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Scattering coefficients of superconducting microwave resonators. II. System-bath approach
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We describe a unified quantum approach for analyzing the scattering coefficients of superconducting mi-
crowave resonators with a variety of geometries, and demonstrate its consistency with the classical approach
[Q.-M. Chen et al., Phys. Rev. B 106, 214505 (2022)]. We also generalize the result to a chain of resonators
with time delays, and reveal several transport properties similar to a photonic crystal and can be used to design
high-quality resonators. These results form a firm theoretical ground for analyzing the scattering coefficients
of an arbitrary resonator network. They set a step forward to designing and characterizing superconducting
microwave resonators in a complex superconducting quantum circuit.
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I. INTRODUCTION

Understanding the scattering coefficients of supercon-
ducting microwave resonators is crucial to the study of
superconducting quantum circuits [1]. Owing to the flexible
geometry and the strong interaction in the system, a variety
of novel photon transport properties emerge when coupling a
microwave resonator to other circuit components [2–19]. For
example, it is shown that a dissipative atom can completely
reflect the photons propagating along a one-dimensional (1D)
waveguide with no loss [2–4], although the physical size of the
atom is much smaller than the wavelength of the propagating
microwave field. Moreover, microwave resonators can also be
coupled to each other with different geometries, which lead to
many interesting phenomena such as Fano resonance [20–24],
slow light [25–29], coupled-resonator-induced transparency
[30–33], and bound states [34–40]. During the past decades,
the scattering coefficients of superconducting quantum cir-
cuits have attracted an enormous interest and led to a variety
of discoveries. However, most of the existing work either
assumes the input field to be a few-photon Fock state [41]
or considers a purely classical microwave field as the input
[42]. Moreover, the existing results are often limited to certain
scenarios, although the fundamental concepts behind them,
for example, network analysis or input-output analysis, should
have a general applicability. For example, one often uses the
transfer matrix method to study a hanger-type resonator, but
has to switch to the system-bath description when studying
a necklace-type resonator [43,44]. A unified approach that
applies to a general superconducting microwave resonator is
rarely studied, but it is in high demand for designing larger
circuits beyond the toy model. Import milestones in theory
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include the SLH formalism [45–50], which assumes a unidi-
rectional wave propagation, and the coupled-mode formalism
[51–53], which was initially proposed for classical systems.

Here, and also in a parallel paper [54], we study the scat-
tering coefficients of superconducting microwave resonators
in either quantum or classical perspectives. In this work,
we employ the system-bath method in quantum optics and
derive analytically the scattering coefficients of a general
resonator [55,56]. We compare the results with the classical
approach [54], and reveal the correspondence of different
concepts in the two languages, such as the damping rates
and the quality factors. We also generalize the method to
a chain of microwave resonators, which form a photonic-
crystal-like system and exhibit interesting transport features
that are qualitatively different from a single resonator. These
results provide a systematic study of the scattering coefficients
of superconducting microwave resonators in the quantum
perspective.

The rest of this paper is organized as follows: In Sec. II,
we outline the system-bath method and derive the ideal scat-
tering coefficients of different resonators, which are coupled
to the external circuity with different geometries. We also
compare the classical and quantum approaches, and discuss
briefly how to deal with experimental imperfections in the
quantum approach. Next, we generalize our results to a chain
of hanger-type resonators with time delay in Sec. III, which
are side coupled to a 1D waveguide with time delays. We also
study a chain of necklace-type resonators in Sec. IV, which
are coupled to each other end by end. Finally, we conclude
this study and discuss how the dephasing effect can be incor-
porated in the formalism in Sec. V. Detailed derivations of the
input-output relations and the scattering coefficients for dif-
ferent resonator networks can be found in Appendixes A–D.
Throughout this study, we assume that the frequency range of
interest is around the resonance frequency of the fundamental
mode by default.
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FIG. 1. Schematic of a hanger-type λ/4 resonator. Here, a short-
circuited λ/4 resonator (i.e., the system) is side coupled to a
transmission-line waveguide (i.e., the bath), which accommodates
both left- and right-propagating fields. (b) Shows a simplified
schematic of (a), where we describe the bath as a circular tube
indicating the use of periodic boundary conditions.

II. SCATTERING COEFFICIENTS OF A SINGLE
MICROWAVE RESONATOR

A. Hanger-type λ/4 resonators

The hanger-type λ/4 resonator is schematically shown in
Figs. 1(a) and 1(b), where the intraresonator field a is coupled
to the bath field b in the 1D waveguide with a coupling
strength κ . We describe the composite system as

Hsys = h̄ωra
†a, (1)

Hbth =
+∞∑

k=−∞
h̄ωkb†

kbk, (2)

Hint =
+∞∑

k=−∞
h̄(κ∗ab†

k + κa†bk ), (3)

where ωr is the resonant frequency, ωk is the characteristic
frequency of the bath field with wave vector k. Following
the standard procedure of the input-output analysis [55,56],
which is also outlined in Appendix A, one can derive a set of
linear equations that relate the dynamics of a to the so-called
input and output fields in the bath. However, the input and
output fields defined in this way are not directly related to the
fields that can be measured in experiments. To calculate the
transport properties of the system, one must distinguish the
left and the right propagating fields, which we denote as l and
r, from the bath b, as shown in Fig. 1(b).

To achieve this goal, we constrain our discussion to a small
frequency range around the central driving frequency ωd. One
can approximate the dispersion relation by a linear relation
within this small interval [22]

ωk = ωd ∓ vg�k, (4)

where vg is the group velocity in the waveguide. Besides,
�k = k ± kd, where k and kd > 0 are the wave vectors that
correspond to the frequencies ωk and ωd, respectively. In the
rotating frame at ωd, we obtain an equivalent description of
the composite system

Hsys = h̄(ωr − ωd )a†a, (5)

Hbth =
+∞∑

�k=−∞
h̄vg�k

(
l†
kr−�k

lkr−�k + r†
kr+�k

rkr+�k

)
, (6)

Hint =
+∞∑

�k=−∞
h̄
(
κ∗al†

kr−�k
+ κ∗ar†

kr+�k
+ c.c.

)
. (7)

Here, we have extended the upper and lower limits of the
summation to infinity for mathematical convenience, which is
valid as long as ωd is much larger than the typical bandwidth
of interest [41]. Finally, we complete our transformation by
defining ω = vg�k , � = ωr − ωd, and replacing the discrete
field operators by a continuum: lkr−�k → lω, rkr+�k → rω.
The result is

Hsys = h̄�a†a, (8)

Hbth =
∫ +∞

−∞
dω h̄ω(l†

ωlω + r†
ωrω ), (9)

Hint =
∫ +∞

−∞
dω h̄(κ∗al†

ω + κa†lω + κ∗ar†
ω + κa†rω ). (10)

By separating the left- and right-propagating fields in the
waveguide, we split the single physical bath b into two in-
dependent baths l and r representing different directions of
the propagating fields in a 1D waveguide. We note that this
result is consistent with the assumption in Refs. [11,12] for the
study of waveguide quantum electrodynamics. In this way, the
scattering coefficients of the resonator can be readily obtained
by following the standard input-output analysis. Here, we list
several major steps for illustration.

