

− (�k) × �k + |B(0)|�k
]
·

×
∑

�k′

�k′V�k �k′ f
β,�k ( �k′) − 1

2

∑
�k′

1
2 |B(0)| �k′2V�k �k′ f

β,�k ( �k′).

(46)

One can show that if the bare superconducting gap has a
definite parity, then ��k (so defined through the effective
interaction) has the same parity. Therefore, for BCS super-
conductivity, we have �−�k = ��k . From Eq. (45), it is then

clear that f
β,�k (−�k′) = f

β,�k ( �k′). And since V�k;−�k′ = V�k; �k′ , the

function �k′ −→ �k′V�k �k′ f
β,�k ( �k′) is an odd function so that∑

�k′

�k′V�k �k′ f
β,�k ( �k′) = �0, (47)

and thus the Berry dipole term again does not affect the many-
body result, which is consistent with the results obtained in
the previous section. We then make the same approximate
treatment [see Eqs. (38) and (39)] as for the Cooper-pair
problem and find

��k = −1

2

∑
�k′

[
1 − |B(0)|k2

F

]
V�k �k′ f

β,�k ( �k′), (48)

in agreement with our previous result. The Berry curvature
reduces the attractive electron-electron interaction due to the
Darwin term.

We are now able to calculate the zero-temperature super-
conducting gap. At T = 0, the gap equation is

��k = −1

2

[
1 − |B(0)|k2

F

] ∑
�k′

V�k �k′
� �k′√

�2
�k′ + ξ 2

�k′

. (49)

We then use V�k �k′ = −V1D(�k)1D( �k′) and have

��k = 1D(�k)
1

2

[
1 − |B(0)|k2

F

]
V

∑
�k∈D

� �k′√
�2

�k′ + ξ 2
�k′

. (50)

Thus, ��k = 0 for �k /∈ D, and then one can directly show
that ��k = � for �k ∈ D. The former case is trivially satisfied
since, if �k /∈ D, the corresponding electron is not subject to the
attractive interaction so it cannot condense and participate in a
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superconducting state. The latter indicates that the gap is then
isotropic for the electrons that are concerned by superconduc-
tivity. We may again follow the conventional derivation [2]
and find the T = 0 superconducting gap,

�(T = 0) = h̄ωD

sinh(1/λeff )
with λeff = [

1 − |B(0)|k2
F

]
λ,

(51)
with the same effective coupling constant λeff as that obtained
in the previous section [see Eq. (41)]. Comparing this to the
bare BCS expression,

�BCS(T = 0) = h̄ωD

sinh(1/λ)
, (52)

we see the same result as in the Cooper-pair problem, that
is to say, a lowering of the BCS coupling constant driven
by the Berry curvature, thereby lowering the T = 0 super-
conducting gap. This is also consistent with what we said
about the consequences for the Cooper pairs. Indeed, since
the superconducting gap is smaller, so is the energy of the
quasiparticles in the superconductor. This makes them more
sensitive to variations of energy, e.g., thermal fluctuations. In
other words, the superconducting phase is weakened and thus
more easily suppressed upon raising temperature.

Similarly, the expression for the critical temperature takes
the form [2]

Tc = 2h̄ωD
eγ

π
e−1/λeff , (53)

and is identical to the standard one, except for the fact that
the coupling constant needs to be replaced by λ → λeff to
take into account the extra terms due to the Berry curvature.
Here, γ 
 0.577 is the Euler-Mascheroni constant, and the
approximation is valid if 2Tc � h̄ωD/kB = TD and is rela-
tively reliable when 2Tc � TD. Notice, finally, that the Berry
curvature therefore does not affect the universality of the ratio
between the superconducting gap and Tc in the weak-coupling
limit,

�(T = 0)

kBTc
=

λ�1

π

eγ

 1.76. (54)

Indeed, this ratio is independent of the (effective) coupling
constant.

