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Anomalous Josephson Hall effect in doped topological insulators with nematic superconductivity
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We study the physics of the Josephson effect in the odd-parity nematic superconductors within the Ginzburg-
Landau approach. The order parameter is a two-component vector that transforms as a coordinate vector in
the (x, y) plane under rotation and its direction is usually refer to as the nematicity direction. A nontrivial
interplay between the nematicity and crystallographic axes of the superconductors that form the junction makes
the Josephson effect quite unusual. We derive current-phase relations for different configurations of the junction,
crystallographic axes of the sample, and the nematicity direction in the superconductors. We obtain that the
Meissner kernel in the considered samples has off-diagonal components and the transverse phase difference
across the junction can induce a Josephson current that flows along the contact. We show that such an anomalous
Josephson Hall effect can be observed without any magnetization. We calculate the magnetic field dependence
of the maximum current through the junction. We find that the period of the Fraunhofer oscillations of the
maximum Josephson current depends on the geometry of the junction, the direction of the magnetic field, and
the nematicity directions. The obtained results can be generalized to other superconductors with nondiagonal
Meissner kernels.

DOI: 10.1103/PhysRevB.106.214502

I. INTRODUCTION

The Josephson effect is a general feature of supercon-
ducting phenomena [1–3]. It manifests itself as a generation
of the supercurrent between two superconducting pieces that
are separated by a thin barrier. The value of this current
is controlled by the external gating that induces phase dif-
ference between superconductors. This effect not only is
of importance for many superconducting devices but also
provides important information about the physical nature of
the superconducting order. The discovery of topological su-
perconductivity opens a new prospect in Josephson physics
[4]. In particular, the study of the Josephson currents in
superconductor-ferromagnetic (SF) heterostructures gives rise
to the observation of a set of new physical phenomena and the
development of a new family of superconducting devices [5].
An important property of the SF systems is the possibility to
govern the Josephson current by fine-tuning of magnetization
of the F layer.

Recently, significant interest in transverse Josephson cur-
rents that flow along the junction [6–14] has arisen. This
phenomenon is called the Josephson Hall effect, the anoma-
lous Josephson Hall effect, or the tunnel Josephson Hall effect
by an analogy with the anomalous Hall effect in the normal
state [15]. The Josephson Hall effect arises due to nontrivial
interplay between the magnetization and spin-orbit interac-
tion [7,9–14] or unconventional superconductivity [6,8]. Such
a transverse Josephson current can be comparable with the
usual longitudinal Josephson current [14].

Experiments with doped topological insulators such as
CuxBi2Se3 [16–22], SrxBi2Se3 [23–29], and NbxBi2Se3

[30–33] reveal in them a superconductivity below critical

temperature Tc ∼ 3 K. The breaking of the rotational symme-
try in these superconductors has been observed experimen-
tally [20,21,25,27,32] as well as the spin triplet character of
the Cooper’s pairing [22]. Such properties are best described
if we assume that the superconducting order parameter is a
two-component vector with Eu representation, which is usu-
ally called the nematic superconducting state [34–37].

The nematic superconductivity generated a great interest
due to its unusual properties such as the existence of Majorana
Kramer’s pairs [38,39], vestigial nematic order [40], surface
Andreev bound states [41], unconventional collective modes
[42], spontaneous strain [43], unusual magnetic response [44],
and anisotropic quasiparticle interference [45,46]. A majority
of these effects are related to the vector nature of the order
parameter. The orientation of the order parameter vector is
often referred to as the nematicity direction and it controls
the anisotropy axis of the system.

Naturally, an interesting Josephson physics is expected in
such superconductors, which depends significantly on the mu-
tual orientations of the nematicity axis and the junction plane.
In Ref. [47] the authors discuss an idea of manipulation of the
Josephson junction between a nematic ABi2Se3 superconduc-
tor and a usual s-wave superconductor by the applied stress.
Unusual behavior of the Josephson current in the contacts
with nematic superconductors was suggested to be used for
revealing of the nematic superconductivity and the study of
the nature of the superconducting order [48].

In this work, we perform a study of the Josephson physics
in nematic topological superconductors of the type ABi2Se3

based on the phenomenological Ginzburg-Landau (GL) ap-
proach [35]. In Sec. II, we derive the GL equations for
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such superconductors. We get that the Meissner kernel that
shows the response of the supercurrent to the vector poten-
tial has off-diagonal components. In Sec. III, we consider
a superconductor-insulator-superconductor (SIS) Josephson
junction and derive current-phase relations for different ori-
entations of the junction plane and crystallographic axes. We
show that the anomalous Josephson Hall effect (that is, the
Josephson current along the junction) can be observed in
the system for a certain orientation of the contact plane to
the crystal axes. In Sec. IV, we analyze the electromagnetic
properties of the junction and derive the dependence of the
maximum Josephson current through the junction on the mag-
netic field. In Sec. V, we discuss the obtained results.