Using the Heisenberg equations, we describe the dynamics
of a, lω, and rω as

ȧ = −i�a − i
∫ +∞

−∞
dω κ (lω + rω ), (11)

l̇ω = −iωlω − iκ∗a, (12)

ṙω = −iωrω − iκ∗a. (13)

We further define the input and output fields corresponding to
the two baths as

lin = 1√
2π

∫ +∞

−∞
dω e−iωt lω, lout = lin + √

γ a, (14)

rin = 1√
2π

∫ +∞

−∞
dω e−iωt rω, rout = rin + √

γ a, (15)

where
√

γ = i
√

2πκ . Inserting Eqs. (14) and (15) into (11)–
(13), we obtain

ȧ = −i�a −
(

γ + γa

2

)
a − √

γ (lin + rin ). (16)

Here, we have added the intrinsic damping of the resonator
γa/2 by hand. A more rigorous way to include intrinsic damp-
ing is to consider an additional bath that is in a thermal state
with temperature T and is coupled to a. The result is the
same as Eq. (16) for T � h̄ωr/kB, where kB is the Boltzmann
constant. We note that this requirement is valid for typical
experimental situations in superconducting quantum circuits
[57].
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Equations (14)–(16) determine the scattering coefficients
of a hanger-type λ/4 resonator, which we formally define as

S11 = 〈lout〉
〈rin〉 , S21 = 〈rout〉

〈rin〉 with 〈lin〉 = 0; (17)

S12 = 〈lout〉
〈lin〉 , S22 = 〈rout〉

〈lin〉 with 〈rin〉 = 0. (18)

That is,

S11 = S22 = − γ

i� + (
γ + γa

2

) , (19)

S21 = S12 = 1 − γ

i� + (
γ + γa

2

) . (20)

We recall that the scattering coefficients of a hanger-type λ/4
resonator derived in the transfer matrix approach are written
as [54]

S11 = S22 ≈ −
ωr

2Qe

i� + (
ωr

2Qi
+ ωr

2Qe

) , (21)

S21 = S12 ≈ 1 −
ωr

2Qe

i� + (
ωr

2Qi
+ ωr

2Qe

) . (22)

Here, we have replaced the imaginary unit j that follows
the convention of microwave engineering by the imaginary
unit i = − j [58]. We note also that � = ωr − ωd, as defined
before. Comparing Eqs. (19) and (20) with (21) and (22), we
obtain the following relations between the damping rates and
the quality factors:

γa = ωr

Qi
, γ = ωr

2Qe
. (23)

The above relations also hold for a hanger-type λ/2 resonator,
but with different definitions of the resonant frequency and
the quality factors. We note that the factor of 2 in the ex-
pression of γ originates from the fact that both the left- and
right-propagating fields in the waveguide are coupled to the
intraresonator field. However, the effective energy decay rates
in both the internal and coupling dissipation channels are
equal to the ratio between the resonant frequency and the
corresponding Q factors.

B. Necklace-type λ/2 resonator

The necklace-type λ/2 resonator is schematically shown in
Figs. 2(a) and 2(b), where the intraresonator field a is coupled
to two spatially separated baths b1 and b2 on the left- and
right-hand sides, respectively. We describe the whole system
as

Hsys = h̄ωra
†a, (24)

Hbth =
2∑

m=1

+∞∑
k=0

h̄ωkb†
m,kbm,k, (25)

Hint =
2∑

m=1

(−1)m−1
+∞∑
k=0

h̄(κ∗
mab†

m,k + κma†bm,k ). (26)

Here, the wave vector k takes only positive values that de-
fine a unidirectional propagation of the microwave fields in
either of the two feedlines, as shown in Fig. 2(b). The phase
factor ±1 in the system-bath interaction takes into account

FIG. 2. Schematic of a necklace-type λ/2 resonator. Here, an
open-circuited λ/2 resonator (i.e., the system) is directly coupled to
two transmission-line waveguides (i.e., the baths) at the two ends,
respectively. Each of the baths accommodates only one unidirec-
tional propagating field. We use different colors for the two baths
to emphasize that they are coupled to the opposite voltage antinodes
of the system.

the opposite voltage at the two ends of the resonator for the
fundamental normal mode. This convention of sign holds for
any odd modes, whereas there is no phase difference for the
even modes.

Following a similar procedure as before, we linearize the
dispersion relation around the central driving frequency

ωk = ωd + vg�k . (27)

Eventually, we obtain the Hamiltonian in terms of photon
frequencies

Hsys = h̄�a†a, (28)

Hbth =
2∑

m=1

∫ +∞

−∞
dω h̄ωb†

m,ωbm,ω, (29)

Hint =
2∑

m=1

(−1)m−1
∫ +∞

−∞
dω h̄(κ∗

mab†
m,ω + κma†bm,ω ). (30)

Following the Heisenberg equations, we describe the dynam-
ics of a, b1,ω, and b2,ω as

ȧ = −i�a − i
2∑

m=1

(−1)m−1
∫ +∞

−∞
dω κmbm,ω, (31)

ḃm,ω = −iωbm,ω + i(−1)mκ∗
ma, (32)

where m = 1, 2. We further define the input and output fields
corresponding to the two baths as

bm,in = 1√
2π

∫ +∞

−∞
dω e+iωt bm,ω, (33)

bm,out = bm,in − (−1)m√
γma. (34)

Inserting Eqs. (33) and (34) into (31) and (32), we obtain

ȧ = −i�a −
(

γ1 + γ2

2
+ γa

2

)
a +

2∑
m=1

(−1)m√
γmbm,in.

(35)
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Here, we have defined
√

γm = i
√

2πκm as before and added
the intrinsic damping of the resonator γa/2 by hand.

Equations (33)–(35) determine the scattering coefficients
of a necklace-type λ/2 resonator, which we formally define as

S11 = 〈b1,out〉
〈b1,in〉 , S21 = 〈b2,out〉

〈b1,in〉 with 〈b2,in〉 = 0, (36)

S12 = 〈b1,out〉
〈b2,in〉 , S22 = 〈b2,out〉

〈b2,in〉 with, 〈b1,in〉 = 0. (37)

That is,

S11 = 1 − γ1

i� + (
γ1+γ2

2 + γa

2

) , (38)

S21 = S12 =
√

γ1γ2

i� + (
γ1+γ2

2 + γa

2

) , (39)

S22 = 1 − γ2

i� + (
γ1+γ2

2 + γa

2

) . (40)

We recall that the scattering coefficients of a necklace-type
λ/2 resonator derived in the transfer matrix approach are
written as [54]

S11 ≈ 1 −
ωr

Qe,1

i� + (
ωr

2Qi
+ ωr

2Qe,1
+ ωr

2Qe,2

) , (41)

S21 = S12 ≈
ωr√

Qe,1Qe,2

i� + (
ωr

2Qi
+ ωr

2Qe,1
+ ωr

2Qe,2

) , (42)

S22 ≈ 1 −
ωr

Qe,2

i� + (
ωr

2Qi
+ ωr

2Qe,1
+ ωr

2Qe,2

) . (43)

Comparing Eqs. (38)–(40) with (41)–(43), we obtain the fol-
lowing relations between the damping rates and the quality
factors:

γa = ωr

Qi
, γ1 = ωr

Qe,1
, γ2 = ωr

Qe,2
. (44)

These relations also hold for a necklace-type λ/4 resonator
but with different definitions of the resonant frequency and
the quality factors.