V. DOPING DEPENDENCE

Until now, we considered a low-doping limit, in which
the Fermi level is close to the bottom of the conduction
band. This allowed us to approximate the Berry curvature as
B(k) 
 B(0). At larger doping, we first expect a weakening
of the interband effects since the relevant physics will take
place farther away from the other band. We should then ex-
pect to recover the usual one-band BCS results as the Fermi
energy increases. The main thing to change would be our
extra terms. The Berry dipole term does not rely on the low-
energy expansion of the Dirac Hamiltonian, and we thus do
not need to change it. The Darwin term is different: we have
obtained it by expanding the Dirac Hamiltonian in the low-
energy/nonrelativistic limit. In this limit, the Berry curvature
enters as |B(0)|. Since the physics is controlled by states
near the Fermi energy, we change |B(0)| −→ |B(kF )|, i.e., the

FIG. 2. Ratio λeff
λ

as a function of λ̄ξσ kF .

most important contribution of the Berry curvature is its value
at the Fermi level. The effective coupling constant λeff then
takes the form

λeff = [
1 − ∣∣B(kF )

∣∣k2
F

]
λ =

(
1 − λ̄2

ξσ k2
F

2
(
1 + λ̄2

ξσ k2
F

)3/2

)
λ, (55)

and we have

low-doping limit:
λeff

λ
∼

λ̄ξσ kF �1
1 − λ̄2

ξσ k2
F

2
, (56)

high-doping limit:
λeff

λ
∼

λ̄ξσ kF �1
1 − 1

2λ̄ξσ kF
, (57)

for the different limiting cases. As a consistency check, we
recover the previous result in the low-doping limit (indeed,
λ̄2

ξσ /2 = |B(0)|). In the high-doping limit, the effective cou-
pling constant approaches its bare BCS value as the Fermi
level goes to +∞. This is consistent with our expectation
of a decreased role of the corrective terms due to the Berry
curvature and thus of the interband effects in this limit. The
doping dependence of the coupling constant (i.e., on λ̄ξσ kF ) is
depicted in Fig. 2.

It is apparent that the effective coupling constant has a min-
imum that can be shown to occur at λ̄ξσ kF = √

2. Therefore,
the effect of the Berry curvature on conventional BCS-type
(s-wave) superconductivity is expected to be strongest in an
intermediate-doping regime in which the Fermi wave vector
is of the order of the inverse effective Compton length. We
then have

min
λ̄ξσ kF

λeff

λ
= 1 − 1

3
√

3

 81%, (58)

i.e., the maximal reduction is approximately 19%. It is inter-
esting to note that while the ratio goes to 1 as the Fermi level
goes to +∞, the difference does not go to zero. Indeed,

lim
kF →+∞

[λeff − λ] = − AV

4π�b
, (59)

with A the area of the Brillouin zone. Note that here, V rep-
resents the interaction energy per unit area in reciprocal space
so that the quantity AV itself is an energy and the coupling
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constant is dimensionless. While the reduction of the coupling
constant seems rather limited, we must not forget that the
critical temperature and the superconducting gap both depend
exponentially on this coupling constant, so the effect could be
quite substantial.

The central result of this paper is Eq. (55). Indeed, from
it ensues most of the results we had so far. Moreover, it
could have several uses. First, doping could offer a way
to experimentally observe the effects of a Berry curvature
on a superconducting phase discussed in this paper. We
present some possible paths for an experimental test of
Berry-curvature effects on BCS superconductivity in Sec. VII.
Second, while this specific deformation of the coupling con-
stant may not be true for other types of band structures, these
could still exhibit other types of deformations depending on
the corrective terms of the one-body problem. If Eq. (55) is
true in other types of band structures, it can even be a way
to detect the presence of a Berry curvature as well as its k
dependence.

VI. BEYOND BCS SUPERCONDUCTIVITY

Now that we have studied the conventional s-wave case, let
us see what happens with other types of superconductivity. As
in the case for the s-wave case (see Sec. III B), we first revisit
the modified Cooper problem from a more general point of
view following Ref. [43]. We will then study the many-body
BCS theory, this time following Refs. [44,45].

