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Precision measurements of the zero-temperature dielectric constant and density of liquid 4He
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The resonant frequencies of three-dimensional (3D) microwave cavities are explicitly dependent on the
dielectric constant of the material filling the cavity, making them an ideal system for probing material prop-
erties. In particular, dielectric constant measurements allow one to extract the helium density through the
Clausius-Mossotti relation. By filling a cylindrical aluminum cavity with superfluid helium, we make precision
measurements of the dielectric constant of liquid 4He at saturated vapor pressure for range of temperatures 30 to
300 mK and at pressures of 0 to 25.0 bar at 30 mK, essentially the zero temperature limit for the properties of 4He.
After reviewing previous measurements, we find systematic discrepancy between the low and high frequency
determination of the dielectric constant in the zero-temperature limit and moderate discrepancy with previously
reported values of pressure-dependent density. Our precision measurements suggest 3D microwave cavities are
a promising choice for refining previously measured values in helium, with potential applications in metrology.
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I. INTRODUCTION

Three-dimensional (3D) microwave cavities are an impor-
tant tool for the physicist. For example, they are used as
accelerating cavities in particle colliders [1] and are often used
in combination with transmon qubits [2,3]—one of the most
promising qubit architectures. One reason for the ubiquity of
the 3D microwave cavity is that the open structure allows
the electric and magnetic fields to reside in a material-free
volume, reducing dissipation from lossy materials [4,5]. This
can be compared with on-chip microwave cavities, where sub-
strate loss from two-level systems [6–8] generally dominates.
Furthermore, the open structure allows for the incorporation
of materials into the microwave cavity [9,10] making 3D
cavities a valuable tool for precision measurements of material
properties [11,12].

Incorporating superfluid 4He with microwave systems is
beneficial for multiple applications. Filling a 3D microwave
cavity with superfluid helium allows easy tunability of the
cavity frequency [13], and improves thermalization of super-
conducting qubits [14]; superfluid helium, when coupled to a
microwave optomechanical system, is a promising mechanical
medium for proposed detectors of gravitational waves [15–18]
and dark matter [19]. It also allows novel studies of two-
dimensional (2D) electron systems [20], including the design
of a new type of qubit [21].

Here, we use a 3D microwave cavity for a precision study
of the dielectric constant and density of superfluid 4He in the
low-temperature limit. Using the Clausius-Mossotti relation,
the dielectric constant measurements can be interpreted as
measurements of the helium density, in a manner essentially
similar to approaches such as dielectric constant (or refractive
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index) gas thermometry [22,23]. The ability to resolve small
frequency shifts in the high-Q microwave cavity allows this
to be done with precision comparable to—or exceeding—the
state-of-the-art capacitance measurements [8,24–29]. Inter-
estingly, for the temperature dependence of the dielectric
constant, we find a systematic discrepancy between low
(capacitive) and high (microwave resonance) frequency deter-
mination of the dielectric constant, which cannot be accounted
for by frequency dependence of the polarizability. For a par-
ticular choice of polarizability of helium [23], we find good
agreement with the commonly used literature values [30,31]
of pressure dependence of the low-temperature density and
the speed of sound. We find the largest sources of uncer-
tainty to originate in the value of the molar polarizability of
liquid helium and complex deformation of the cavity in a
pressurized bath.

II. THEORY

The helium density was calculated by measuring the res-
onant frequency of a cylindrical microwave cavity, which
will have standing-wave modes determined by Maxwell’s
equations. For a right cylinder with height h and radius a,
the resonant frequencies for transverse electric (TE) modes,
where Ez = 0 with z the axis of the cylinder, are given by [32]

fnml = c

2π
√

μrεr

√(
x′

nm

a

)2

+
(

lπ

h

)2

, (1)

where x′
nm is the mth zero of the derivative of the nth Bessel

function of the first kind, c is the speed of light, and μr , εr

are the relative permeability and permittivity, respectively, of
the material filling the cavity. In particular, we are interested
in the TE011 and TE111 modes, pictured in Fig. 1. Particularly
for the mode TE011, since the electric field vanishes at all sur-
faces for this mode, dielectric and seam losses are negligible
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FIG. 1. (a) Finite-element simulation of the electric field for the
TE011 mode of a right cylindrical cavity with resonance frequency
15.693 GHz at room temperature. Red arrows show the direction
of electric field, while white arrows show the direction of magnetic
field. The lower edge of the cavity is filleted to split the desired TE011

mode from the low-Q degenerate TM111 mode. (b) Simulation of
the electric field for the TE111 mode. (c) Example measurement for
the TE011 mode while in-vacuum at base temperature, with a total
Q of 2 × 106. (d) Example measurement for the TE111 mode while
in-vacuum at base temperature, with a total Q of 1.6 × 105.