C. Cross-type λ/2 resonators

The cross-type λ/2 resonator is schematically shown in
Figs. 3(a) and 3(b), where the intraresonator field a is coupled
to two spatially separated baths b1 and b2 on the left and right
sides, respectively. Here, we assume that the two feedlines are
coupled to the same voltage antinode of the bare resonator.
Compared with the necklace-type λ/2 resonator, the major
difference of the composite Hamiltonian lies in the system-
bath interaction

Hint =
2∑

m=1

+∞∑
k=0

h̄(κ∗
mab†

m,k + κma†bm,k ). (45)

Consequently, the input-output relations are similar as before:

ȧ = −i�a −
(

γ1 + γ2

2
+ γa

2

)
a −

2∑
m=1

√
γmbm,in, (46)

bm,out = bm,in + √
γma, (47)

FIG. 3. Schematic of a cross-type λ/2 resonator. Here, a short-
circuited λ/2 resonator (i.e., the system) is directly coupled to two
transmission-line waveguides (i.e., the baths) at the same voltage
antinode. Each of the baths accommodates only one unidirectional
propagating field.

where m = 1, 2. Here, we have also added the intrinsic damp-
ing γa/2 by hand. The scattering coefficients of a cross-type
λ/2 resonator are

S11 = 1 − γ1

i� + (
γ1+γ2

2 + γa

2

) , (48)

S21 = S12 = −
√

γ1γ2

i� + (
γ1+γ2

2 + γa

2

) , (49)

S22 = 1 − γ2

i� + (
γ1+γ2

2 + γa

2

) . (50)

We recall that the scattering coefficients of a cross-type λ/2
resonator, which have been derived by using the classical
transfer matrix approach [54], as

S11 ≈ 1 −
ωr

Qe,1

i� + (
ωr

2Qi
+ ωr

2Qe,1
+ ωr

2Qe,2

) , (51)

S21 = S12 ≈
ωr√

Qe,1Qe,2

i� + (
ωr

2Qi
+ ωr

2Qe,1
+ ωr

2Qe,2

) , (52)

S22 ≈ 1 −
ωr

Qe,2

i� + (
ωr

2Qi
+ ωr

2Qe,1
+ ωr

2Qe,2

) . (53)

Comparing Eqs. (48)–(50) with (51)–(53), we obtain the
following relations between the decay rates and the quality
factors:

γa = ωr

Qi
, γ1 = ωr

Qe,1
, γ2 = ωr

Qe,2
. (54)

D. Comparison with the transfer matrix approach

So far, we have considered the scattering coefficients of a
general and ideal superconducting microwave resonator. Gen-
erally speaking, a superconducting microwave resonator is a
two-port system. The key procedure to perform input-output
analysis is to describe the fields measured at the two ports by
two separate baths. This separation is natural for necklace-
and cross-type resonators, where the baths are already sepa-
rated in space [43,44]. However, analyzing the input-output
relation of a hanger-type resonator is not a trivial task because
the bare resonator is coupled to one single bath in space. Here,
we start the analysis from the wave-vector space. We linearize
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the dispersion relation of the waveguide around the frequency
of interest [22], and transform the Hamiltonian from the
wave-vector space to the frequency space with two separated
baths. Effectively, we artificially separate the single physical
bath into two independent baths with opposite propagation
directions, and perform input-output analysis thereafter. Once
we obtain the input-output relation, the scattering coefficients
can be readily calculated by taking the mean value of the
field operators. Depending on the specific geometry of the
system, one may use Eqs. (17) and (18) for hanger-type res-
onators, or in Eqs. (36) and (37) for necklace- or cross-type
resonators.

Compared with the tedious calculations in the transfer
matrix approach [54], the system-bath approach provides a
shortcut to the same analytical result. This advantage orig-
inates from a high-level abstraction of the system, which
describes a circuit with only a few parameters and assumes
the validity of the Born and Markov approximations [59].
However, this convenience comes with the drawback that it
does not relate the results directly to the circuit parameters.
Although this is not an issue for characterization purposes,
it causes convenience for the circuit design. Given a bunch
of circuit parameters, one needs to follow the transfer matrix
approach to calculate the abstract parameters, such as the
resonant frequency and coupling strength, before using the
system-bath approach. If we consider further the experimental
imperfections in the system, the system-bath approach can be
rather complicated. For example, to take circuit asymmetry
into consideration one may consider coupling the composite
system to an even larger bath which accommodates both the
ideal input and output fields and the impedance-mismatch-
induced reflection fields. In these regards, a combination
of the transfer matrix and the system-bath approaches may
be a more practical choice for describing a practical res-
onator or a resonator network introduced shortly. Here, the
former is useful for abstracting the circuit parameters and
capturing the circuit imperfections, while the latter is con-
venient for analyzing the ideal scattering responses of the
system.

III. COUPLING MULTIPLE HANGER-TYPE RESONATORS
TO A LONG WAVEGUIDE

A. General scattering coefficients

Let us now consider a more complex system with N
hanger-type resonators, denoted by a j , that are side coupled

to a 1D waveguide, as schematically shown in Figs. 4(a) and
4(b). Following the discussions in Sec. II C, we separate the
left- and right-propagating fields in the waveguide and de-
scribe them as two independent baths. The total Hamiltonian
is

Hsys =
N∑

j=1

h̄� ja
†
j (t )a j (t ), (55)

Hbth =
∫ +∞

−∞
dω h̄ω[l†

ω(t )lω(t ) + r†
ω(t )rω(t )], (56)

Hint =
N∑

j=1

∫ +∞

−∞
dω h̄{κ∗

j a j (t )l†
ω[t + ( j − 1)τ ]

+ κ∗
j a j (t )r†

ω[t − ( j − 1)τ ] + c.c.}. (57)

Here, we explicitly included the time delay in the system-bath
interaction because the resonators are coupled to the waveg-
uide at different positions. The ± sign of the delay in lω and
rω originates from their opposite propagating directions in
the waveguide. Following the derivations in Appendix B, we
obtain the following relation that describes the dynamics of
the jth intraresonator field:

ȧ j = −i� ja j − γa, j

2
a j −

N∑
j′=1

√
γ j (

√
γ j′ )

∗ei| j′− j|θ a j′ (t )

− √
γ j lin(t )e−i( j−N )θ − √

γ jrin(t )ei( j−1)θ . (58)

Here, θ = ωdτ with ωd being the central driving frequency
and τ the time delay of the propagating field traveling between
two adjacent resonators. The operators lin and rin are, respec-
tively, defined as the input fields at the right- and left-hand
sides of the waveguide, which propagate in opposite direc-
tions, as shown in Fig. 4(b). Correspondingly, we respectively
define lout and rout as the output fields at the left- and right-
hand sides of the waveguide

lout = ei(N−1)θ lin +
N∑

j′=1

(
√

γ j′ )
∗ei( j′−1)θ a j, (59)

rout = ei(N−1)θ rin +
N∑

j′=1

(
√

γ j′ )
∗ei(N− j′ )θa j . (60)

With these definitions, the scattering coefficients of the res-
onator chain can be readily obtained by using the expression
in Eqs. (17) and (18). For example, for the simplest case with
N = 2 we have

S11 = − γ1(i�2 + γa,2) + ei2θγ2(i�1 + γa,1) + γ1γ2(1 − ei2θ )