II. GINZBURG-LANDAU EQUATIONS

We start with the GL free energy F for the vector super-
conducting order parameter �η = (η1, η2),

F = F0 + FD + FH , (1)

where F0 is a homogeneous contribution, FD is the gradient
term, and FH is a contribution due to the electromagnetic field.
Following the seminal paper by Fu [35], we write down F0 in
the form

F0 = a(|η1|2 + |η2|2) + B1(|η1|2 + |η2|2)2

+ B2|η∗
1η2 − η1η

∗
2|2, (2)

where a ∝ T/Tc − 1 < 0, B1 and B2 are the GL coefficients,
and Tc is the critical temperature. The gradient term for the
doped topological insulator of the type ABi2Se3 can be chosen
as [35,49]

FD = J1(Diηα )∗Diηα + J3(Dzηα )∗Dzηα + J4[(Dxη1)∗Dxη1

− (Dyη1)∗Dyη1) + (Dyη2)∗Dyη2

− (Dxη2)∗Dxη2 + (Dxη1)∗Dyη2 + (Dxη2)∗Dyη1

+ (Dyη1)∗Dxη2 + (Dyη2)∗Dxη1]. (3)

Here Jn are corresponding GL coefficients, Dj = −ih̄∇ j −
2eAj/c, summation over repeated indices i = x and y and
α = 1 and 2 is assumed, and A = (Ax, Ay, AZ ) is the vector

potential. The magnetic part of the free energy reads

FH = (curlA)2

8π
− curlA · H0

4π
, (4)

where H0 is the applied field.

A. First GL equations

The first GL equations can be obtained from the varia-
tion δF/δη∗

i = 0. This was done in many papers (see, e.g.,
Ref. [36]). We present here the result for the sake of com-
pleteness:

Ŵ �η = 0, (5)

Ŵ = a + 2B1η
2 + 2B2Im (η∗

1η2)σy + J1
(
D2

x + D2
y

)
+ J3D2

z + J4
(
D2

x − D2
y

)
σz + J4[Dx, Dy]σx. (6)

Here σ j ( j = 0, x, y, z) are the Pauli matrices that act in �η =
(η1, η2) space, η2 = |η1|2 + |η2|2, and [Dx, Dy] = DxDy −
DyDx. Boundary conditions for the first GL equations at the
superconductor-vacuum interface read as follows:

J1niDiη1 + J3nzDzη1

+ J4[nxDxη1 − nyDyη1 + nxDyη2 + nyDxη2] = 0, (7)

J1niDiη2 + J3nzDzη2

+ J4[nyDyη2 − nxDxη2 + nxDyη1 + nyDxη1] = 0, (8)

where ni = nx,y and nz are corresponding components of the
external normal to the sample surface.

B. Second GL equations

To derive the second GL equations, we perform variation of
the GL functional with respect to the components of the vector
potential. Here we present the results in the form convenient
for calculation of the Josephson current. We start with varia-
tion of FH and introduce, as usual, the current components

δAFH = 1

c
δAjs, js = c

4π
curl curlA. (9)

In so doing, we obtain the second GL equations from the
condition δAF = 0 in the forms

jsz = −2eh̄J3

[
F z

11 + F z
22 + 4π

�0
Az(|η1|2 + |η2|2)

]
,

jsx = −2eh̄

{
(J1 + J4)

(
F x

11 + 4π

�0
Axη

∗
1η1

)
+ (J1 − J4)

(
F x

22 + 4π

�0
Axη

∗
2η2

)
+ J4

[
F y

12 + F y
21 + 4π

�0
Ay(η1η

∗
2 + η∗

1η2)

]}
,

jsy = −2eh̄

{
(J1 − J4)

(
F y

11 + 4π

�0
Ayη

∗
1η1

)
+ (J1 + J4)

(
F y

22 + 4π

�0
Ayη

∗
2η2

)
+ J4

[
F x

12 + F x
21 + 4π

�0
Ax(η1η

∗
2 + η∗

1η2)

]}
. (10)

Here F j
αβ = iη∗

α∇ jηβ − iηβ∇ jη
∗
α and �0 = π h̄c/e is the magnetic flux quantum. We introduce phases of the vector order pa-

rameter as η1 = |η1|eiϕ1 , η2 = |η2|eiϕ2 , ϕ = (ϕ1 + ϕ2)/2, and δ = (ϕ1 − ϕ2)/2. We also express the order parameter components
through a nematicity angle α as |η1| = η cos α and |η2| = η sin α, α ∈ [0, π/2]. In these notations we have

F j
11 = −2η2 cos2 α∇ jϕ1, F j

22 = −2η2 sin2 α∇ jϕ2,

F j
12 + F j

21 = −2η2(sin 2α cos 2δ∇ jϕ − sin 2δ∇ jα).
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As a result, Eqs. (10) read as follows:

jsz = 4eh̄J3η
2

(
∇zϕ + cos 2α∇zδ − 2π

�0
Az

)
, (11)

jsx = 4eh̄η2

{
(J1 + J4 cos 2α)

(
∇xϕ − 2π

�0
Ax

)
+ (J1 cos 2α + J4)∇xδ + J4

[
sin 2α cos 2δ

(
∇yϕ − 2π

�0
Ay

)
− sin 2δ∇yα

]}
,

(12)

jsy = 4eh̄η2

{
(J1 − J4 cos 2α)

(
∇yϕ − 2π

�0
Ay

)
+ (J1 cos 2α − J4)∇yδ + J4

[
sin 2α cos 2δ

(
∇xϕ − 2π

�0
Ax

)
− sin 2δ∇xα

]}
.