A. Cooper problem

The two-electron potential may be decomposed in the
relative-angular momentum basis as [43]

V�k �k′ =
+∞∑
l=0

Vl (�k, �k′), (60)

with Vl (−�k, �k′) = (−1)lVl (�k, �k′) = Vl (�k,−�k′), and the integer
l the angular momentum of the superconducting phase. It is
even for singlet pairing and odd for triplet pairing. Let us pick
a superconducting phase with fixed l , so that the pairing is ei-
ther singlet or triplet. Then, V�k �k′ = Vl (�k, �k′). The same is done
to g�k = gl (�k) with, also, gl (−�k) = (−1)l gl (�k). Equation (29)
therefore becomes

∑
�k

〈
V eff

l (�k, �k′)
〉
l

E − 2ε+(�k)
= 1, (61)

and we then proceed in the same way as before, expanding
〈V eff

l (�k, �k′)〉l and considering

〈 �k′Vl (�k, �k′)〉l ∝
∑

�k′

�k′Vl (�k, �k′)gl ( �k′). (62)

Again we take Vl (�k, �k′) to be nonzero only within a thin layer
of energy around the Fermi level, with the energy cutoff εl ,

and we use Eq. (34) but with Dl = {�k ∈ R2|εF � ε+(�k) �
εF + εl}. Then, because of the symmetry

Vl (�k,−�k′)gl (−�k′) = (−1)lVl (�k, �k′)(−1)l gl ( �k′)

= Vl (�k, �k′)gl ( �k′), (63)

the function �k′Vl (�k, �k′)gl ( �k′) is odd in �k′ so that the sum over
the set Dl yields zero. Since this term carries the Berry dipole
term, we can conclude that the Berry dipole term does not
contribute to the energy of the Cooper pair with pure singlet
or triplet pairings. Notice, however, that the Berry dipole term
may nevertheless play a significant role in exotic supercon-
ductors that mix singlet and triplet pairing, as we sketch out
in Sec. VI C.

We then proceed with the same approximation as for the
conventional s-wave case, which gives the effective interac-
tion 〈

V eff
l (�k, �k′)

〉
l = [

1 − ∣∣B(kF )
∣∣k2

F

]〈Vl (�k, �k′)〉l . (64)

We also take the approach of [43] and take Vl (�k, �k′) =
Vl (k, k′) f (k̂, k̂′) with Vl (k, k′) = −Vl1Dl (�k)1Dl ( �k′). This ap-
proach gives a binding energy EB,l given by

EB,l = 2εl

e2/λeff − 1
, (65)

with λeff = (1 − |B(kF )|k2
F )λ, i.e., the result obtained for the

conventional Cooper problem extends to all singlet and triplet
pairings.

B. Many-body problem: Generalized BCS theory

We now briefly address the many-body problem from a
more general point of view, using the generalized BCS theory
presented in Refs. [44,45]. Its Hamiltonian is

H =
∑

�k
ξ�kc†

�kσ
c�kσ

+ 1

2

∑
σ1σ2
σ3σ4

∑
�k �k′

V
σ1σ2
σ3σ4

eff,�k �k′c
†
�kσ1

c†
−�kσ2

c−�k′σ3
c �k′σ4

,

(66)
with the effective interaction containing the Berry-curvature
corrections. The mean-field theory of this Hamiltonian gives
rise to a 2 × 2 matrix �̂�k . As in the conventional case, one can
prove that the dressed order parameter has the same parity as
the bare one. Similarly to the Cooper problem, let us inves-
tigate a pairing that is either singlet or triplet. Then the gap
equation has the form [44]

�
σ1σ2

�k = −
∑
σ3σ4

∑
�k′

V
σ2σ1
σ3σ4

eff,�k �k′I
σ3σ4
β ( �k′), (67)

and the expansion of the effective interaction yields

�
σ1σ2

�k = −
[

1 − 1

2

∣∣B(kF )
∣∣�k2

] ∑
σ3σ4

∑
�k′

V
σ2σ1
σ3σ4

�k �k′ I σ3σ4
β ( �k′)

−
[

i

2
��ξ1,ξ2

− (�k) × �k + ∣∣B(kF )
∣∣�k]