(i�1 + γa,1)(i�2 + γa,2) + γ1(i�2 + γa,2) + γ2(i�1 + γa,1) + γ1γ2(1 − ei2θ )
, (61)

S21 = S12 = eiθ (i�1 + γa,1)(i�2 + γa,2)

(i�1 + γa,1)(i�2 + γa,2) + γ1(i�2 + γa,2) + γ2(i�1 + γa,1) + γ1γ2(1 − ei2θ )
, (62)

S22 = − ei2θγ1(i�2 + γa,2) + γ2(i�1 + γa,1) + γ1γ2(1 − ei2θ )

(i�1 + γa,1)(i�2 + γa,2) + γ1(i�2 + γa,2) + γ2(i�1 + γa,1) + γ1γ2(1 − ei2θ )
. (63)

This result is equivalent to that reported in Refs. [20,23], but with different methods in the derivation.
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FIG. 4. Schematic of a chain of N hanger-type λ/4 resonators
(i.e., the system) that are side coupled to a 1D transmission-line
waveguide (i.e., the bath). The bath accommodates both left- and
right-propagating fields. We denote the time delay between a propa-
gating photon and two adjacent resonators as a phase factor θ .

B. Simulation results

For large N , it is rather cumbersome to derive an ana-
lytical expression for the scattering coefficients. Fortunately,
efficient numerical algorithms exist if we simplify the discus-
sion to � j ≡ � and γa, j ≡ γa, as discussed in Appendix C.
Here, we perform several numerical simulations to cross-
check the analytical results derived above. The numerical
simulation is performed by multiplying the transfer matrices
of different circuit components at different frequencies. The
parameters are chosen as follows: real propagating constant
α = 5.0 × 10−3 m−1, phase velocity vph = 1.35 × 108 m/s,
characteristic impedance Z0 = 50 �, coupling capacitor C =
1.0 × 10−14 F. The length of each hanger-type λ/4 resonator
is l = 5.0 × 10−3 m. Following the transfer matrix approach,
we find the resonant frequency of each individual resonator
as ωr = 2π × 6.659 GHz, and also the coupling and internal
decay rates γ = 5.83 MHz and γa = 1.33 MHz [54].

In Fig. 5(a), we vary the phase difference θ , i.e., the
distance between neighboring resonators, and calculate the
scattering coefficients for N = 2. On the one hand, the ab-
solute value of the reflection and transmission amplitudes
exhibits an asymmetric Fano resonance line shape for θ 
=
nπ/2 with n = 0, 1, . . . [23]. Depending on whether θ = nπ

or nπ + π/2, we obtain a symmetric Lorentzian spectrum,
also known as the Breit-Wigner resonance [60], or a sym-
metric Fano spectrum [61], respectively. These line shapes
can be better seen in Fig. 5(d), where we fix θ to several
values. On the other hand, a transition between the symmetric
and asymmetric line spectra occurs at θ = nπ/2. As can be
seen in the corresponding phase diagrams, the transition is
smooth at θ = nπ . However, an abrupt π -phase shift happens
for every θ = nπ + π/2, which distinguishes the symmetric
Lorentzian spectrum from the symmetric Fano spectrum. With
the increase of N , the transition between the symmetric and
asymmetric line shapes occurs more frequently at θ = nπ +
2n′π/2N for n = 0, 1, . . . and n′ = 1, . . . , n − 1, as shown in
Figs. 5(a)–5(c). Correspondingly, the sudden π -phase change
happens at θ = (2n + 1)π/2N .

We also compare the reflection line shape for differ-
ent N and θ in Fig. 5(d). It can be clearly seen that the
phase factor θ determines whether a broadening or narrow-
ing of the spectrum is to be observed with an increasing
N . For example, the full width at half-maximum (FWHM)
increases monotonically with N for θ = 0, or equivalently
2π , while it decreases monotonically for θ = π/2. These
observations indicate that, by coupling multiple hanger-type
resonators alongside a waveguide, one can engineer the scat-
tering coefficients of the composite system and obtain an
effective microwave resonator. Depending on the parame-
ter θ , this photonic-crystal-like resonator can have a huge
enhancement or reduction of the Q factors compared with
each individual hanger-type resonator, which provides a
new freedom to the design of superconducting microwave
resonators.

FIG. 5. Scattering coefficients of a chain of N hanger-type λ/4 resonators, which are side coupled to a 1D waveguide. (a) For N = 2, the
spectrum periodically changes from a symmetric to an asymmetric line shape with θ . The symmetric line shapes are obtained at θ = nπ/2,
while there exits a sudden π -phase change for every θ = nπ + π/2. (b), (c) With the increase of N , the change of line shape happens more
frequently with a varying θ . Here, sudden π -phase changes occur at θ = (2n + 1)π/2N for n = 1, . . . , N − 1. (d) The reflection responses
for θ = 0, π/4, π/2 (top, middle,bottom) and N = 2, 3, 4 (red, green, blue). The black dashed curves indicate the results derived in the
system-bath approach, while the solid ones by using ABCD matrices. The resonant frequency ωr is calculated by using the method introduced
in Ref. [54], which is shifted by 1 MHz for a better fitting.
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FIG. 6. Schematic of a chain of coupled necklace-type λ/2 res-
onators (i.e., the system), which is coupled to two transmission-line
waveguides (i.e., the baths) at the two ends, respectively. Each of
the baths accommodates only one unidirectional propagating field.
We use different colors for the two baths to emphasize that they are
coupled to the opposite voltage antinodes of the system.

IV. COUPLING MULTIPLE NECKLACE-TYPE
RESONATORS IN A CHAIN

A. General scattering coefficients

Aside from coupling multiple hanger-type resonators to a
1D waveguide, one may also consider coupling N necklace-

type resonators with each other and form a 1D chain of
resonators, as schematically shown in Figs. 6(a) and 6(b). The
total Hamiltonian reads as

Hsys =
N∑

j=1

h̄� ja
†
j a j − h̄g j (a

†
j a j+1 + a ja

†
j+1), (64)

Hbth =
2∑

m=1

∫ +∞

−∞
dω h̄ωb†

m,ωbm,ω, (65)

Hint =
∫ +∞

−∞
dω h̄(κ∗

1 a1b†
1,ω − κ∗

2 aN b†
2,ω + c.c.), (66)

where gj is the coupling strength between the jth and ( j +
1)th resonators. The input-output relations can be readily ob-
tained by following the standard procedure

b1,out = b1,in + √
γ1a1, (67)

b2,out = b2,in − √
γ2aN , (68)

while the dynamics of the jth intraresonator field reads as

ȧ j =

⎧⎪⎨
⎪⎩

−i�1a1 + ig1a2 − (
γ1

2 + γa,1

2

)
a1 − √

γ1b1,in for j = 1;

−i� ja j + i(g j−1a j−1 + g ja j+1) − γa, j

2 a j for 1 < j < N ;

−i�N aN + igN−1aN−1 − (
γ2

2 + γaN
2

)
aN + √

γ2b2,in for j = N.