(13)

These rather cumbersome equations can be rewritten in a compact form:

jsi = 4eh̄η2

[
νi

(
∇iϕ − 2π

�0
Ai

)
+ γi∇iδ + J4 sin 2α cos 2δ

(
∇ īϕ − 2π

�0
Aī

)
− J4 sin 2δ∇ īα

]
. (14)

Here i = (x, y, z) and ī = (y, x, 0), which means that the two
last terms are absent in the formula for jsz, (νx, νy, νz ) = (J1 +
J4 cos 2α, J1 − J4 cos 2α, J3) and (γx, γy, γz ) = (J1 cos 2α +
J4, J1 cos 2α − J4, J3 cos 2α).

Making the gradient transformation A → A + �0∇ f /2π ,
we restore the same Eq. (14) after the substitution ϕ → ϕ + f .
This means that ϕi transforms as ϕi → ϕi + f /2. Note also
that the phase difference δ in the considered topological super-
conductors is a function of its internal properties and applied
strain or magnetic field [35,36,43]. For example, if applied
strain and/or magnetic field are absent we have a pure nematic
phase with δ = 0 when B2 > 0 and a pure chiral phase with
δ = ±π/4 when B2 < 0. The applied strain and/or magnetic
field can transform the pure phase to some intermediate state
with −π/4 < δ < π/4 [43].

From the obtained formulas it follows, in particular, that
the supercurrent along the z direction is generated by the z
component of the vector potential and/or the phase gradient
along the z axis. However, in contrast to “usual” supercon-
ductors, the supercurrents along the x and y directions are
generated by both Ax and Ay components of the vector po-
tential and x and y components of the phase gradient, as well.

If we neglect variations of η1 and η2 in the bulk of the su-
perconductor, we obtain the London equation for the nematic
superconductor. In such a limit, it is convenient to rewrite
Eq. (14) in the matrix form

js = − c

4π
K̂A, K̂ = 32πe2η2

c2

⎛
⎝νx J̄4 0

J̄4 νy 0
0 0 νz

⎞
⎠, (15)

where J̄4 = J4 sin 2α cos 2δ. As we see, the Meissner kernel
Kαβ has off-diagonal components Kxy, which is unusual. The
Kxy terms in the Meissner kernel are inherent for supercon-
ductors anisotropic in the xy plane. The anisotropy arises
in the superconducting state due to the vector nature of the
order parameter. Note that the existence of the off-diagonal
components of the Meissner kernel has been missed in previ-
ous microscopic calculations [50,51].

Substituting Eq. (15) in the corresponding Maxwell
equation, we obtain the London equation for the nematic

superconductor:

H + curl(K̂−1curl) H = 0. (16)

Since K̂−1 has off-diagonal components, we have a mixing
between Hx and Hy components of the magnetic field.

III. CURRENT-PHASE RELATIONS

In this section, we obtain relations between the Josephson
current through a SIS junction and the phases of the or-
der parameter components when the external electromagnetic
field is absent. The junction consists of two superconductors
with the order parameters in the Eu representation. Super-
conducting correlations are induced by the proximity effect
inside the junction −d/2 < z < d/2. We assume that these
correlations are weak [52] and we can keep only quadratic
in ηiη j terms, neglecting terms of the fourth order that lead
to the linearized GL equations that we obtain from Eq. (1).
Following a standard approach, we assume that the GL coef-
ficient in the junction aN = a > 0 is positive. We introduce
another variable to emphasize that this coefficient refers to
proximity-induced superconductivity in the junction.

A. Junction transverse to the z direction

Consider a junction transverse to the z direction, which
we call further the z junction (see Fig. 1). Inside the junction
−d/2 < z < d/2 the linearized GL equation (5) reads as

∇2
z �η = aN

h̄2J3
�η. (17)

We use subscript L for the parameters at the left (z < 0)
of the junction and R for the parameters at the right (z >

0). We set the boundary conditions η j (+d/2) = η jR and
η j (−d/2) = η jL and obtain

η j = (η jR + η jL ) cosh κzz

2 cosh(κzd/2)
+ (η jR − η jL ) sinh κzz

2 sinh(κzd/2)
, (18)

where κz =
√

aN/h̄2J3. We substitute this formula into
Eq. (14) for the supercurrent along the z axis and derive

jz = jcz[cos αR cos αL sin θ1 + sin αR sin αL sin θ2], (19)
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FIG. 1. Junction transverse to the z direction.

where θ j = ϕ jR − ϕ jL and

jcz = 4eh̄J3κzηRηL

sinh κzd
. (20)

