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We study the transport properties of a diffusive Josephson junction between two spin-split superconductors
(SCs) made of SC-ferromagnetic insulator bilayers on top of a three-dimensional topological insulator. We derive
the corresponding Usadel equation describing the quasiclassical Green’s functions in these systems and first solve
the equation analytically in the weak-proximity case. We demonstrate the appearance of an anomalous phase in
the absence of an external magnetic field. We also explore nonreciprocal electronic transport. Specifically, we
calculate the diode efficiency of the junction η by solving the Usadel equation. We obtain a sizable diode effect
even at zero applied magnetic field. We discuss how the diode efficiency η depends on the different parameters
and find a nonmonotonic behavior of η with temperature.
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I. INTRODUCTION

Recent advances attracting attention in superconductivity
research are effects related to the nonreciprocal charge trans-
port [1,2], particularly the superconducting (SC) diode effect
[3–13]. A mesoscopic junction with SCs is called a SC diode
if the critical current is different for opposite current direc-
tions. That is, for a SC diode, the minimum I− = minφ Is(φ)
and maximum I+ = maxφ Is(φ) of the current phase relation
(CPR) are unequal in magnitude. If a current I flows in such
a junction, with min(|I−|, I+) < I < max(|I−|, I+), in one di-
rection, it is a supercurrent, whereas in the other direction, it
is a dissipative current. In a conventional Josephson junction,
the critical current is the same in both directions; the CPR has
the following symmetry: I (−φ) = −I (φ) [14]. This relation
holds if either time-reversal symmetry or inversion symmetry
is present in the system [15,16].

The SC diode effect can thus only be obtained if both
time-reversal symmetry and inversion symmetry are broken
[5,6]. Time-reversal symmetry can be broken by a magnetic
field. On the other hand, inversion symmetry can be broken
intrinsically, such as in topological insulators (TIs) [17–19]
or SCs with Rashba spin-orbit coupling [20–27]. Inversion
symmetry can also be broken by asymmetry of the junction
geometry [28] or asymmetry of the device originated in fabri-
cation [10].

If both time-reversal symmetry and inversion symmetry
are broken, in general, I (−φ) �= −I (φ), and thus, possibly
I (φ = 0) �= 0. Such junctions, for which the current vanishes
at a nonzero phase difference, are called φ0 junctions [21]. In
weak coupling Josephson junctions, the CPR is proportional
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to sin(φ + φ0); hence, in this regime, one cannot observe the
diode effect. However, if higher harmonics contribute to the
current, in general, I+ �= |I−|, and the diode effect can be
observed [7,9,11,12].

One way of breaking time-reversal symmetry without an
external magnetic field is to attach a ferromagnetic insulator
(FI) to the SC (FIS). FIS systems have been discussed ex-
tensively in the literature [29–32]. The exchange interaction
between the localized magnetic moments of the FI and the
itinerant electrons in the SC leads to a spin split in the density
of states of the latter. Spin-split SCs form an active field of
research with varying directions [33–39].

In this paper, we investigate the diode effect in a Josephson
junction consisting of spin-split SC electrodes on the two-
dimensional (2D) surface of a disordered three-dimensional
(3D) TI. Specifically, our setup consists of two spin-split SCs
(FIS) placed on top of a TI, see Fig. 1(a). Time-reversal
symmetry is broken by the spin-splitting in the SC, whereas
inversion symmetry is broken because we consider only the
top surface of the TI. Thus, the conditions to have a φ0 effect
are fulfilled even without an external magnetic field. Using the
linearized Usadel equation, we first show analytically that the
CPR in such a junction exhibits the φ0 effect. Going beyond
the linear regime, we compute the diode efficiency. Even in
the case of low-transmission FIS/TI interfaces, we obtain an
efficiency of 1%. By increasing the interface transmission, the
efficiency can reach values >7%. We also find that, for short
junctions, the efficiency is maximized at a finite temperature
independent of the strength of the exchange field.