(69)

Similar to the single-resonator case, the scattering co-
efficients can be obtained by calculating the mean-field
steady-state solution of Eqs. (67)–(69). For example, for the
simplest case with N = 2, we have

S11 = 1 − γ1
[
i�2 + (

γ2

2 + γa,2

2

)]
[
i�1 + (

γ1

2 + γa,1

2

)][
i�2 + (

γ2

2 + γa,2

2

)] + g2
1

,

(70)

S21 = S12 = −ig1
√

γ1γ2[
i�1 + (

γ1

2 + γa,1

2

)][
i�2 + (

γ2

2 + γa,2

2

)] + g2
1

,

(71)

S22 = 1 − γ2
[
i�1 + (

γ1

2 + γa,1

2

)]
[
i�1 + (

γ1

2 + γa,1

2

)][
i�2 + (

γ2

2 + γa,2

2

)] + g2
1

.

(72)

This result has been derived and experimentally demonstrated
in our previous work [62].

B. Tight-binding model

To get physical insight beyond the numerical solutions for
large N , we assume that � j ≡ �, g j ≡ g, and γa, j ≡ γa. In
this way, the resonator chain can be described as a bosonic
tight-binding model. For a finite number of resonators N , we

define the following collective modes of the system:

ck =
N∑

j=1

√
2

N + 1
sin

(
πk j

N + 1

)
a j . (73)

This replacement of variable is similar to the definition of
magnon in spin systems [63]. It allows us to rewrite Eqs. (67)–
(69) in a more compact form:

b1,out = b1,in +
N∑

k=1

√
γ1,kck, (74)

b2,out = b2,in +
N∑

k=1

(−1)k√γ2,kck, (75)

ċk = −
(

i�k + γa

2

)
ck − [

√
γ1,kb1,in + (−1)k√γ2,kb2,in]

− 1

2

N∑
k′=1

[
√

γ1,kγ1,k′ + (−1)k+k′√
γ2,kγ2,k′ ]ck′ . (76)

Here, �k = � − 2g cos[kπ (N + 1)] and
√

γm,k =√
2γm/(N + 1) sin[kπ/(N + 1)]. With these input-output

relations, one can readily obtain the following analytical
expressions for the scattering coefficients (see Appendix D
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for detail):

S11 = 1 −
(

1 + 1
2

∑N
k=1

γ2,k

i�k+ γa
2

)(∑N
k=1

γ1,k

i�k+ γa
2

)
− 1

2

(∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)2

(
1 + 1

2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)2 , (77)

S21 = S12 = −
(∑N

k=1
(−1)k√γ1,kγ2,k

i�k+ γa
2

)
(

1 + 1
2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)2 , (78)

S22 = 1 −
(

1 + 1
2

∑N
k=1

γ1,k

i�k+ γa
2

)(∑N
k=1

γ2,k

i�k+ γa
2

)
− 1

2

(∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)2

(
1 + 1

2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)2 . (79)

We note that the definition of collective modes in Eq. (73) is valid for a linear chain with a finite number of microwave
resonators. Alternatively, one may also consider an N-resonator loop or an infinitely long chain with N → ∞. In this situation,
the collective modes should be defined in a slightly different way:

ck =
N∑

j=1

√
1

N
exp

(
i2πk j

N

)
a j . (80)

Here, �k = � − 2g cos(2kπ/N ),
√

γ1,k = √
γ1/N exp[−i2πk/N], and

√
γ2,k = √

γ2/N . The input-output relations are

b1,out = b1,in +
N∑

k=1

√
γ1,kck, (81)

b2,out = b2,in −
N∑

k=1

√
γ2,kck, (82)

ċk = −
(

i�k + γa

2

)
ck − [

√
γ1,kb1,in − √

γ2,kb2,in] − 1

2

N∑
k′=1

[
√

γ1,kγ1,k′ + √
γ2,kγ2,k′ ]ck′ , (83)

and the scattering coefficients read as

S11 = 1 −
(

1 + 1
2

∑N
k=1

γ2,k

i�k+ γa
2

)(∑N
k=1

γ1,k

i�k+ γa
2

)
− 1

2

(∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)2

(
1 + 1

2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)2 , (84)

S21 = S12 =
(∑N

k=1

√
γ1,kγ2,k

i�k+ γa
2

)
(

1 + 1
2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)2 , (85)

S22 = 1 −
(

1 + 1
2

∑N
k=1

γ1,k

i�k+ γa
2

)(∑N
k=1

γ2,k

i�k+ γa
2

)
− 1

2

(∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)2

(
1 + 1

2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)2 . (86)

C. Simulation results

As a cross-check of the analytical results derived above,
we performed several numerical simulations with the same
parameters as before. Similarly, the numerical simulation is
performed by multiplying the transfer matrices of different
circuit components at different frequencies. However, the
resonator length is extended to l = 1.0 × 10−2 m for λ/2
resonators. Following the transfer matrix approach, we find
the resonant frequency of each individual resonator as ωr =
2π × 6.659 GHz, and also the coupling and internal decay
rates γ = 11.68 MHz and γa = 1.33 MHz.

In Fig. 7(a), we calculate the scattering coefficients with a
varying number of resonators N . The number of peaks (dips)
increases with N as expected. However, the spread of the

resonant frequencies also scales with N but saturates to a
finite value. The bandwidth is approximately four times of the
coupling strength, g ≈ 2π × 44 MHz, which is calculated by
using the method introduced in Ref. [54]. These phenomena
can be readily understood in the dispersion relation of the
collective fields ck . A more detailed inspection of the spectrum
around ωr indicates that the photons at the central resonant
frequency can be fully transmitted or reflected, depending
on the oddness and evenness of N , as shown in Fig. 7(b).
This observation indicates a possible application that a chain
of coupled resonators can be used as a single-photon switch
[64,65]. Moreover, we observe that the FWHM of the line
shape decreases monotonically with N , as shown in Fig. 7(c).
It indicates the existence of a high-Q mode in an array of
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FIG. 7. Scattering coefficients of a chain of coupled necklace-type λ/4 resonators, which is coupled to two feedlines at the two ends.
(a) With the increase of N , there emerges the same number of resonance dips and peaks in the reflection and transmission responses,
respectively. The spread of the peaks (dips) saturates at a value which is equal to 4 times of the coupling strength. (b) A closer inspection
of the spectrum around the central resonant frequency indicates that the incident photons can be fully reflected or transmitted depending on the
parity of N . The FWHM of the central peak also decreases monotonically with N . (c) The reflection and transmission responses for N = 2, 3, 4
(red, green, blue), respectively. The black dashed curves indicate the results derived in the system-bath approach, while the solid ones by using
ABCD matrices. The resonant frequency ωr is calculated by using the method introduced in Ref. [54], which is shifted by 1 MHz for a better
fitting.

coupled necklace-type resonators. Similar results in optics
have been theoretically predicted by using the transfer matrix
method and experimentally observed [26,66–68]. Together
with the results in Sec. III, we conclude that the interactions
between resonators can fundamentally change the scattering
coefficients of a bare resonator. It is possible to achieve a
high-Q mode by coupling multiple low-Q resonators. The
resulting system is called the coupled resonator optical waveg-
uide (CROW) in optics [42], which is one of the prevalent
ways for making a high-Q photonic crystal resonator [69,70].

V. CONCLUSIONS AND OUTLOOK

In conclusion, we provide a comprehensive study of the
scattering coefficients of superconducting microwave res-
onators in the quantum perspective. By transforming the
Hamiltonian from the wave-vector space to the frequency
space, we report a unified approach for input-output analysis
that applies to a general microwave resonator. The corre-
sponding scattering coefficients are consistent with those
derived in the classical transfer matrix approach [54]. We
also generalize our method to a resonator network, where
multiple hanger- or necklace-type resonators are coupled in
a chain with possible time delays. We reveal several interest-
ing photon transport phenomena in such photonic-crystal-like
systems and find consistency with the results reported in
quantum optics. These results also indicate the possibility
to generate high-quality modes from coupled low-quality
resonators.