We see that the Josephson current through the junction is
a sum of contributions from two components of the order
parameter. This relation differs from a general current-phase
relation for usual two-band superconductors [53] since the
phases of the order parameter components in the nematic
superconductors are not independent [35]. It is reasonable
to express the Josephson current in terms of the sum and
difference of the phases of the order parameter components:

jz = jcz[cos(αR − αL ) sin θ cos φ

+ cos(αR + αL ) cos θ sin φ], (21)

where θ = ϕR − ϕL and φ = δR − δL. We can tune the value
of the Josephson current varying the nematicity direction. For
example, in the case of the Josephson junction between two
purely nematic superconductors δL = δR = 0, expression for
the Josephson current takes a simple form, jz = jcz cos(αR −
αL ) sin θ . We see that if the vector order parameters at dif-
ferent sides of the contact are orthogonal, αR − αL = π/2,
there is no current through the junction, jz = 0. In other
terms, jz = 0 if �ηR = ηR(1, 0) and �ηL = ηL(0, 1) or vice versa
�ηR = ηR(0, 1) and �ηL = ηL(1, 0).

As usual for the Josephson effect, we assume that the den-
sity of the superconducting current in the bulk is much larger
than the Josephson critical current density [1–3]. That is, the
London penetration depth λ is much larger than the Josephson
penetration depth λJ . To estimate λJ we need equations for the
junction in the magnetic field obtained below in Sec. IV. Here
we only note that the condition λ 	 λJ requires κzd 
 1; that
is, the contact is far from a superconducting transition, and
the value η(z = 0) is much smaller than the equilibrium order
parameter in the bulk, η(|z| > d/2).

B. Junction transverse to the x direction

Here we consider a junction transverse to the x axis, the
x junction (see Fig. 2). The case of the y junction is a
similar. The linearized first GL equation (5) in the junction

FIG. 2. Junction transverse to the x axis. Nematicity angles αL

and αR show the direction of the vector of the order parameter,
δL(R) = 0.

−d/2 < x < d/2 is

∇2
x �η = (J1 − J4σz ) aN

h̄2
(
J2

1 − J2
4

) �η. (22)

We set boundary conditions η j (+d/2) = η jR and
η j (−d/2) = η jL and derive

η j = (η jR + η jL ) cosh κ jx

2 cosh(κ jd/2)
+ (η jR − η jL ) sinh κ jx

2 sinh(κ jd/2)
, (23)

where κ1 = √
aN/h̄(J1 + J4) and κ2 = √

aN/h̄(J1 − J4). We
substitute Eq. (23) in the formula for the components of the
supercurrent, Eqs. (14). We observe that in the considered
geometry the Josephson current through the junction has two
components, usual current through the junction jx, and trans-
verse or Hall current along it, jy. For the current through the
contact we obtain

jx = jc1 cos αR cos αL sin θ1 + jc2 sin αR sin αL sin θ2,

jc1 = 4eh̄(J1 + J4)κ1ηLηR

sinh κ1d
, jc2 = 4eh̄(J1 − J4)κ2ηLηR

sinh κ2d
.

(24)

As in the case of the z junction, jx consists of two terms, which
correspond to two components of the order parameter, but in
contrast to the previous case, the critical values of the current
for η1 and η2 are different. Similar to Eq. (21), we can rewrite
the latter formula in terms of θ and φ:

jx = ( jc1 cos αR cos αL + jc2 sin αR sin αL ) sin θ cos φ

+ ( jc1 cos αR cos αL − jc2 sin αR sin αL ) cos θ sin φ.

(25)

As in the case of the z junction, we can tune the current
value and even “turn off” the contact (that is, to put jx = 0)
by a proper choice of the nematicity direction. As an ex-
ample, consider a junction formed by two purely nematic
superconductors, δR = δL = φ = 0. In this case, jx = 0 if the
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)/j
y0

x/d
FIG. 3. Dependence of the symmetric jy,s (red line) and anti-

symmetric jy,as (green dashed line) components of the transverse
current jy(x)/ jy0 on the coordinate x for J4/J1 = 3/4, k1d = 5. Here
jy0 = 4eh̄J4.

nematicity direction on right and left sides of the junction are
perpendicular, just similar to the case of the z junction.

According to Eq. (14), in addition to jx, we have a Joseph-
son Hall current jy flowing along the junction. The presence
of such a transverse current is a direct consequence of the non-
diagonal Meissner kernel and is an analog of the anomalous
Josephson Hall effect [6–14]. Using Eqs. (10) and (23) we
obtain

jy = 4eh̄J4Im(η∗
1∇xη2 + η∗

2∇xη1). (26)