This paper is structured as follows. In Sec. II, we introduce
the setup and the basic equations. We derive the Usadel equa-
tion for a diffusive TI in proximity with a spin-split SC. In
Sec. III, we focus on analytical results that can be obtained
by linearizing the Usadel equation, which is valid under the
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FIG. 1. (a) Sketch of the junction under consideration. (b) The current phase relation (CPR) of the ferromagnetic insulator/superconductor
(FIS)-topological insulator (TI)-FIS junction for different temperatures. The parameters chosen are γ0

ETh
= �0

ETh
= 5h

2ETh
= 25, L1

L = 1
10 , and

l
L = 0.08 � 1. Inset: Zoom-in of the CPR around φ = 0.

assumption that the proximity effect is small. Even though,
in this limit, the CPR contains only the first harmonic and
thus has no diode effect, we can determine the condition for
observation of the anomalous Josephson currents. The latter is
the precursor of a diode effect in the nonlinearized equation.
We also show that the φ0 effect is suppressed by impurity scat-
tering. In Sec. IV, we go beyond the linear regime and present
our numerical results for the nonlinear equation and the diode
efficiency as a function of the temperature for different values
of the exchange field, length of the junction, and transparency
of the interfaces. Finally, in Sect. V, we conclude and propose
real material combinations to test our predictions. Throughout
the paper, it is assumed that h̄ = kB = 1.

II. THE SYSTEM AND BASIC EQUATIONS

We consider the FIS-TI-FIS system shown in Fig. 1(a). An
FIS can be realized by placing a FI on top of a SC film with a
conventional s-wave pair potential. The thickness of the latter
is assumed to be small compared with its coherence length, so
that we can assume a homogeneous splitting field in the SC
induced by the magnetic proximity effect [40]. In this setup,
a current can flow through the top surface of the TI from one
FIS to the other. Because the system is finite in the x direction,
no current can flow at x = ±L/2, where L is the length of the
TI. We denote by L1 the length of the TI between the two FIS
electrodes.

We assume that the transport at the TI surface is diffusive
and can be described by the Usadel equation: the derivation of
this equation for our system closely resembles the derivation
of the Usadel equation for a TI in an exchange field as pre-
sented in Refs. [41,42]. However, whereas superconductivity
in the systems discussed in these papers is introduced as
an effective pair potential, for the spin-split SC, a different
approach is taken.

We incorporate the effect of the spin-split SC as a self-
energy term �̄s. For the self-energy, we follow the approach
in Ref. [43], in which the self-energy due to tunneling be-
tween the TI and the SC is introduced. Up to second order

in the tunneling parameter T1 between the TI and the SC, it is
given by

�̄s = T 2
1 ρS τ̌3σ0Ḡ′

Sσ0τ̌3 = T 2
1 ρSḠS = γ0ḠS, (1)

where γ0 = T 2
1 ρS is the tunneling energy scale and ρS the

effective 2D density of states of the SC at the interface [43].
The parameter γ0 is restricted because our assumption that
only terms of second order in T1 need to be considered im-
plies T 2

1 ρTI � �0, where ρTI is the density of states of the
surface of the TI. This implies that γ0 � �0

ρS

ρTI
. Here, σ0 is

the identity matrix in spin space, and τ̌3 is the third Pauli
matrix in electron-hole space. Here, Ḡ′

S is the momentum-
integrated Green’s function (GF) in the spin-split SC and
ḠS = τ̌3σ0Ḡ′