·
∑
σ3σ4

∑
�k′

�k′V
σ2σ1
σ3σ4

�k �k′ I σ3σ4
β ( �k′)

− 1

2
|B(kF )|

∑
σ3σ4

∑
�k′

�k′2V
σ2σ1
σ3σ4

�k �k′ I σ3σ4
β ( �k′), (68)
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where the summand of the �k′-linear term is∑
σ3σ4

�k′V
σ2σ1
σ3σ4

�k �k′ I σ3σ4
β ( �k′). (69)

We study two separate cases now. First, let us consider a
unitary pairing, i.e., one for which �̂�k�̂

†
�k ∝ σ0. This entails

all singlet pairings and unitary triplet pairings (those without
spin polarization). In that case, the kernel Îβ ( �k′) is given by
[44,45]

Îβ ( �k′) = �̂ �k′

2E �k′
tanh

(
β

2
E �k′

)
. (70)

Since the order parameter generally obeys �̂−�k = −�̂�
�k and

E−�k = E�k , we have

I σ3σ4
β (−�k′) = −I σ4σ3

β ( �k′). (71)

Furthermore, in order to respect the anticommutation relations

of the fermionic operators, the interaction must obey V
σ2σ1
σ3σ4

�k;−�k′ =
−V

σ2σ1
σ4σ3

�k �k′ [45]. With this, we have∑
σ3σ4

−�k′V
σ2σ1
σ3σ4

�k;−�k′I
σ3σ4
β (−�k′) = −

∑
σ3σ4

�k′V
σ2σ1
σ4σ3

�k �k′ I σ4σ3
β ( �k′)

= −
∑
σ3σ4

�k′V
σ2σ1
σ3σ4

�k �k′ I σ3σ4
β ( �k′), (72)

i.e., the latter is odd in �k′. If one takes the interaction to be
nonzero in a thin layer of energy around the Fermi level with
energy cutoff εc, the sum over the term that is linear in �k′ in
Eq. (68) vanishes again, a situation encountered several times
in this paper. So the Berry dipole term does not change the gap
and critical temperature for unitary pairings. As pointed out
in the Appendix, the latter is also valid for nonunitary triplet
pairings. Therefore, the Berry dipole term does not change the
gap equation for pure singlet and triplet pairings.

C. Possible situations in which the Berry dipole term may
become relevant

In view of the above results, one may then wonder if there
is any possible effect of the Berry dipole term on supercon-
ductivity. What we proved so far is that it does not change the
superconducting gap or Tc if the parity of the pairing is well
defined. So a necessary condition for the Berry dipole term to
actually contribute would be a superconducting phase without
a fixed parity. We saw in the Cooper problem that the Berry
dipole term drops out because the following sum is zero:∑

�k′

�k′V�k �k′g �k′ . (73)

If we decompose the two functions V�k �k′ and g �k′ in the sum of
an even and an odd function,

V�k �k′ = V e
�k �k′ + V o

�k �k′ , (74)

g �k′ = ge
�k′ + go

�k′ , (75)

and interpret the e and o parts, respectively, as the singlet and
triplet parts, we then have

V�k �k′g �k′ = V e
�k �k′g

e
�k′ + V o

�k �k′g
o
�k′ + V o

�k �k′g
e
�k′ + V e

�k �k′g
o
�k′ . (76)

While the first two terms disappear in Eq. (73), as they are
even functions of �k′, the other two terms do a priori not disap-
pear, as they are odd functions of �k′. V oge may be interpreted
as the interactions between triplet pairs in the presence of
singlet pairs, while V ego is the opposite. These two terms may
then be an opportunity for the Berry dipole term to have a
nonzero contribution in the superconducting phase, i.e., if the
latter shows a coexistence between singlet and triplet pairs.
We would then need a superconducting phase where neither
of the two dominates. Some materials have been proposed
to exhibit two superconducting phases, each with a different
parity, such as CeRh2As2 and bilayer-NbSe2 [46]. Notice,
furthermore, that a very recent theoretical study argues that the
observed superconducting phase in twisted bilayer graphene
[47] might be due to an admixture of singlet and triplet pairs
[48], and the Berry dipole term might then be a relevant
parameter in the stabilization of this type of superconductivity.
Note that for both CeRh2As2 and bilayer-NbSe2, and gener-
ally in noncentrosymmetric superconductors [49], a magnetic
field is necessary to obtain a parity-mixed superconducting
phase. To circumvent this issue, one could first implement
the magnetic field into a BCS-type formalism for these sys-
tems, thereby absorbing it in an effective superconducting
order parameter or interaction. The above-mentioned manner
to include the Berry curvature into the BCS treatment remains
valid in this case when we restrict the approach to first order in
the Berry curvature. A direct coupling between the magnetic
field and the Berry curvature that would yield novel terms
beyond those considered here, however, manifests itself only
at second order.