The current jy depends on x. In the case of two nematic su-
perconductors, the function jy(x) can be presented as jy(x) =
jy,s(x) sin(αR + αL ) + jy,as(x) sin(αR − αL ), where jy,s(x) =
jy,s(−x) is a symmetric component of the current and
jy,as(x) = − jy,as(−x) is antisymmetric. As we see, tuning of
αR and αL can give us purely symmetric or antisymmetric
current. In general, the transverse current jy can be of the
same order or even larger (for δ > 0) than jx. Moreover, jy
can be nonzero when the current through the junction jx is
zero. The coordinate dependence of the symmetric and anti-
symmetric parts of the current jy(x) is illustrated in Fig. 3.
The dependence of these components of the current on the
junction thickness d is shown in Fig. 4. It is interesting to note
that jy,as(d ) first grows with d , attains a maximum, and finally
decreases, while jy,s(d ) decreases monotone from maximum
at small d to zero, when κ1d 
 1, as is common for Josephson
currents [1]. Consider the case of the junction between two
nematic superconductors, δR = δL = 0. To compare jy and jx,
we introduce an average value:

j̄y = 1

d

∫ d/2

−d/2
jy(x)dx. (27)

After straightforward calculations we derive

j̄y = jcy sin θ, (28)

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

jy,s
jy,as

j y,
i(-
d/
2)

/j y
0

k1d

FIG. 4. Dependence of the symmetric jy,s (red line) and anti-
symmetric jy,as (green dashed line) components of the transverse
current jy(x)/ jy0 on k1d for J4/J1 = 3/4 at the left side of the contact
x = −d/2. Here jy0 = 4eh̄J4.

where

jcy = sin(αR + αL )
8eh̄η2

√
J2

1 − J2
4

d sinh (κ1d ) sinh (κ2d )

× (cosh κ2d − cosh κ1d ). (29)

In the case of two nematic superconductors δR = δL = 0,
jy and jx are typically of the same order for κid ∼ 1 and
jcy/ jcx ∼ tan α/κ1d for κid 
 1. The value of the Hall cur-
rent j̄y is zero in the follows cases: (i) if J4 = 0 (that is,
κ1 = κ2) and the anisotropy is absent in the (x, y) plane, and
(ii) if αR + αL = 0 or αR + αL = π .

IV. JUNCTION IN THE MAGNETIC FIELD

In this section, we consider the junction in the magnetic
field H. As usual for Josephson physics, we assume that H
lies in the contact plane. We consider here only the case of
two purely nematic superconductors, δL = δR = 0. Nonzero δ

results in the existence of an additional magnetization in the
superconductor (see Ref. [43]), which, in general, should be
included in the Maxwell equations. Also, finite δ leads to the
presence of the antisymmetric component in the current along
the junction [see the text after Eq. (26)]. These effects deserve
a separate detailed study in future work.

A. z junction

First, we consider the junction, which lies in the plane
(x, y) transverse to the z axis. Since the problem has ro-
tational symmetry in the (x, y) plane we can choose the
y axis along the direction of the applied magnetic field,
H0 = (0, H0, 0). The magnetic field in the junction, z = 0, is
H(x, y) = [0, H (x, y), 0] and

∇xH (x, y) = 4π

c
jz, (30)

where jz is the current through the junction.
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First, we consider the case without Josephson currents.
The magnetic field in the bulk of the superconductor, H(z) =
[Hx(z), Hy(z), 0], we can find using the London equation (16).
In this limit we have

∇2
z Hx = 32πe2η2

c2
(νyHx − J̄4Hy),

∇2
z Hy = 32πe2η2

c2
(νxHy − J̄4Hx ),

and the dependence of H on x is weak. The solution
of these systems decays when z → ±∞ and H(z = 0) =
[0, H (x, y), 0]. In the considered case δ = 0 (purely nematic
superconductor) we obtain the following inside the supercon-
ductor |z| > d/2:

Hy = H (x, y)
(

sin2 αL(R) e
d/2−|z|

λ2 + cos2 αL(R) e
d/2−|z|

λ1
)
,

Hx = H (x, y) sin 2αL(R)
(
e

d/2−|z|
λ2 − e

d/2−|z|
λ1

)
sign(z)

2
,

λ1,2 = c

4
√

2π (J1 ± J4) eη
. (31)

Thus, we obtain an estimate for the London penetration depths
λ1,2 and observe that the magnetic field in the y direction in
the junction generates the x component of the field in the bulk.
The latter property is a characteristic of anisotropic supercon-
ductors [54]. In the considered geometry the anisotropy in
the (x, y) plane arises due to the vector nature of the order
parameter.

The relation between the phase difference in the junction
and the magnetic field can be derived by different methods
giving the same result [1,3,55,56]. We outline briefly one of
them.

From the Maxwell equation we have

jx = − c

4π
∇zHy, jy = c

4π
∇zHx. (32)

We integrate the components of the magnetic field across the
junction and using Eqs. (31) obtain∫ +∞

−∞
Hy(z)dz = Hd1,

∫ +∞

−∞
Hx(z)dz = Hd2, (33)

where

d1 = d + (sin2 αR + sin2 αL )λ1 + (cos2 αR + cos2 αL )λ2,

d2 = (sin 2αR − sin 2αL )(λ2 − λ1)/2. (34)

The first of these equations is a formal definition of the effec-
tive “magnetic thickness” of the junction d1. We assume here
for definiteness that sin 2αR − sin 2αL > 0 since the choice of
the right and left sides of the junction is arbitrary.