Sσ0τ̌3 is introduced to shorten notation. Note that
the only effect of this transformation by τ̌3σ0 is to negate the
pair amplitudes. We go up to second order in tunneling and
neglect the inverse proximity effect of the TI on the SC. The
self-energy term appears as an added term in the commu-
tator on the left-hand side of the Eilenberger equation. The
Eilenberger equation thus reads, using the same presentation
in spin-Nambu space as in Ref. [41],

vF

2
{[η j,∇ j ǧ(1 + �nF · �η)]}=

[
ǧ(1 + �nF · η), ωnτ̌3 + �(x)ḠS

+ 〈ǧ(1 + �nF · �η)〉
2τ

]
, (2)

where {·, ·} denotes the anticommutator and [·, ·] the commu-
tator. In our notation, ǧ is the quasiclassical GF, ωn is the nth
Matsubara frequency, �nF is the direction of the momentum at
the Fermi surface, vF is the magnitude of the Fermi velocity, τ
is the collision time, τ̌3 is the third Pauli matrix in Nambu
space, μ is the Fermi energy, and �η = (−σ2, σ1, 0), where
σ1,2 are the first and second Pauli matrices in spin space. The
tunneling parameter T1 is nonzero only in FIS regions. To
reflect this, we introduce the boundary parameter �(x):

�(x) = γ0�

(
|x| − L1

2

)
�

(
L

2
− |x|

)
, (3)

where � denotes the Heaviside function.
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The GF is written as ǧ1
2 (1 + �nF · �η) to reflect the strong

coupling between spin and direction of momentum in a TI.
In this paper, a 2D surface of a 3D TI is studied. Therefore,
scattering is not prohibited, unlike in a one-dimensional (1D)
edge of a 2D TI. In fact, it has been shown experimentally
that transport in 3D TIs is not always ballistic [44,45]. We
assume the junction is in the dirty limit, that is, the inverse
scattering time 1

τ
is much larger than any energy scale other

than the chemical potential μ. In that case, the GF g is almost
isotropic. Thus, it is a good approximation to keep only the
zeroth and first term in the expansion in angular momentum,
that is,

ǧ ≈ ǧs + �nF · �̌ga, (4)

where the zeroth-order term ǧs and the first-order term �̌ga sat-
isfy ǧ2

s = 1 and ǧs �̌ga + �̌gaǧs = �0 to satisfy the normalization
condition ḡ2 = 1̌ up to second order in τ . The GFs ǧs and �̌ga

do not have any degrees of freedom in momentum space nor
in spin space and are thus functions which map position into
the space of 2 × 2 matrices. Using the expansion in angular
momentum, the Usadel equation can be derived. The strategy
followed to derive the Usadel equation for our structure is very
similar to the strategy used in Refs. [41,42]. To this end, we
first write

ḠS = ǦS0σ0 + �̌GS1 · �σ , (5)

where ǦS0 and �̌GS1 are matrix functions without spin degrees
of freedom, and �σ is the vector of Pauli matrices in spin
space. It is assumed that the exchange field in the FI always
points in the same direction, so that there are no domain walls
which may affect the density of states significantly [39]. The
position-independent GF in the spin-split SC is

ḠS = 1
2 (1 + �b · �σ )Ǧ↑ + 1

2 (1 − �b · �σ )Ǧ↓, (6)

Ǧ↑,↓ = g↑,↓τ3 + f↑,↓(cos φτ1 + sin φτ2), (7)

where g↑,↓ = (ωn ± ih)/
√

(ωn ± ih)2 + �2 are the normal
parts, and f↑,↓ = �/

√
(ωn ± ih)2 + �2 are the anomalous

parts [46]. The + sign is used for the spin-up component and
the − sign for the spin-down component, τ1,2,3 are the Pauli
matrices in Nambu space, h is the magnitude of the exchange
field �h = h�b, � is the SC potential calculated self-consistently,
and φ is the phase of the SC. Combining Eq. (5) with Eqs. (6)
and (7), we may write

ǦS0,1 = gS0,1τ3 + fS0,1(cos φτ1 + sin φτ2), (8)

�̌GS1 = ǦS1�b · �σ , (9)

where gs0,1 = (g↑ ± g↓)/2 and fS0,1 = ( f↑ ± f↓)/2. The
component fS0 of the condensate is the usual singlet compo-
nent, whereas fS1 is the odd-frequency triplet component [46].