and only conductor losses contribute [33]. This results in a low
loss rate and hence a high-quality mode capable of achieving
internal quality factors on the order of 108 for high-purity
aluminum cavities [4].

When filling a microwave cavity with superfluid helium,
only the relative permittivity of the material inside the cavity
changes, and the filled resonant frequency ffilled will be re-
duced from the in-vacuum resonant frequency fempty by the
relation

ffilled = fempty√
εHe

, (2)

where εHe is the dielectric constant of superfluid 4He. This
allows us to directly calculate the dielectric constant by com-
paring measurements of the filled and in-vacuum resonant
frequencies as

εHe =
(

fempty

ffilled(P)

)2

. (3)

This expression, however, needs to be corrected for finite
compressibility of the cavity walls [see Eq. (10) below].

FIG. 2. (a) Diagram of the circuit used to take measurements. A
total of 34 dB of attenuation reduces the signal from the VNA before
reaching the cavity, including the directional coupler which transmits
and receives the S11 signal. A low-noise HEMT amplifies the signal
at the 4 K stage before returning to the VNA. (b) Cross-section of
the experimental apparatus used to measure the dielectric constant
of helium-4. The microwave cavity is placed inside a hermetically
sealed cell, which is then filled with helium, preventing pressure
differentials across cavity walls.

The dielectric constant and density are related through the
Clausius-Mossotti relation

εHe − 1

εHe + 2
= 4π

3

α

M
ρ, (4)

where α is the polarizability volume per mole (shortened to
“polarizability” henceforth), M is the molar mass of 4He, and
ρ is the density [34].

Finally, given a pressure dependence of the density, the
long-wavelength limit of the speed of sound is

c =
(

∂ρ

∂ p

)−1/2

. (5)

III. EXPERIMENTAL SETUP

The dielectric constant was measured using a super-
conducting cylindrical aluminum microwave cavity cooled
to approximately 30 mK using a dilution refrigerator, as
schematically shown in Fig. 2. The cavity was machined to be
2.4 cm in diameter and 4-cm tall at room temperature for an
approximate total volume of 18 cm3. The cavity was designed
to operate in the TE011 and TE111 modes, with measured reso-
nant frequencies of 15.74 GHz and 8.26 GHz, respectively, for
T = 30 mK. For our cavity machined out of 6061 aluminum,
we measured an internal quality factor at 30 mK of ∼ 2 × 106

for TE011. Higher quality factors could be achieved with pure
aluminum or niobium [4,35]. The TE011 mode of a perfectly
cylindrical cavity is degenerate with the low-Q TM111 mode.
To break this degeneracy, a 1-inch-radius fillet was added to
the bottom edge of the cavity. The microwave cavity was
placed inside a hermetically sealed copper cell, as shown in
Fig. 2(b). This design allows helium to freely flow in and
around the microwave cavity such that there are no pressure
differentials across the walls of the cavity. This eliminates the
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possibility of the cavity bowing under high pressures, which
can shift the resonant frequency of the cavity considerably, as
was seen in past measurements [13].

The complex-valued reflection from the cavity is fit
to the expected frequency dependence of the scattering
parameter [36]

S11( f ) = Aei( f τ+φ0 )

(
1 −

2eiφZ Qtot
Qext

1 + 2iQtot
( f

f0
− 1

)
)

, (6)

where f0 is the resonance frequency, φZ characterizes
impedance mismatch, and A, τ , and φ0 characterize the overall
loss, delay, and phase rotation due to wiring and amplifi-
cation within the cryostat [36]. The total quality factor is
given by Q−1

tot = Q−1
ext + Q−1

int where Qext is the external quality
factor characterizing the coupling to the microwave mode and
Qint is the internal quality factor due to all other dissipation
processes [36].