VII. POSSIBLE EXPERIMENTAL IMPLICATIONS OF THE
BERRY CURVATURE ON 2D BCS SUPERCONDUCTIVITY

As shown in Sec. V, the Berry curvature has its strongest
effect at Fermi wave vectors that are of the order of the inverse
effective (Compton) length λ̄ξσ . Even if the relative reduction
of the coupling constant is of the order of 19%, one needs
to keep in mind that the experimentally measurable super-
conducting gap and critical temperature depend exponentially
on the coupling constant. Indeed, the former is accessible
by spectroscopic means, e.g., in scanning-tunneling spec-
troscopy, and the latter within resistive temperature-dependent
measurements. Experimentally, it is likely impossible to
change the Berry curvature in situ because this would re-
quire experimental access to the band parameters, such as
the direct band gap in 2D TMDC. While one could hope to
change it, e.g., under strain, the phonon spectrum and the
electron-phonon coupling would also then change, possibly in
an uncontrolled manner, thus excluding a direct measurement
of the Berry-curvature effect in superconductivity.

However, one may compare the evolution of the Berry-
curvature-dependent superconducting gap or critical temper-
ature, measured as a function of doping, to the expected
behavior of these quantities. Direct comparison of the critical
temperature Tc in Eq. (53), in terms of the effective coupling
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FIG. 3. Ratio Tc/T BCS
c as a function of λ̄ξσ kF ∝ √

n2D. Here, we
have used AV/2π�ξσ 
 0.2 for illustration.

constant (41), yields the ratio

Tc

T BCS
c

= exp

(
− 2π�ξσ

AV

|B(kF )|k2
F

(1 − |B(kF )|k2
F )

√
1 + λ̄2

ξσ k2
F

)
,

(77)
where T BCS

c is the BCS critical temperature in the absence of
Berry-curvature terms. We notice here the clear competition
between the Berry curvature (through the gap) and supercon-
ductivity (through the attractive interaction V ). The ratio (77)
is plotted in Fig. 3 as a function of the doping-dependent
Fermi wave vector, kF = √

(4π/g)n2D, in terms of the induced
2D electronic density n2D. The factor g takes into account the
degeneracy due to internal degrees of freedom, such as the
valley and the spin. Notice that in 2D TMDC with a prominent
spin-orbit coupling, the valley and spin degrees of freedom are
generically locked, as mentioned above. One would therefore
expect g = 2 in these materials. This is likely the case in
the valence band, with a spin-orbit splitting of the order of
∼100 meV, while it is only in the ∼1 − 10 meV range in the
conduction band. The reduction of the critical temperature is
strongest at the minimum, which occurs at λ̄ξσ kF 
 1.05. This
corresponds to an electronic density of

n2D = g

4π
k2

F 
 1.1
g

4π
λ̄−2

ξσ . (78)

We can then give an approximation of the minimum of the
ratio as

min
kF

Tc

T BCS
c


 exp

(
−0.15

2π�ξσ

AV

)
. (79)