The Usadel equation for the angular-averaged GF gs with-
out spin degrees of freedom in the TI is obtained analogous
to the approach laid out in Ref. [41]. We combine the spin
trace of the equation obtained by angular averaging and of the
equation obtained by angular averaging after multiplication by

�nF. The resulting Usadel equation is

D∇̂(ǧs∇̂ǧs) =
[
ωnτ̌3 + �(x)

2
ǦS0, ǧs

]
, (10)

with D = v2
Fτ . Equation (10) is like the Usadel equation in

normal metals. However, the derivative is replaced by a gen-
eralized derivative:

∇̂ = ∇ + �(x)

2vF
[·, ǦS1y]ex − �(x)

2vF
[·, ǦS1x]ey. (11)

For a spin-split SC, this becomes

∇̂ = ∇ + �(x)

2vF
(byex − bxey)[·, ǦS1]. (12)

This derivative is like the derivative presented in Ref. [42]
for a TI with an exchange field; in fact, Eq. (10) reduces to
this expression if ǦS1 = hτ̌3. Throughout this paper, we will
assume that the magnetic field is oriented perpendicular to the
current direction, so that by = 1 and bx = 0. The equation is
accompanied by the boundary conditions:

∇̂GS1

(
x = ±L

2

)
= 0. (13)

In this paper, we assume that the FI is either very thin or very
thick, so that there is no y or z dependence in the problem. As
a consequence, the effective one-dimensional equation can be
used. From the solutions of Eqs. (10), (12), and (13), one can
determine the current:

I = σN

2
T

∑
n

Tr[τ3Ḡ(x∗, ωn)∇̂Ḡ(x∗, ωn)], (14)

where σN is the normal state conductance, T is the temper-
ature entering the Matsubara frequencies ωn = (2n + 1)πT ,
and x∗ is any position for which �(x∗) = 0. The quantities of
interest in this paper are the maximum supercurrents I+

c and
|I−

c | in both directions and the diode efficiency, defined by

η = I+
c − |I−

c |
I+
c + |I−

c | . (15)

Before showing the numerical solution of the above boundary
problem, in the next section, we study the linearized equa-
tion in the limit of a small proximity effect. As discussed in the
introduction, in this limiting case, the diode effect vanishes,
but the anomalous phase φ0 can be studied analytically. The
anomalous current is a strong indication for the diode effect to
appear.

III. LINEARIZED CASE: THE φ0 JUNCTION

To get an understanding of the physics behind the new
Usadel equation, Eq. (10), we focus first on the case of a
weak proximity effect and ignore self-consistency of the pair
potential. In this case, the anomalous parts of the GF are much
smaller than the normal ones, that is, Tr(τ1,2G) � Tr(τ3G),
and thus, G can be approximated by

G(iωn) ≈
[

sgn(ωn) F
F̃ −sgn(ωn)

]
,

where |F |, |F̃ | � 1. Using this approximation, the Usadel
equation reduces to a linear equation. We assume here that
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the system in Fig. 1(a) is infinite in the x direction. The SC
is only absent in the region (− L1

2 , L1
2 ) and present everywhere

outside this region. In this case, Eq. (10) can be written in the
three separate spatial regions:

D∂xxF = 2|ωn|F − γ0 fS0 exp
(−i φ

2

)
, x < − L

2 ,

D∂xxF = 2|ωn|F, |x| < L
2 ,

D∂xxF = 2|ωn|F − γ0 fS0 exp
(
i φ

2

)
, x > L

2 .