The cavity was coupled to using a pin coupler, which was
aligned parallel to the electric field of the TE011 mode. By
adjusting the length of the pin coupler, we decreased the
coupling such that the external quality factor was ∼3 × 107

at base temperature. This meant that the total cavity quality
factor was almost entirely limited by internal losses, allowing
for maximum precision in our measurements.

To take measurements in the zero-temperature limit, the
cell was mounted on the mixing chamber plate of a dilution re-
frigerator. The resonant modes were measured using a vector
network analyzer (VNA) in an RF circuit shown in Fig. 2(a).
At each stage of the dilution refrigerator, attenuators were
used to heat sink the microwave coaxial line, attenuating the
signal a total of 24 dBm. A directional coupler with 10 dB
of attenuation was used to transmit the microwave power to
and from the cavity. The reflected signal was then amplified
through a low noise amplifier at the 4 K stage of the refriger-
ator and returned to the VNA.

The temperature of the mixing chamber was measured
using an ultra-low-temperature ruthenium oxide sensor and
controlled through an AC resistance bridge. Close to the base
temperature, we were able to achieve temperature stability of
0.5 mK, while at higher temperatures (T ≈ 300 mK) temper-
ature stability decreased to 1 mK. The pressure of the helium
inside the cell was set using a homemade control system,
which consists of a ballast volume immersed in liquid nitrogen
with a resistive heater controlled by a proportional–integral–
derivative (PID) loop. The stability of the pressure measured
at room temperature was about 1 mbar.

The data were measured during two separate cool downs
of the dilution refrigerator separated by few a months. These
data sets will be referred to as Run 1 and Run 2. Once at base
temperature (T ≈ 30 mK), measurements of both TE011 and
TE111 modes were taken in a vacuum over several days to
ensure that the resonant frequency was stable. The resonant
frequency was observed to shift no more than a few hundred
Hz (i.e., less than 1 ppm), which is within the precision of
the fitting method used. Before filling the cavity with liquid
helium, the temperature dependence of the microwave modes
was measured in the range 30 to 300 mK. The cavity was
then filled with helium by condensing He gas from a com-
mercial high-pressure cylinder through a sintered copper heat

FIG. 3. The shift in frequency of the TE011 mode as the power
(at source) is decreased from 0 to −20 dBm, for three separate sets
of measurements: in-vacuum (blue), filled with helium at saturated
vapor pressure (orange), and pressurized to 25 bar (green). The zero-
point is taken as the −20 dBm for each respective dataset.

exchanger placed on 4 K, 1 K, still (approximately 0.8 K),
and mixing chamber stages of the dilution refrigerator. Mea-
surements were taken first at saturated vapor pressure (SVP,
only for Run 2) again in the temperature range 30 to 300 mK.
Finally, the cell was pressurized up to 25 bar in approximately
0.5 bar steps. For each pressure or temperature, 200 traces
of the S11 signal were taken in relatively quick succession
(entire acquisition taking several minutes) for both modes,
which were individually fit using Eq. (6) to find the resonant
frequency and its standard deviation.

IV. DRIVE POWER ANALYSIS

To ensure that the drive power would not heat the cavity,
the effect of the VNA drive power was measured for the cavity
while in-vacuum, filled to SVP, and pressurized to 25.0 bar. In
each set of measurements, the drive power at source was var-
ied from −20 to 0 dBm (0.01 to 1.00 mW), and the resonant
frequency of the TE011 mode was measured.

Figure 3 shows the resonant frequency of the TE011 mode
for powers between 0 and −20 dBm while in-vacuum, filled
to SVP, and pressurized to 25 bar. Heating of the cavity ought
to correspond to decrease of the resonance frequency [33],
which is observed weakly for the empty and SVP data. The
origin of the peak in frequency shift for the 25 bar data is
unknown, but it is unlikely to be related to the heating of
the cavity itself. Nevertheless, even at the peak, the relative
frequency shift is small and we use −10 dBm drive power
which we find to be a good compromise between low-pressure
heating and signal-to-noise ratio. However, to account for
power-dependent frequency shifts we include an additional
100 Hz error on resonance frequencies measured at saturated
vapor pressure (the data in Sec. VI A) and additional 2500 Hz
error on all resonance frequencies measured at increased pres-
sures (the data in Sec. VI B).
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V. CORRECTIONS DUE TO SYSTEMATIC ERRORS