We differentiate Eqs. (32) with respect to z having in mind
that ∇zϕ ≈ θδ(z) if λJ 
 λ1,2 [here δ(z) is the δ function].
Then, we integrate the result with respect to z from z > −z1

to z < z1, where z1 
 d1/2. Since Hx,y(z) tends to zero with
all its derivatives when z → ∞, we come to the relations

∇iθ = 2π

�0

∫ +∞

−∞
∇zAidz, (35)

where i = x and y. Taking into account that Hx = −∇zAy and
Hy = ∇zAx, after integration we derive

∇xθ = 2πd1

�0
H (x, y), ∇yθ = 2πd2

�0
H (x, y). (36)

Finally, using Eqs. (21) and (30) we obtain the equations for
θ in the following forms:

λ2
Jθ

′′
xx = sin θ, (37)

θ ′
y = d2

d1
θ ′

x, (38)

where we introduce the Josephson length in the usual form [1]

λJ =
√

c�0

8π2d1 jcz cos (αR − αL )
. (39)

Note that for αR = αL we have d2 = 0 and θ ′
y = 0.

Equation (37) is often called the Ferrell-Prange equa-
tion [55]. The first of Eqs. (36) relays θ and the magnetic
field and also gives boundary conditions for θ at the edges
of the junction where H = H0. The values αR and αL are con-
stants, which depend on the superconducting state in the bulk.
We can rewrite the applicability condition of our approach
λJ 
 λ1,2 in the explicit form using Eqs. (20), (31), and (39):

(J1 ± J4) sinh κzd

J3κzd1

 1. (40)

Now we derive a dependence of the maximum persistent
current through the junction Imax on the applied magnetic
field H0 or on the value of the captured magnetic flux �

[1]. As usual, we consider a short contact in x and y direc-
tions, Lx,y 	 2λJ , placed in a sufficiently large magnetic field,
H0 
 �0/2πλJd1, where Li is the junction length in the ith
direction. Within these limits, the magnetic field in the junc-
tion is homogeneous and equals the applied field. We integrate
the first of Eqs. (36) taking into account that H (x, y) = H0 and
obtain

θ = 2π�

�0

(
x

Lx
+ d2

d1

y

Lx

)
+ C, (41)

where � = Lxd1H0 is the magnetic flux captured in the junc-
tion and C is a constant. We substitute the latter expression in
Eq. (21) for the current and integrate it along the junction from
x = −Lx/2 to x = Lx/2 and from y = −Ly/2 to y = Ly/2. We
obtain the value of the current through the contact I in the
form

I

Icz
= cos(αL − αR) sin C

sin (π�/�0)

π�/�0

sin (κπ�/�0)

κπ�/�0
,

where Icz = jczdLx and κ = d2Ly/d1Lx. Thus, the maximum
of I is

Imax

Icz
=

∣∣∣∣cos(αL − αR)
sin (π�/�0)

π�/�0

sin (κπ�/�0)

κπ�/�0

∣∣∣∣. (42)
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FIG. 5. Dependence of the normalized maximum critical current
on the magnetic flux for different nematicity angles αR and αL . We
set J4/J1 = 3/4, Ly = Lx , and d 	 λ1.

The dependence Imax(�) is shown in Fig. 5. It has a typical
Fraunhofer-like pattern, but details of this pattern differ from
that for a usual s-wave superconductor (which corresponds
to κ = 0 for the considered problem). Mathematically, this
difference occurs due to the dependence of the phase θ on
two coordinates, θ = θ (x, y). One of the prominent features
of the observed picture is that the maximal critical current
decays as Imax ∝ 1/H2 instead of Imax ∝ 1/H for the s-wave
superconductors. The period of the current Imax(�) oscilla-
tions depends on the parameters of the system, in particular,
on the aspect ratio of the junction Ly/Lx. The latter feature
is illustrated in Fig. 6. The variation of the oscillation pe-
riod and the 1/H2 decay of the maximum current occurs
due to an additional factor sin(κ f )/κ f in Eq. (42), where
f = π�/�0. If Ly 	 Lx, we get κ 	 1 and Imax ∝ | sin f / f |,
which correspond to the typical Fraunhofer pattern of the

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.0

0.5

1.0

Ly= Lx/10
Ly= Lx
Ly= 10Lx

I m
ax
(Φ
)/I
(Φ
=0
)

Φ/Φ0

FIG. 6. Dependence of the normalized maximum critical current
on the magnetic flux for different values of the aspect ratio of the
contact Ly/Lx . We set J4/J1 = 3/4, αR = π/4, αL = 0, and d 	 λ1.

s-wave superconductor. If Ly 
 Lx and κ 
 1, then the pe-
riod of the oscillations becomes significantly smaller than �0

when the applied magnetic field is low. Note that we can
control the behavior of Imax(�) rotating the applied field in
the junction plane if the values Lx and Ly are significantly
different.