(16)

For x −→ ±∞, the GF should commute with ωτ3 + ǦS0. This
implies that the pair potential is given by

lim
x−→±∞ F = γ0 fS0

2|ωn| exp

(
±i

φ

2

)
. (17)

These are the same equations as for the conventional SC-
normal-SC (SNS) junction. However, the equations which
join the solutions at x = ± L1

2 are different from the conven-
tional SNS junction. Requiring continuity of both the GF and
the current through the junction yields

F

(
±L1

2
+ 0+

)
= F

(
±L1

2
+ 0−

)
, (18)

dF

dx

(
±L1

2
+ 0±

)
+ γ0

vF
fS1sgn(ωn) exp

(
±i

φ

2

)

= dF

dx

(
±L1

2
+ 0∓

)
. (19)

This expression differs from the corresponding expression for
the SNS junction in the appearance of the fS1 term on the
left-hand side of Eq. (19). The CPR following from these
equations is

I (φ) =
∑

n

1

4
exp

(
−2

√
2|ωn|

D

)
Im

[
(An − iBn) exp

(
i
φ

2

)]2

= 1

4

∑
n

exp

(
−2

√
2|ωn|

D

)(
A2

n−B2
n sin φ+2AnBn cos φ

)
,

(20)

where An and Bn are real coefficients given by An = γ0 fS0

2|ωn| and

Bn = −iγ0 fS1

√
Dωn

2
1

|ωn| . This implies that

φ0 = arctan 2

∑∞
n=−∞ AnBn exp

(
−2

√
2|ωn|

D

)
∑∞

n=−∞
(
A2

n − B2
n

)
exp

(
−2

√
2|ωn|

D

) . (21)

The φ0 effect is large if An = Bn and small if |Bn
An

| is not ∼1.
This ratio is given by

∣∣∣∣Bn

An

∣∣∣∣ =
γ0| fS1|

√
D

2|ωn|2|ωn|
γ0 fS0vF

= | fS1|
fS0

1

vF

√
2|ωn|D. (22)

Recall that the diffusion constant is given by D = v2
Fτ . This

means that 1
vF

√
2|ωn|D = O(

√|ωn|τ ), which is small in the
diffusive regime. In fact, in the derivation of the Usadel equa-
tion, it is assumed that 1

τ
� |�|, and thus, 1

τ
� |ωn|, for every

n that contributes significantly to the current. This means the
effect can only be large if fS1 � fS0. This constraint can only
be satisfied if h � √

ω2
n + �2 for all Matsubara frequencies

that have a significant contribution to the critical current.
However, in the setup discussed in this paper, the condition
h � � cannot be realized since the magnetization is induced
via the SC and a high magnetization destroys the supercon-
ductivity. Therefore, the φ0 effect is suppressed by a factor√|ωn|τ in the linearized case.

Next, the temperature dependence is discussed. Because
the φ0 effect is small, we can simplify the equation for φ0 to

φ0 ≈ 2

∑∞
n=−∞ AnBn exp

(
−2

√
2|ωn|

D

)
∑∞

n=−∞
(
A2

n

)
exp

(
−2

√
2|ωn|

D

) . (23)

Now consider the behavior at low temperatures. Since the
triplet component fS1 is odd in frequency, whereas the singlet
component fS0 is even in frequency, |Bn

An
| is small for small

Matsubara frequencies. As the temperature is decreased, these
terms become more and more dominant in the sum. Thus,
at low temperatures, the φ0 effect increases with increasing
temperature. On the other hand, for large Matsubara frequen-
cies, the ratio between triplet and singlet components | fs1

fs0
| =

O( h
|ωn| ). This means that, at high temperatures, the φ0 effect

decreases. Therefore, the φ0 effect must be nonmonotonic as
a function of temperature; it attains a maximum. Moreover,
since

√
τ is an ωn-independent prefactor, it cannot determine

the maximum. The temperature at which the maximum is
attained is determined by only two dimensionless quantities,
�

ETh
and h

�
.