VIII. CONCLUSIONS

In conclusion, we have studied the effect of the Berry
curvature on BCS-type superconductors in 2D electronic
systems. We have shown that the two-body Hamiltonian
for interacting electrons possesses terms that are linear in
the Berry curvature and that are inherited from the single-
electron band structure. In this case, the Berry curvature,
which arises in the adiabatic limit when the electrons are
restricted to a single band due to purely virtual transitions
to the other bands, is coupled to electric potentials beyond
the periodic one, which gives rise to the Bloch bands. While
such potentials may arise due to external electric fields,
they naturally arise when interactions between the electrons
(or holes) are taken into account. Generically, the Berry
curvature provides a dipolar structure to the charged pairs,
and one of the terms emerging in the two-body Hamilto-
nian can indeed be interpreted as a dipole in an electric

field. A second term emerges in the form of a Darwin
term, in which the Berry curvature couples to the Lapla-
cian of the electric potential. This term is best understood
within a relativistic treatment of the (massive) Dirac Hamil-
tonian that mimics the two adjacent bands in a direct-gap
semiconductor.

Following the lines of the usual BCS treatment of super-
conductivity in the weak-coupling limit, we have shown that
the latter Darwin term generally lowers the BCS coupling
constant. As a consequence, this also lowers the stability of
the Cooper pair so that the superconducting gap and critical
temperature are decreased. On the contrary, the dipolar term,
which potentially has the power to increase superconductivity,
does not affect the superconducting properties in an s-wave
or any pure singlet or triplet superconductor because of their
fixed parity. The dipolar term might then play a role in systems
where superconducting phases of different parity coexist or
where the superconducting order parameter does not have a
fixed parity. This path might be explored in future work, but it
is beyond the scope of our present paper.

Interestingly, the gap-to-Tc ratio remains the same as in the
conventional BCS theory in the weak-coupling limit, which
we have considered here. Upon doping, the reduction of BCS
superconductivity is strongest when the Fermi wave vector is
of the order of the inverse effective Compton length, kF ∼
λ̄−1

ξσ , where the BCS coupling constant is lowered by 19%.
Indeed, for stronger doping, the Fermi level is situated at
wave vectors, where the Berry curvature rapidly tends to zero.
Since the superconducting gap and the critical temperature
both depend exponentially on the BCS coupling constant, the
relatively weak reduction of the coupling constant is more
prominent there. Our calculations show that the reduction of
the doping-dependent superconducting gap and critical tem-
perature depends then both on the band gap, which determines
the value of the Berry curvature, as well as on the effective
electron-electron interaction. The experimental measurement
of these quantities in 2D materials upon doping might then
provide a test of our theoretical studies if compared to the
expected evolution predicted by the usual BCS theory in the
absence of Berry-curvature corrections.
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APPENDIX: GAP EQUATION
FOR NONUNITARY PAIRINGS

We take the gap equation

�
σ1σ2

�k = −
∑
σ3σ4

∑
�k′

V
σ2σ1
σ3σ4

eff,�k �k′I
σ3σ4
β ( �k′), (A1)

and pick a nonunitary triplet pairing. In that case, the kernel is
given by [44]

Îβ (�k) = i�αβ (�k) · �σσy, (A2)
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with

�αβ (�k) = 1

2E�k,+

[
�d (�k) + 1

| �q(�k)|
�d (�k) × �q(�k)

]
tanh

(
β

2
E�k,+

)
+ 1

2E�k,−

[
�d (�k) − 1

| �q(�k)|
�d (�k) × �q(�k)

]
tanh

(
β

2
E�k,−

)
.

(A3)

Moreover, �q = i �d × �d∗ and E�k,± =
√

ξ 2
�k + | �d (�k)|2 ± |�q(�k)|.

Since �d is an odd function of �k and E�k,± an even one, �αβ is an

odd function of �k and therefore the kernel Î as well. Another
thing to notice is that making the matrix form of the kernel

explicit yields

Îβ (�k) =
(−αβ,x(�k) + iαβ,y(�k) αβ,z(�k)

αβ,z(�k) αβ,x(�k) + iαβ,y(�k)

)
,

(A4)
which is obviously a symmetric matrix. Putting the two to-
gether, we have

I σ3σ4
β (−�k) = −I σ3σ4

β (�k) = I σ4σ3
β (�k), (A5)

which is what we used to show that the Berry dipole term does
not change the gap or the critical temperature. So the latter
also extends to nonunitary triplet pairings.
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