As a closing remark, we note that dephasing of microwave
resonators can also be incorporated in the described formal-
ism, which is, however, often neglected for linear resonators in
the literature. To describe dephasing, we write the system-bath

interaction in the form [71–75]

Hint =
∫ +∞

−∞
dω h̄a†a(κ∗

φb†
ω + κφbω ). (87)

Here, b describes a general phase-damping bath, which may
originate from the tunneling of atoms in the substrate between
two bistable positions, or some parasitic source of mechanical
modes, for example, the vibration of a dry cryostat. Then, the
input-output relation can be readily derived by following the
same procedure as described before. The result is

ȧ = −i�a − γφ

2
a − √

γφ (abin − b†
ina), (88)

where
√

γφ = i
√

2πκφ . We note that the input field bin =∫ +∞
−∞ dω e+iωt bω(0)/

√
2π does not commute with the in-

traresonator field. However, the combined operators bin +
(
√

γφ )∗a†a/2 and b†
in + √

γφa†a/2 commute with all the sys-
tem operators [72], such that we rewrite Eq. (88) as

ȧ = −i�a − √
γφa(bin − b†

in ). (89)

This result indicates that the input field b causes a random
jittering to the resonant frequency of the intraresonator field a
because any observation of the operator (bin − b†

in ) is a purely
imaginary number. Even though it conserves the energy of the
system, the dephasing effect destroys the quantum coherence
stored in the resonator and broadens the line shape of the
scattering responses in a similar way of energy dissipation.
One thus must resort to some extra measurements, for exam-
ple, Ramsey interferometry, to distinguish the contributions
of energy decay and dephasing from the line shape, instead
of simply neglecting the dephasing effect. Today, high-Q su-
perconducting microwave resonators with Qi > 106 can be
routinely made in the laboratory [76], while it remains a chal-
lenge for a decade to improve Qi further. We anticipate that a
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careful characterization of the dephasing rate may provide im-
portant insight on whether the state-of-the-art resonators are
limited by energy dissipation or dephasing. This knowledge
should pave a significant step towards making ultra-high-Q
superconducting microwave resonators in the near future.

The Python codes for generating and analyzing the data of
this study are available online [77].
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APPENDIX A: OUTLINE OF THE INPUT-OUTPUT
ANALYSIS

We model a microwave resonator of any type as a compos-
ite system with the following Hamiltonian [59]:

Hsys =
∑

n

h̄ωna†
nan, (A1)

Hbth =
∑

m

h̄
∫ +∞

−∞
dω ωb†

m,ωbm,ω, (A2)

Hint =
∑
m,n

h̄
∫ +∞

−∞
dω(κ∗

m,nanb†
m,ω + κm,na†

nbm,ω ). (A3)

Following the Heisenberg equation, the time evolution of the
intraresonator field an as well as the bath field bm,ω can be
readily written as

ȧn = −iωnan − i
∑

m

∫ +∞

−∞
dω κm,nbm, (A4)

l̇m = −iωlm − i
∑

n

κ∗
m,nan. (A5)

By inserting the formal solution of Eq. (A5),

bm,ω(t ) = e−iω(t−t0 )bm,ω(t0)

− i
∑

n

κ∗
m,n′

∫ t

t0

dt ′e−iω(t−t ′ )an′ (t ′), (A6)

into Eq. (A4), we obtain

ȧn = − iωnan − i
∑

m

κm,n

∫ +∞

−∞
dω e−iω(t−t0 )bm,ω(t0)

−
∑
m,n′

κm,nκ
∗
m,n′

∫ +∞

−∞
dω

∫ t

t0

dt ′e−iω(t−t ′ )an′ (t ′). (A7)

We recall the property that∫ +∞

−∞
dω e−iω(t−t0 ) = 2πδ(t − t0) (A8)

and define the input field, i.e., the noise operator in quantum
Langevin equation, as

bm,in = 1√
2π

∫ +∞

−∞
dω e−iω(t−t0 )bm,ω(t0), (A9)

the dynamics of an can be simplified as

ȧn = −iωnan − i
∑

m

√
2πκm,nbm,in −

∑
m,n′

πκm,nκ
∗
m,n′an′ .

(A10)

Alternatively, the formal solution of Eq. (A5) may be writ-
ten as

bm,ω(t ) = e−iω(t−t1 )bm,ω(t1)

+ i
∑

n

κ∗
m,n′

∫ t1

t
dt ′e−iω(t−t ′ )an′ (t ′), (A11)

which gives

ȧn = −iωnan − i
∑

m

κm,n

∫ +∞

−∞
dω e−iω(t−t1 )bm,ω(t1)

+
∑
m,n′

κm,nκ
∗
m,n′

∫ +∞

−∞
dω

∫ t1

t
dt ′e−iω(t−t ′ )an′ . (A12)

We defined the output field as

bm,out = 1√
2π

∫ +∞

−∞
dω e−iω(t−t1 )bm,ω(t0), (A13)

such that the dynamics of an can be equivalently written as

ȧn = −iωnan − i
∑

m

√
2πκm,nbm,out +

∑
m,n′

πκm,nκ
∗
m,n′an′ .

(A14)

Combining Eqs. (A9) and (A10) and (A13) and (A14), we
obtain the so-called input-output relation [55,56]

ȧn = −iωnan −
∑

m

√
γm,nbm,in

− 1

2

∑
m,n′

√
γm,n(

√
γm,n′ )∗an′ − γan

2
an, (A15)

bm,out = bm,in +
∑

n′
(
√

γm,n′ )∗an′ . (A16)

Here, we have defined
√

γm,n = i
√

2πκm,n and (
√

γm,n)∗ =
−i

√
2πκ∗

m,n and added the intrinsic damping of the intrares-
onator modes by hand.

APPENDIX B: A CHAIN OF HANGER-TYPE RESONATORS
WITH TIME DELAY

We consider a composite system where N hanger-type res-
onators are side coupled to a 1D waveguide. The system-bath
interaction reads as

Hint =
N∑

j=1

∫ +∞

−∞
dω h̄

{
e+i( j−1)ωτ κ∗

j a j l
†
ω + e−i( j−1)ωτ κ ja

†
j lω

+ e−i( j−1)ωτ κ∗
j a jr

†
ω + e+i( j−1)ωτ κ ja

†
j rω

}
. (B1)
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Here, we encode the information of the distance between
different hanger-type resonators into a phase delay lω →
e−i( j−1)ωτ lω, rω → e+i( j−1)ωτ rω for j = 1, . . . , N . Following

the same procedure in Appendix A, we describe the dynamics
of the intraresonator field a j and the two bath fields lω and rω

as

ȧ j = −i� ja j − iκ j

∫ +∞

−∞
dω e+iω(t−t0 )ei( j−1)ωτ lω(t0) −

∑
j′

κ jκ
∗
j′

∫ +∞

−∞
dω

∫ t

t0

dt ′e+iω(t−t ′ )ei( j− j′ )ωτ an′ (t ′)