The low-temperature density of 4He was measured in the
range 0.5 to 25.0 bar. While at 30 mK, the cell was pressurized
in steps of 1 bar. Measurements were taken while ramping
up the pressure from 1.0 to 25.0 bar, and then ramping down
the pressure from 24.5 to 0.5 bar. There are multiple known
sources of systematic error related to the pressure that may
affect our measurements. Here we identify and correct for the
following: (1) a hydrostatic pressure head; (2) superfluid foun-
tain pressure; and (3) compression of the aluminum cavity.

(1) A hydrostatic pressure head arises from excess liquid
helium in the fill line a height h above the microwave cavity.
This will not affect the measured frequency, but will shift
the pressure in the cell Pcell from what is measured at room
temperature Pmeas to

Pcell = Pmeas + ρgh, (7)

where g is the acceleration due to gravity.
Since the level of helium in the dewar surrounding the

dilution unit is not constant, the level of liquid helium in the
cell fill line will fluctuate, changing the hydrostatic pressure
head. We estimate that the liquid level will vary between
59 and 79 cm above the cavity. We correct our data for a
hydrostatic pressure head of height h = 68.5 cm, but consider
the 59 to 79 cm range as one component of the uncertainty of
the pressure reading.

(2) When two reservoirs of He-II at different temperatures
are connected via a thin channel that does not admit the flow
of the viscous normal fluid component, a pressure difference
develops according to

∇p = ρS∇T, (8)

where S is the specific entropy [37]. The helium fill line of
the cell passes through sintered copper heat exchangers on
each stage of the dilution refrigerator that strongly restrict the
flow of helium. Assuming that the effect is negligible below
the temperature of the still (Tstill ≈ 0.8 K) we assume that the
pressure drop is dominated by the temperature gradient across
the heat exchanger at the 1 K pot (Tpot ≈ 1.45 K), i.e.,


pfountain =
∫ Tpot

Tstill

ρ(p, T )S(p, T )dT, (9)

which has to be subtracted from the pressure measured at
room temperature to obtain the correct cell pressure. We also
assume that the hydrostatic and fountain pressure are balanced
and helium is stationary (and thus we neglect interaction
with remnant pinned vortices). Here, for ρ(p, T ) and S(p, T ),
the HEPAK dataset was used [38] and the influence of the
pressure gradient on the material parameters ρ and S was
neglected. The resulting fountain pressure correction is shown
in Fig. 4.

(3) As the pressure of the helium increases, the cavity
frequency will also be affected by deformation of the cavity
itself. We correct for the deformation of the cavity using the
procedure found in Ref. [12]: assuming small elastic deforma-
tion, all cavity dimensions d (i.e., radius a and height h) will
be renormalized to d = d0(1 − P/3K ) where P is the pres-
sure, K the bulk modulus of the cavity material, and d0 is the
cavity dimension at P = 0. The dielectric constant corrected

FIG. 4. Pressure difference between two ends of a superleak due
to the fountain effect calculated using (9). End temperatures are
assumed to be 0.8 K and 1.45 K.

for deformation is thus [cf. Eq. (1)]

εHe =
(

fempty

ffilled(P)

)2 1

(1 − P/3K )2
. (10)

The bulk modulus is related to the Young’s modulus E through
K = E/3(1 − 2ν), where for Al the Poisson ratio ν = 0.33 ±
0.01. The value of the Young’s modulus E of Al alloy 6061
at low temperatures reported in the literature varies in the
range [39,40] 77.7 to 78 GPa. Error estimates are generally
not available. Conservatively, we chose E = 77.8 ± 0.5 GPa.
The uncertainties of pressure, E , and ν are propagated into the
uncertainties ε shown below. The yield stress of 6061 is in the
range of 350 MPa [39], making corrections due to plastic de-
formation under our highest applied pressure, approximately
2.5 MPa, negligible.