An interesting limit is the limit in which
√

2πT
D L1 � 1 and

h � � so that the exponential suppression can be ignored to

first order in
√

2πT
D L1. The following expression is obtained:1

φ0 ≈
∑∞

n=0 AnBn∑∞
n=0 A2

n

= h
√

τ

∑∞
n=0

1
(ω2

n+�2 )2√ωn∑∞
n=0

1
ω4

n+�2ω2
n

. (24)

The multiplication of the sum with
√

τ signals the dirty limit
suppression of the φ0 effect. The resulting expression is eval-
uated numerically as a function of temperature. Numerical
evaluation confirmed the nonmonotonicity, see Fig. 2. Be-
cause self-consistency of the pair potential is not considered,
we only show results for T/Tc < 0.6, so that corrections due
to self-consistency are small.

In the following sections, we discuss the full nonlinear
equation, and we show that the diode effect is nonmonotonic
with temperature for short junctions.

IV. NONLINEARIZED CASE: THE SC DIODE EFFECT

To investigate the diode effect, one needs to go beyond the
linear approach and numerically solve the Usadel equation. In
this section, we present our numerical results for the supercur-
rent in the FIS-TI-FIS junction. As a first step, it is convenient

1Strictly speaking, the linearized case leads to a divergence as T
goes to 0. We therefore replace �/|ωn| by �/

√
ω2 + γ 2

0 , based on
the non-linearized case.
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FIG. 2. The φ0 effect as a function of temperature as calculated
using Eq. (24). The φ0 effect is suppressed at low temperatures. The
φ0 effect is given in units of the small quantity h

√
τ/�.

to write the Usadel equation, Eq. (10), in dimensionless form,
normalizing x by the total length of the junction. The obtained
equation is

∇̂(Ǧ∇̂Ǧ) =
[

ωn

ETh
τ̌3 + �(x)

2ETh
ǦS0, Ǧ

]
, (25)

∇̂ = d

dx
+ �(x)L

2vF
b̃y[ǦS1, ·]. (26)

All energies are given in units of the Thouless energy ETh =
D
L2 , whereas lengths are given in units of L. The strength of the
proximity effect is described by the dimensionless parameter
γ0L
vF

= γ0

ETh

l
L , where l = vFτ is the mean free path, which in

the diffusive limit must be the shortest length involved in
the problem. This puts a constraint on the magnitude of the
new dimensionless quantity; it must be much smaller than
γ0

ETh
. However, without this term, the equations reduce to the

equations for the SNS junction, which is known not to have a
diode effect [14]; it has no time-reversal symmetry breaking.
Thus, if the new quantity is very small, the diode effect is very

small. Therefore, γ0

ETh
must be chosen large, that is, the contact

between the SC and the TI must be good to have a large γ0.
To solve the nonlinearized Usadel equation, Eq. (10), the

Riccati parameterization is used:

Ǧ = 1

1 + γ̄ γ̃

(
1 − γ̄ γ̃ 2γ

2γ̃ −1 + γ̄ γ̃

)
, (27)

where γ̄ and γ̃ are the Riccati parameters.
In principle, the pair potential � must be determined self-

consistently since it is suppressed by the exchange field [47].
In the numerical calculations, we choose values of the ex-
change field smaller than h

�0
= 2

5 . Other parameters are set

as follows: γ0

ETh
= 25, whereas L1

L is chosen to be 1
10 and

l
L = 0.08 � 1.

Our numerical results for the CPR obtained from the non-
linearized Eq. (10) are shown in Fig. 1(b). There is a finite
current value at φ = 0 associated with the appearance of the
anomalous phase φ0. Moreover, even though small, there is
a difference in the absolute value of the maximum and mini-
mum of the current. This asymmetry reflects the diode effect.
By increasing the temperature, both the current at zero phase
and the critical current decrease.

We now study the temperature dependence of the diode
effect for different exchange fields and sizes of the junction.
The numerical results for the diode efficiency are shown in
Fig. 3. Interestingly, we find nonmonotonic behavior with a
maximum efficiency at a finite temperature Td . It is important
to notice that, by computing η in Fig. 3, the self-consistency
of the pair potential is ignored because of the reduction of
computational costs. However, we verify that, for all values
of h considered, the self-consistency has only a small effect
on the magnitude of the gap for temperatures of the order
of T = Td . The critical temperatures for all cases shown in
Fig. 3(a) are not higher than the temperature indicated using
the dashed vertical line.