− iκ j

∫ +∞

−∞
dω e−iω(t−t0 )ei( j−1)ωτ rω(t0) −

∑
j′

κ jκ
∗
j′

∫ +∞

−∞
dω

∫ t

t0

dt ′e−iω(t−t ′ )ei( j− j′ )ωτ an′ (t ′), (B2)

lω(t ) = e−iω(t−t0 )lω(t0) − i
∑

n

e−i( j−1)ωτ κ∗
m,n′

∫ t

t0

dt ′e−iω(t−t ′ )an′ (t ′), (B3)

rω(t ) = e−iω(t−t0 )rω(t0) − i
∑

n

e−i( j−1)ωτ κ∗
m,n′

∫ t

t0

dt ′e−iω(t−t ′ )an′ (t ′). (B4)

We define the input fields as lin = (1/
√

2π )
∫ +∞
−∞ e−iω(t−t0 )lω(t0)dω and rin = (1/

√
2π )

∫ +∞
−∞ e−iω(t−t0 )rω(t0)dω, such that

Eq. (B2) can be written in a more compact form

ȧ j = − i� ja j − 2πκ jκ
∗
j a j − i

√
2πκ j lin[t + ( j − 1)τ ] − i

√
2πκ jrin[t − ( j − 1)τ ]

− 2π
∑
j′> j

κ jκ
∗
j′a j′ [t + ( j − j′)τ ] − 2π

∑
j′< j

κ jκ
∗
j′a j′ [t + ( j′ − j)τ ]. (B5)

Here, a technical problem emerges that the time evolution of aj involves operators at different times. To eliminate this time
dependence, we note that the above analysis is performed in the rotating frame at the driving frequency ωd. Thus, a time delay
of τ in the operators may be fairly approximated by a phase factor exp(iθ ) with θ = ωdτ . In this regard, we rewrite Eq. (B5) as

ȧ j = − i� ja j − 2πκ jκ
∗
j a j − i

√
2πκ j lin(t )e−i( j−1)θ − i

√
2πκ j rin(t )ei( j−1)θ

− 2π
∑
j′> j

κ jκ
∗
j′e

( j′− j)θa j′ (t ) − 2π
∑
j′< j

κ jκ
∗
j′e

( j− j′ )θa j′ (t ). (B6)

On the other hand, we have

ȧ j = − i� ja j − iκ j

∫ +∞

−∞
dω e+iω(t−t1 )ei( j−1)ωτ lω(t1) +

∑
j′

κ jκ
∗
j′

∫ +∞

−∞
dω

∫ t1

t
dt ′e+iω(t−t ′ )ei( j− j′ )ωτ an′ (t ′)

− iκ j

∫ +∞

−∞
dω e−iω(t−t1 )e−i( j−1)ωτ rω(t1) +

∑
j′

κ jκ
∗
j′

∫ +∞

−∞
dω

∫ t1

t
dt ′e−iω(t−t ′ )ei( j− j′ )ωτ an′ (t ′), (B7)

lω(t ) = e+iω(t−t1 )lω(t1) + i
∑

n

e−i( j−1)ωτ κ∗
m,n′

∫ t1

t
dt ′e+iω(t−t ′ )an′ (t ′), (B8)

rω(t ) = e−iω(t−t1 )rω(t1) + i
∑

n

e−i( j−1)ωτ κ∗
m,n′

∫ t1

t
dt ′e−iω(t−t ′ )an′ (t ′). (B9)

We define the output fields as lout = (1/
√

2π )
∫ +∞
−∞ e+iω(t−t1 )lω(t1)dω, rout = (1/

√
2π )

∫ +∞
−∞ e+iω(t−t1 )rω(t1)dω, and repeat the

above procedures. The result is

ȧ j = − i� ja j + 2πκ jκ
∗
j a j − i

√
2πκ j lout (t )e−i( j−1)θ − i

√
2πκ j rout (t )ei( j−1)θ

+ 2π
∑
j′< j

κ jκ
∗
j′e

( j′− j)θa j′ (t ) + 2π
∑
j′> j

κ jκ
∗
j′e

( j− j′ )θa j′ (t ). (B10)

Combining Eqs. (B6) and (B10), we obtain the input-output relations

lout = lin +
√

2πκ∗
j′

N∑
j′=1

ei( j′−1)θ a j, rout = rin +
√

2πκ∗
j′

N∑
j′=1

ei(1− j′ )θa j . (B11)

We note that the definition of input and output fields is different from that in Sec. III. To get the exact form, we redefine the
operators lin and rin as the input fields at the right and left sides of the waveguide, and lout and rout as the output fields at the left
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and right sides. In other words, we perform the transform lin → ei(N−1)θ lin, rout → e−i(N−1)θ rout. The new input-output relations
are

ȧ j = −i� ja j −
N∑

j′=1

√
γ j (

√
γ j′ )

∗ei| j′− j|θa j′ (t ) − √
γ j lin(t )e−i( j−N )θ − √

γ jrin(t )ei( j−1)θ , (B12)

lout = ei(N−1)θ lin +
N∑

j′=1

(
√

γ j′ )
∗ei( j′−1)θ a j, (B13)

rout = ei(N−1)θ rin +
N∑

j′=1

(
√

γ j′ )
∗ei(N− j′ )θa j . (B14)

Correspondingly, the scattering coefficients read as

S11 = 〈lout〉
〈rin〉 , S21 = 〈rout〉

〈rin〉 with 〈lin〉 = 0, and S12 = 〈lout〉
〈lin〉 , S22 = 〈rout〉

〈lin〉 with 〈rin〉 = 0. (B15)

For the simplicity of calculation, we define

c j =
∑
j′� j

(
√

γ j′ )
∗ei j′θa j′ , d j =

∑
j′� j

(
√

γ j′ )
∗e−i j′θa j′ , (B16)

such that the input-output relation can be written in a compact form

lout = ei(N−1)θ lin + e−iθ c1, (B17)

rout = ei(N−1)θ rin + eiNθ dN . (B18)

On the other hand, the steady-state solution of intraresonator field aj reads as(
i� j − γ j + γa, j

2

)
a j = −e−i jθ√γ jc j − e+i jθ√γ jd j − √

γ j lin(t )e−i( j−N )θ − √
γ jrin(t )ei( j−1)θ , (B19)

and thus

c j =
∑
j′� j

− γ j′

i� j′ − γ j′ +
γa j′

2

(
c j′ + e+i2 j′θd j′ + e+iNθ lin + ei(2 j′−1)θ rin

)
, (B20)

d j =
∑
j′� j

− γ j′

i� j′ − γ j′ +
γa j′

2

(
e−i2 j′θc j′ + d j′ + e+i(N−2 j′ )θ lin + e−iθ rin

)
. (B21)

In these regards, one can readily obtain the input-output relations by solving a linear equation.