Finally, a significant source of uncertainty for calculating
the density from the measured frequency shift and dielectric
constant using Eq. (4) is the value of the polarizability α of
liquid 4He. Various values for the molar polarizability were
obtained [12,26,38,41,42], which disagree on the level of
about 0.1%. Indeed, even the existence of the temperature
dependence of polarizability at fixed pressure is uncertain,
with the authors of Refs. [12,43] giving contradicting results.
For helium in the gas phase, the value of the polarizability
is known to satisfactory precision with ppm-level agreement
between experiment [23] and ab initio theory [44]. However,
due to interatomic interactions, the Clausius-Mossotti equa-
tion requires a virial expansion [45,46], suggesting that the
value of the effective polarizability of the liquid used in Eq. (4)
will likely differ from the polarizability of individual atoms
[47,48].

Despite these difficulties, we believe the currently available
low-density value of polarizability is the most reliable. In
the following, we calculate the density and speed of sound
using the polarizability measured with a dielectric constant
gas thermometer near the triple point of water [23], which pro-
duces the best absolute agreement with previously accepted
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values of density [30,31] without the necessity of explicitly
correcting using an external reference [29].

VI. RESULTS

A. Temperature dependence of the dielectric constant at
saturated vapor pressure

The temperature dependence of the dielectric constant was
measured in the past, but few have measured it in the low-
temperature limit. Chan et al. [43] measured the dielectric
constant using a parallel plate capacitor in the range 100 to
1200 mK. They obtained their value for the dielectric constant
at zero temperature ε0 by extrapolating their data using

εHe = ε0 + (ε0 − 1)(A4T 4 + A6T 6), (11)

which they fit for temperatures upto 300 mK with fixed A4 =
−(2.9 ± 0.01) × 10−4 K−4 based on the speed-of-sound mea-
surements found in Ref. [31]. Only Berthold et al. [12]
directly measured the dielectric constant at SVP in the low-
temperature limit. Their method was similar to ours—they
measured the resonant frequency of the TE011 mode of a cylin-
drical niobium cavity at 91 mK. The most recent measurement
of the dielectric constant was made by Niemela and Donnelly
[28] who only measured the dielectric constant above 1 K, but
extrapolated to zero temperature using empirical formulas.

We measured the dielectric constant at saturated vapor
pressure (SVP) during Run 2 using the TE011 mode. This was
done by slowly filling the cell while watching the frequency
shift using the VNA. Once the frequency stabilized, the cell
was assumed to be filled, and the filling was halted by closing
a room-temperature valve in the gas handling system. This
method leads to some uncertainty in the height of the helium
above the cell, which would increase the pressure in the cell
from SVP by an unknown amount. Assuming the pressure
head is no more than 1 cm above the cavity, the pressure
would be increased by, at most, 10−4 bar. The temperature was
increased in steps of 25 mK from 30 to 330 mK, and the shift
in the resonant frequency was measured. These data were then
compared to in-vacuum data at the same temperature through
Eq. (2). The temperature dependence of mode TE111 shows
a much larger scatter than TE011, probably due to increased
sensitivity of the the mode inner surface of the cavity [12]
and thus to the position of the pin coupler, which is suscep-
tible to motion due to pressure fluctuations and mechanical
vibrations.

Figure 5 plots our calculated dielectric constant at SVP as
a function of temperature. Following Chan [43], we fit our
data to Eq. (11) with A4 = −(2.9 ± 0.01) × 10−4 K−4 fixed
(orange dashed line in Fig. 5), finding the zero-temperature
dielectric constant ε0 and the fitting parameter A6 to be

ε0 = 1.05727756 ± 2 × 10−8,

A6 = (9 ± 5) × 10−6 K−6.

The uncertainties were estimated using a Monte Carlo
method, where multiple datasets were generated by drawing
a random sample for each temperature from a normal distri-
bution centered on the experimental mean and with variance
equal to the square of the experimental error estimate. Each
generated dataset was fit using Eq. (11); the values shown

FIG. 5. The dielectric constant of helium at saturated vapor pres-
sure for temperatures between 30–330 mK measured using the TE011

mode and calculated using (2). The error bars were calculated using
the statistical errors on ffilled and fempty, which were obtained by
measuring the cavity resonance 200 times. The dashed line is a fit
to temperature dependence given by (11). For the dielectric constant
obtained using the TE111 mode (not shown), the temperature depen-
dence was obscured by increased scatter but is consistent with TE011

within approximately 3 ppm.

above are the averages and standard deviations of a set of the
individual fit parameters. The procedure was repeated for a
sufficiently high number of samples such that the estimates
of values and their error converged. The large uncertainty on
A6 is due to weak temperature dependence of ε in the range
accessible to the present experiment, which results in a poorly
conditioned fit.