B. x junction

Here we consider a junction transverse to the x axis
and the magnetic field lying in the (y, z) plane, H(x = 0) =
(0, Hy, Hz ), where Hy and Hz depend slowly on y and z. Using
the London equation (16) and following a procedure similar
to that for the z junction, we derive the following for the
magnetic field in the bulk of the superconductor:

Hy(x) = Hye(d/2−|x|)/λy , Hz(x) = Hze
(d/2−|x|)/λz ,

λy = c

4eη
√

2πJ3
, (43)

λz,L(R) = c

4eη

√
J1 + J4 cos 2αL(R)

2π
[
J2

1 − J2
4 (1 − sin2 2αL(R) sin2 2δL(R) )

] ,

where λy and λz are corresponding London penetration depths
(λy,L = λy,R = λy). In the considered case the components of
the field decay independently. Similar to the z junction, we
can estimate the effective thickness of the x junction as di =
d + λi,L + λi,R (i = y and z), dy corresponds to the applied
field along the y axis and dz corresponds to the field along the
z axis.

In the case of the x junction, the Josephson current has
the component along the contact jy(x), Eq. (26). According to
Eqs. (15), this current induces a z component of the magnetic
field Hz ∝ j′y(x). In general, this field is not negligibly small
since j′y(x) ∝ jy/d . To avoid this difficulty we consider here
only the purely nematic superconductors (δR,L = 0) and the
short junction in a sufficiently large magnetic field, when the
magnetic field in the junction is equal to the applied magnetic
field. Under these assumptions we can neglect jy. Similar to
the case of the z junction we can write the conditions of the
applicability of such an approach as [see Eqs. (25) and (39)]
Hi 
 �0/2πλJ,idi and λi 
 λJ,i, where

λJ,i =
√

c�0

8π2di jc1F (αR, αL )
,

F (αR, αL ) = cos αL cos αR + jc2

jc1
sin αL sin αR.

Now we can derive the dependence of the maximum
Josephson current on the magnetic field in the case of the x
junction. We present here the results for two different orien-
tations of the applied magnetic field, along the y and z axes.
Following the same procedure as in the previous subsection,
we readily obtain

∇iθ = 2π

�0

∫ +∞

−∞
∇xAidx, (45)
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where i = y and z, Hy = −∇xAz, and Hz = ∇xAy. After inte-
gration over x, we derive

∇yθ = 2πdy

�0
Hz, H0 = (0, 0, Hz ),

∇zθ = −2πdz

�0
Hy, H0 = (0, Hy, 0). (46)

These equations relate the phase difference on the junction
and the applied magnetic field. Similar to the case of the
z junction, we can derive the dependence of the maximum
current on the captured flux in the form

Ix max(�i )

Ic1x
= F (αR, αL )

sin (π�i/�0)

π�i/�0
, (47)

where i = y and z and Ic1x = jc1L. Note, that this expression
has been obtained under the assumptions of the negligible
Josephson Hall current jy.

V. DISCUSSION

One of the key results that we present in this work is that
the superconductors with the nematic superconductivity in the
Eu representation have off-diagonal components Kxy in the
Meissner kernel [see Eq. (15)]. As a result, we observe the
anomalous Josephson Hall effect in the x junction, that is,
the supercurrent flowing along the contact [see Eq. (26) and
Fig. 3]. We believe that the nondiagonal Meissner kernel can
give rise to other peculiarities in electromagnetic properties
of the Josephson junctions. The nature of this Josephson Hall
current is different from that of the anomalous Hall effect
(AHE), which requires time-reversal symmetry breaking. It is
an interesting open question if the presence of the off-diagonal
terms in the Meissner kernel that leads to the Josephson Hall
effect is related to the topological properties of the normal
state and the superconducting order parameter.

In principal, the D3d symmetry of the topological insulators
allows an additional trigonal term in the gradient part of the
free energy [36] which is small for the considered materials:

FD,5 = J5[(Dzη1)∗Dxη2 + (Dzη2)∗Dxη1

× (Dzη1)∗Dyη1 − (Dzη2)∗Dyη2]. (48)

As we can see, this term mixes gradients in z and x, y di-
rections. In the presence of such a term we have following
Meissner kernel:

K̂ ∝
⎛
⎝ νx J̄4 J5 sin 2α cos 2δ

J̄4 νy J5 cos 2α

J5 sin 2α cos 2δ J5 cos 2α νz

⎞
⎠.

(49)
We see that one component of the vector potential generates
three components of the supercurrent if J5 �= 0. It means that
not one but two transversal Josephson Hall currents are gen-
erated for every orientation of the contact. Values of this new
current are proportional to J5. If we obtain GL coefficients
from the microscopic calculations including only lowest terms
in the k · p expansion, then the J5 term does not appear [49].
Similar calculations can be performed for the Meissner ker-
nel that yields the same result [51]. So, the absence of the
J5 term results from the high symmetry of the low-energy
Hamiltonian of the normal state. This symmetry breaks if we

include hexagonal warping that appears as cubic terms in the
expansion. Likely, J5 emerges due to hexagonal warping terms
[57]. On the one hand, it is known that warping is weak in bare
Bi2Se3 [58]. So, it is expected to have J5 terms to be negligible
for low values of the chemical potential. However, in order to
achieve the superconductivity, doping shifts the Fermi level
away from the charge neutrality point. In this case, the role
of the warping increases. It is known that warping signifi-
cantly affects nematic superconductivity in doped topological
insulators [59]. Experimental reconstruction of the Fermi sur-
face of doped topological insulators using ARPES and SdH
oscillations does not show any significant warping [60,61].
So, we believe that the J5 term can be negligible in compar-
ison with the J4 term for the realistic values of the material
parameters.