APPENDIX C: NUMERICAL SOLUTION FOR A HOMOGENEOUS HANGER-TYPE-RESONATOR CHAIN

Let us now derive an analytical expression for the scattering coefficients for the special case where γ j ≡ γ , γa, j ≡ γa, � j ≡ �.
We define

c j =
∑
j′� j

(
√

γ )∗ei j′θa j′ , d j =
∑
j′� j

(
√

γ )∗e−i j′θa j′ , (C1)

such that the steady-state solution of Eq. (B19) can be written as

a j = − e−i jθ√γ

i� − γ + γa

2

c j − e+i jθ√γ

i� − γ + γa

2

d j − e−i( j−N )θ√γ

i� − γ + γa

2

lin − ei( j−1)θ√γ

i� − γ + γa

2

rin. (C2)

By combining Eqs. (C1) and (C2), we obtain a set of linear equations

xe−i2θ c1 + (x + 1)d1 + x(e+i(N−2)θ lin + e−iθ rin ) = 0, (C3)

xe−i2( j+1)θ c j+1 − d j + (x + 1)d j+1 + x(e+i(N−2( j+1))θ lin + e−iθ rin ) = 0, (C4)

(x + 1)c j − c j+1 + xe+i2 jθ d j + x(e+iNθ lin + ei(2 j−1)θ rin ) = 0, (C5)

(x + 1)cN + xe+i2Nθ dN + x(e+iNθ lin + ei(2N−1)θ rin ) = 0, (C6)
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where we have defined x = γ /(i� − γ + γa/2) for convenience. Next, we decouple the variables c j and d j and obtain the
following two sets of linear equations:

− (1 + 2x)

x
c1 + (1 + x)

x
c2 − eiNθ lin − eiθ rin = 0, (C7)

(x + 1)ei2θ

x
c j−1 − (1 + 2x + ei2θ )

x
c j + (1 + x)

x
c j+1 + eiNθ (ei2θ − 1)lin = 0, j = 2, . . . , N − 1 (C8)

(x + 1)ei2θ

x
cN−1 − (1 + 2x + ei2θ )

x
cN + eiNθ (ei2θ − 1)lin = 0, (C9)

− (1 + ei2θ + 2x)

x
d1 + ei2θ (x + 1)

x
d2 + (eiθ − e−iθ )rin = 0, (C10)

(1 + x)

x
d j−1 − (1 + ei2θ + 2x)

x
d j + ei2θ (x + 1)

x
d j+1 + (eiθ − e−iθ )rin = 0, j = 2, . . . , N − 1 (C11)

(1 + x)

x
dN−1 − (1 + 2x)

x
dN − e−iNθ lin − e−iθ rin = 0. (C12)

In the matrix form Ax = 0, the above equations indicate that A is tridiagonal such that x can be efficiently solved by using the
so-called Thomas or TDMA algorithm. That is cN = zN , c j = z j − y jc j+1 for j = N − 1, . . . , 1, where

y j =
{

− 1+x
1+2x , j = 1

− 1+x
(1+2x+ei2θ )+y j−1(1+x)ei2θ , j = 2, . . . , N − 1 , z j =

⎧⎨
⎩− x(eiNθ lin+eiθ rin )

1+2x , j = 1

− xeiNθ (1−ei2θ )lin−z j−1(1+x)ei2θ

(1+2x+ei2θ )+y j−1(1+x)ei2θ , j = 2, . . . , N − 1.
(C13)

Or, d1 = zN , dN− j+1 = z j − y jdN− j for j = N − 1, . . . , 1, where

y j =
{

− 1+x
1+2x , j = 1

− 1+x
(1+2x+ei2θ )+y j−1(1+x)ei2θ , j = 2, . . . , N − 1 , z j =

⎧⎨
⎩

− x(e−iNθ lin+e−iθ rin )
1+2x , j = 1

− x(e−iθ−eiθ )rin−z j−1(1+x)ei2θ

(1+2x+ei2θ )+y j−1(1+x)ei2θ , j = 2, . . . , N − 1.
(C14)

APPENDIX D: A CHAIN OF NECKLACE-TYPE RESONATORS WITH TWO BOUNDARY CONDITIONS

We consider a chain of necklace-type resonators. For hard-wall boundary conditions, we define

d1 =
N∑

k′=1

√
γ1,k′ck′ , d2 =

N∑
k′=1

(−1)k′√
γ2,k′ck′ , (D1)

such that, for steady-state solutions, we have

ck = −
1
2
√

γ1,kd1 + (−1)k

2
√

γ2,kd2 + √
γ1,kb1,in + (−1)k√γ2,kb2,in

i�k + γa

2

. (D2)

We note that ck is defined as the collective mode of the resonator chain. Combining Eqs. (D1) and (D2), we obtain

d1 = −
N∑

k=1

1
2γ1,kd1 + (−1)k

2
√

γ1,kγ2,kd2 + γ1,kb1,in + (−1)k√γ1,kγ2,kb2,in

i�k + γa

2

, (D3)

d2 = −
N∑

k=1

(−1)k

2
√

γ1,kγ2,kd1 + 1
2γ2,kd2 + (−1)k√γ1,kγ2,kb1,in + γ2,kb2,in

i�k + γa

2

. (D4)

The solutions of d1 and d2 read as

d1 = −

[(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)(∑N
k=1

γ1,k

i�k+ γa
2

)
− 1

2

(∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)2
]

b1,in +
(∑N

k=1
(−1)k√γ1,kγ2,k

i�k+ γa
2

)
b2,in(

1 + 1
2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)2 , (D5)

d2 = −

(∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)
b1,in +

[(
1 + 1

2

∑N
k=1

γ1,k

i�k+ γa
2

)(∑N
k=1

γ2,k

i�k+ γa
2

)
− 1

2

(∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)2
]

b2,in(
1 + 1

2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

(−1)k√γ1,kγ2,k

i�k+ γa
2

)2 . (D6)

Thus, the input-output relations can be readily obtained by inserting d1 and d2 into Eqs. (A15) and (A16).
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For periodic boundary conditions, we define

d1 =
N∑

k′=1

√
γ1,k′ck′ , d2 = −

N∑
k′=1

√
γ2,k′ck′ , (D7)

such that

ck = −
1
2
√

γ1,kd1 − 1
2
√

γ2,kd2 + √
γ1,kb1,in − √

γ2,kb2,in

i�k + γa

2

. (D8)

Combining Eqs. (D7) and (D8), we obtain

d1 = −
N∑

k=1

1
2γ1,kd1 − 1

2
√

γ1,kγ2,kd2 + γ1,kb1,in − √
γ1,kγ2,kb2,in

i�k + γa

2

, (D9)

d2 = −
N∑

k=1

− 1
2
√

γ1,kγ2,kd1 + 1
2γ2,kd2 − √

γ1,kγ2,kb1,in + γ2,kb2,in

i�k + γa

2

. (D10)

The solutions of d1 and d2 read as

d1 =
−

[(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)(∑N
k=1

γ1,k

i�k+ γa
2

)
− 1

2

(∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)2
]

b1,in +
(∑N

k=1

√
γ1,kγ2,k

i�k+ γa
2

)
b2,in(

1 + 1
2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)2 , (D11)

d2 =

(∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)
b1,in −

[(
1 + 1

2

∑N
k=1

γ1,k

i�k+ γa
2

)(∑N
k=1

γ2,k

i�k+ γa
2

)
− 1

2

(∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)2
]

b2,in(
1 + 1

2

∑N
k=1

γ1,k

i�k+ γa
2

)(
1 + 1

2

∑N
k=1

γ2,k

i�k+ γa
2

)
−

(
1
2

∑N
k=1

√
γ1,kγ2,k

i�k+ γa
2

)2 . (D12)

Similarly, the input-output relations can be obtained by inserting d1 and d2 into Eqs. (A15) and (A16).
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