Another source of uncertainty not captured in the statistical
analysis outlined above is due to imperfect realization of the
saturated vapor pressure due to the unknown hydrostatic head.
Based on the measured pressure dependence [see Eq. (12)
below] we can estimate the slope ε′ = dε/dP = (7 ± 4) ×
10−4 bar−1. Estimating the hydrostatic pressure uncertainty
based on the cell height h = 4 cm as δP = ρgh ≈ 0.6 mbar,
which yields additional error on the dielectric constant δPε =
ε′δP ≈ 4 × 10−7, which dominates the total uncertainty.

It should be stressed that the uncertainties reported here
for the SVP data are obtained only for a single experimental
run. Additional mechanisms, not characterized in the present
experiment, can potentially increase the actual uncertainty of
the low-temperature dielectric constant. These could include,
for example, irreversible deformation of the cavity during the
cooling and warming cycles, or the variable isotopic purity
of helium. At increased pressure (see below) we observe
the reproducibility of the dielectric constant to within about
10 ppm between Run 1 and Run 2, although this is likely
dominated by deformation of the cell at high pressure and
should be significantly less at SVP.

Table I summarizes the values for the zero-temperature
dielectric constant obtained by several studies. Chan et al.
[43] extrapolated the high-temperature data of Kierstead [42]
and Harris-Lowe and Smee [26] to obtain a zero-temperature
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TABLE I. Various values for the dielectric constant of 4He at sat-
urated vapor pressure extrapolated to T = 0. The column “method”
shows whether the experiment measured a capacitance change of
a helium-filled capacitor or or a shift of resonant frequency of a
microwave cavity (as in the present experiment). The error in our
result includes the error due to imperfect realization of the SVP.

Authors Method ε0

Niemela and Donnelly [28] Capacitance 1.057255
Chan et al. [43] Capacitance 1.0572190(5)
Kierstead [42]a Capacitance 1.0571374(10)
Harris-Lowe and Smee [26]a Capacitance 1.0572467(100)
Tanaka et al. [29] Capacitance 1.0572025
Berthold et al. [12] Cavity 1.0572784(5)
Current authors Cavity 1.0572776(4)

aExtrapolated to zero-temperature by Chan et al.

value. Note in Table I that the value of the zero-temperature
dielectric constant obtained here is systematically higher, and
outside of the estimated error bars, than previously reported
values measured using helium-filled capacitors, but in rela-
tively good agreement with Ref. [12], the only other work
measured using a microwave cavity. The reason for this rel-
atively large and apparently systematic discrepancy between
low-frequency and high-frequency estimation of the dielectric
constant is, at present, unknown since the relative change
in polarizability between DC and 15 GHz is expected to be
negligible, on the order of 10−12 [44].

B. Pressure dependence of dielectric constant and density

The corrected results for the low-temperature pressure-
dependent dielectric constant are shown in Fig. 6. This
includes data taken over two separate runs, using two different
microwave modes, increasing and decreasing pressure ramp,
and a separate measurement at saturated vapor pressure.

Since the calculation of the density from the dielectric
constant depends on polarizability, which is not presently
known with sufficient accuracy for liquid helium, we adopt
an approach common in dielectric constant gas thermometry
[23] and fit the pressure dependence of the Clausius-Mossotti
parameter μ = (ε − 1)/(ε + 2) ∝ ρ (the proportionality as-
sumes that the polarizability is density-independent) using a
third degree polynomial

P = A0 + A1μ + A2μ
2 + A3μ

3, (12)

where An are fit parameters. To account for measurement er-
rors in both pressure and dielectric constant, Eq. (12) was fit to
the data using orthogonal distance regression (ODR) weighted
by the estimated uncertainties of the individual measurements
of pressure and μ [49]. The errors of the fit parameters were
estimated by the ODR fitting routines and checked by boot-
straping [50]. The resulting parameter values are

A0 = −105 ± 7bar,

A1 = (2.0 ± 0.1) × 104bar,

A2 = (−1.46 ± 0.05) × 106bar,

A3 = (3.72 ± 0.08) × 107bar.