If the exchange field is increased, Fig. 3(a), the diode
efficiency becomes larger. Here, η increases approximately
linearly with h. The temperature at which the diode efficiency

FIG. 3. (a) The temperature dependence of the diode efficiency η for different values of the exchange field strength h, and (b) Thouless
energy ETh1 = D

L2
1

of the topological insulator (TI) part. The critical temperature is for all magnitudes of the exchange field considered here

>0.9Tc, highlighted by the black dotted line.
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FIG. 4. The diode efficiency as a function of temperature for
different values of γ0.

is maximal is almost independent of the exchange field, with
Td ≈ 0.18.

We also investigate the influence of the distance between
the leads, L1 on η, see Fig. 3(b). Specifically, ETh1 = D/L2

1

is varied, whereas the quantities l
L and L1

L are held constant.
As the Thouless energy is decreased, the diode efficiency
decreases. Moreover, the temperature Td at which the diode
effect is maximal decreases with the length of the junction.
For enough long junctions, the dependence of η on tem-
perature becomes monotonic. So far, we have considered
disordered systems with low-transparency FIS interfaces. One
can, though, increase the φ0 and diode effects by relaxing
these conditions. On the one hand, our analytical results in
Sec. III indicate that the φ0 effect can be increased by increas-
ing τ ; see, for example, Eq. (24). We also verified numerically
that the diode effect increases if the degree of disorder de-
creases.

On the other hand, we also investigated the effect of in-
creasing the ratio L1

L . Our numerical calculations demonstrate
that, whereas I (φ = 0)/Ic increases, the diode effect decreases
with increasing L1

L . This can be explained as follows. By
increasing the distance L1 between the electrodes, the CPR
becomes more sinuslike. To be precise, we found that, if L1

L

increases from 1
10 to 1

2 , the ratio between the magnitudes of
the second and first harmonics decreases from ≈ 1

6 to ≈ 1
10 . As

discussed before, in addition to the breaking of time-reversal
and inversion symmetries, the diode effect relies crucially on
the contribution of higher harmonics to the CPR.

A way to increase the contribution of higher harmonics is
to increase the coupling between the SC correlations from the
left and right electrodes. This can be achieved by increasing
the transparency of the FIS-TI interfaces, as shown in Fig. 4.
A restriction is that the parameter γ0 should be much smaller
than �0

ρS

ρTI
, as discussed in the introduction.

Finally, another way to increase the diode effect is by
increasing the exchange field, as shown in Fig. 3. In our junc-
tion, however, the value of h is limited by the critical field of
the SC. To increase the strength of the exchange field without
suppressing superconductivity in the S electrodes, one could
add additional FI layers directly on top of the TI between the
two SCs, like the situation investigated in Ref. [41]. In that
case, the exchange field can be larger than the SC gap, and the
diode effect may increase.

V. CONCLUSIONS

We present a study of the φ0 and diode effects in a FIS-TI-
FIS Josephson junction. Though disorder tends to suppress
both effects [26], we found, even in the diffusive limit, sizable
effects without applying any external field. We found that, by
increasing the FIS-TI interface transparency and the magnetic
field, one can increase the diode effect. For short junctions, the
diode effect is nonmonotonic as a function of temperature. By
increasing the distance between the electrodes, the φ0 effect is
enhanced; however, the diode effect is suppressed due to the
loss of higher harmonics.

From the point of view of materials, the proposed structure
can be fabricated with well-studied material combinations. On
the one hand, the use of TIs in Josephson junctions is well
understood [44,48–55]. On the other hand, spin-split super-
conductivity has been measured in several experiments on
FIS bilayers, as for example, EuS/Al structures [37,40,56,57].
Moreover, good interfaces between TI and FI have been re-
ported in Ref. [58].
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