FIG. 6. Pressure dependence of the dielectric constant (top) and
the residuals from the fit (12) (bottom). The data above 25 bar,
where helium solidifies, were excluded from the fit. Up-triangles
correspond to increasing pressure ramp, down-triangles to decreasing
pressure; smaller red points to run 1 and larger blue points to run 2;
lighter colors to mode TE011 and darker colors to TE111. The full
orange circle shows the dielectric constant at the saturated vapor
pressure. The full green circle shows the freezing-point dielectric
constant of Berthold et al. [12].

To invert Eq. (12) and obtain the μ(P) [and ε(P)] relationship
a standard root-finding algorithm is employed. The relative
residuals 
ε = (ε − εfit )/εfit are shown in the bottom panel of
Fig. 6. In the plot of the residuals, there are two distinct jumps
in the data. The first jump occurs in both runs at P ∼ 5 bar
while increasing the pressure, but does not follow the same
behavior while decreasing the pressure. The second jump
happens at higher pressures, P ∼ 13 and 21 bar for Run 1
and Run 2, respectively, and the jump in resonant frequency is

FIG. 7. Density of 4He at 30 mK calculated using the Claussius-
Mossotti relation (4) with polarizability α = 0.1234853 cm3 of
Ref. [23] and the deviation from the dielectric constant fit (12). Styles
of points as in Fig. 6.
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FIG. 8. The difference in measured pressure dependence of the
density (ρ ′ − ρ )/ρ where ρ ′ is either the data of Abraham et al.
[31] (solid blue line) or Tanaka et al. [29] (dashed orange line)
and ρ is the density obtained here. The single green point shows
the freezing-point measurement of Berthod et al. [12]. The three
panels show the effect of polarizability on ρ calculated from the
dielectric constant (12) using the Clausius-Mossotti relation (4). Top
panel, α = 0.1234853 cm3 [23]; middle α = 0.123296 cm3 [26]; and
lower α = 0.123413 − 0.002376ρ cm3 (where ρ is in g/cm3) [41].
Using the polarizability of Ref. [38] results in low-pressure deviation
reaching almost 1%.

observed both while increasing and decreasing the pressure.
By taking multiple data sets we show that these jumps are
repeatable at similar pressures.

We suspect that these jumps are caused by mechanical
slipping–the cavity lid or pin coupler may shift at certain
pressures, causing the resonant frequency to shift since the
effective volume of the cavity changed. Berthold et al. [12]
observed a similar effect, stating that the mechanical shock
arising from the opening and closing of valves in their system
can cause a frequency shift of up to 1 kHz in their cylindrical
microwave cavity.

We calculate the density from μ with Clausius-Mossotti
equations (4) using the polarizability determined through a
helium-based dielectric constant gas thermometer near the
triple point of water α = 0.1234853 cm3 [23]. The resulting
density and relative residuals are shown in Fig. 7. The residu-

FIG. 9. The relative difference between density relative to the
zero pressure ρ/ρ0 obtained by Refs. [29,31] (same line styles as
in Fig. 8) and Berthold et al. [12] (single green point) and our
Clausius-Mossotti parameter μ relative to the zero pressure μ/μ0.
For polarizability a density-independent constant, these relative pa-
rameters ought to be equal according to (4).

als are calculated with respect to the density calculated from
the fit of ε in Eq. (12).

The calculated density crucially depends on the chosen
value of polarizability. The pressure dependence of density
is tabulated by Brooks and Donnelly [30] who derived val-
ues from the functional form reported by Abraham et al.
[31]. Tanaka et al. [29] later made capacitive measurements
of the helium density, producing their own functional form.
The comparison of these two past experiments with the
present data is shown in Fig. 8 using three different values
of polarizability α. We see that, depending on the choice of
polarizability, the typical deviations are quite significant and
in the range 0.1%–0.5%. Note, however, that the apparent
low-pressure agreement between Abraham et al. [31] and
Tanaka et al. [29] is artificial since both of these experiments
measured only relative change in density with respect to the
zero-temperature, zero-pressure limit value ρ0. In both cases,
ρ0 = 145.13 kg m−3 was chosen, which was obtained by Kerr
and Taylor [25] who measured changes in density with respect
to a reference point near 1.2 K for which an error bar was
not specified and then extrapolating a fit below approximately
1 K [25].

While the low-pressure value of ρ0 has a fairly weak em-
pirical basis and uncertainties in the polarizability complicate
absolute comparisons, it is clear from Fig. 8 that pressure
dependence differs among the experiments. This can also be
seen in Fig. 9, which shows the relative deviation between
ρ/ρ0 measured by the authors of Refs. [29,31] and μ/μ0 mea-
sured in our case (quantities with subscript 0 refer to values
at zero pressure), which are independent of polarizability, if
it is assumed to be pressure and density independent. In the
present case, however, the largest uncertainties are likely due
to cavity deformation which is not captured accurately enough
using elastic compressibility. Another issue might arise in the
neglected viscous flow through the heat exchanger in the cal-
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FIG. 10. (top) Speed of sound calculated from our pressure de-
pendence of the dielectric constant using (12) and polarizability of
Ref. [23] (black line), speed of sound from ultrasound pulse prop-
agation [31] (blue line), and from inelastic neutron scattering [51]
(orange points). (bottom) Relative deviation of the other datasets (c′)
from ours (c).

culation of the fountain pressure correction of Eq. (9). These
issues can be mitigated in future experiments, for example,
using cryogenic valves and mechanically stronger cavity ma-
terials.

Finally, in Fig. 10(a) we show the speed of sound according
to Eq. (5). Using the polynomial expression (12) and the
Clausius-Mossotti equation (4) yields

c =
√

4πα

3M4
(A1 + 2A2μ + 3A3μ2), (13)

where to obtain c(P) the expression (12) is first inverted to
obtain μ(P). In Fig. 10(b) we show the relative difference
between the data obtained here and the speed of sound ob-
tained using ultrasonic pulses by Abraham et al. [31] and
inelastic neutron scattering by Godfrin et al. [51]. Apart from
the low-pressure region, our data lie systematically bellow
the ultrasound velocities. Since the data reported in Ref. [31]

have relative uncertainty of approximately 0.1% [due to the
uncertainty of the zero-pressure limit value c(0) and statistical
uncertainty of the fit], this, again, most likely indicates that the
deformation of the cavity is not fully accounted for by linear
elastic compressibility.

VII. CONCLUSION

We presented measurements of the dielectric constant and
density of superfluid 4He in the zero-temperature limit for
pressures up to 25 bar, showing that very high experimen-
tal accuracy is attainable under cryogenic conditions using a
superconducting microwave cavity. Reviewing multiple past
experiments, we find a systematic discrepancy between low-
frequency and high-frequency measurements of the dielectric
constant, which exceeds the expected frequency dependence
of the polarizability [44]. For the pressure-dependent density,
after careful consideration of dominant sources of system-
atic errors—a hydrostatic pressure head, fountain effect in
the helium fill line, and the cavity compressibility—we find
moderate discrepancies with respect to the values of density
reported in the literature, which could be to a large extent
attributed to the nonlinear deformation of the cavity geometry
and rather uncertain value of the molecular polarizability of
liquid 4He. Finally, using the measured pressure dependence
of density we calculate the speed of sound, which is found to
be in good agreement, but systematically underestimating, the
speed of sound obtained either by ultrasonic pulse propagation
[31] or inelastic neutron scattering [51].

The uncertainty of polarizability in the high-density liquid
is in stark contrast to the 4He gas near the triple point of
water, where experimental accuracy [23] and ab initio calcu-
lation of 4He polarizability [44] advanced to the point where
helium can be used for metrological purposes, such as the
creation of a pressure standard. Such detailed, quantitative
understanding of liquid helium under cryogenic conditions
is equally desirable and would allow, for example, accu-
rate calibration of cryogenic secondary pressure transducers.
Thanks to high achievable quality factors of superconducting
microwave cavities and the high purity of cryogenic liquid
helium, extremely accurate measurements of dielectric prop-
erties of 4He are possible, which presents an ideal test bed
for future extensions of ab initio calculations. Finally, we note
that if filled with 3He, a similar system could be used as a
highly accurate and sensitive primary thermometer at very low
temperatures [52].
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