The current in the junction is controlled by the vector or-
der parameter at each side of the contact �η = (η1R(L), η1R(L) ).
It is convenient to parametrize the order parameter as �η =
eiϕη(cos αeiδ/2, sin αe−iδ/2), where the nematicity direction α

and the phase difference between the order parameter compo-
nents δ determine the vector properties of the order parameter.
When δ = 0, the nematicity direction α indicates the direction
of the order parameter vector in the coordinate space (x, y).
The orientation of the order parameter vectors to the contact
significantly affects the current in the junction. Thus, we can
control the Josephson currents by tuning the nematicity of
the superconductors. The simplest strategy to control the ne-
maticity direction is the rotation of the superconductor in the
(x, y) plane. Also, experiments show that large samples of the
doped topological insulators are typically multidomain with
different orientations of the nematicity vector in each domain.
Weak links between different domains are natural objects to
study the influence of αR,L on the Josephson current. The
control of the nematicity angle α by the external strain was
demonstrated experimentally (see, e.g., Refs. [26,62]). Thus,
we can hope that the variation of the nematicity direction by
the applied strain is a feasible task. It opens new possibilities
for superconducting devices and also for the detection and
study of nematic superconductivity [47,48].

Another parameter that controls the current is the phase
difference between order parameters components δ. In the
case of nonzero δ an additional cosine term in the current-
phase relations arises [see Eqs. (21) and (25)]. For the pure
nematic superconductor, this term vanishes, δ = 0. Theoreti-
cal analysis shows that the chiral superconducting phase can
exist in the systems with an open Fermi surface [44,63], in
thin films [64], or under magnetic doping of the nematic
superconductor [65,66]. It is argued that in some experi-
ments such a chiral phase with a finite magnetization has
been observed [28,30]. However, it is debated in other works
[33]. As we show in our previous work, the nonzero δ can
be caused in the nematic phase by the external magnetiza-
tion [43]. The value of δ induced by the magnetization is
small [44]. However, measurements of the currents in the
Josephson junctions can be performed with high accuracy.
We believe that the observation of the cosine term in the
current that is caused by the magnetization is experimentally
possible.

We observe that in the x junction the Josephson Hall
current along the junction, jy, can be generated as well as
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the current across the junction, jx. In some cases jy can be
larger than jx. Consider a junction made of two pure nematic
superconductors with the order parameters �ηL = η(1, 0) and
�ηR = ηeiθ (0, 1) that are orthogonal to each other and one of

them is parallel to the contact plane. In this case, the longi-
tudinal current vanishes, jx = 0 [see Eq. (25)], but transverse
current is nonzero, jy = jcy sin θ [see Eq. (28)].

An analysis of Eq. (26) shows that under definite condi-
tions the Josephson Hall current does not necessary decay
exponentially with the increase of the junction thickness d
if δL and/or δR is nonzero. In the leading approximation
with respect to κid 
 1, we obtain that d j̄y ∝ J4 Im(η∗

1Lη2L −
η∗

1Rη2R), which is nonzero for d → +∞. For example, such
a situation takes place when δ �= 0 only on one side of the
junction, which can be due to its magnetization or when one
side of the junction is the chiral superconductor �ηL ∝ (1, i)
and another side is nematic. It is worth mentioning that the
Hall current flows even if we consider a single boundary of the
chiral superconductor, e.g., �ηR = (0, 0). Moreover, if δ in the
superconductor is nonzero, then a finite current flows along
the edge, d j̄y ∝ J4η

2
L sin 2αL sin δL. Note that a similar type of

superconducting anomalous Hall effect has been predicted for
a chiral p-wave superconductor [67].

In Refs. [6–14] the anomalous Josephson Hall effect has
been considered in the materials with a finite magnetization.
This magnetization brings asymmetry to the Andreev bound
states spectra that results in a finite Josephson Hall current.
In our case, this supercurrent exists without magnetization.
Thus, we establish that the anomalous Josephson Hall effect
can be realized without any magnetization while time-reversal
symmetry breaking occurs due to the phase difference across
the contact.

One of the distinct features of London equations is the lack
of gauge invariance for the current that leads to the lack of the
charge conservation [68,69]. Usually, it is not a problem when
the Meissner kernel is diagonal since we can always choose
the proper gauge for a vector potential where the charge is
locally conserved. In our case, we get formally that the charge
is not conserved in the case of the x junction if θ = θ (y),
which is the case for the z direction of the magnetic field. This
drawback cannot be cured in a GL formalism. Instead, we

should perform microscopic calculations of the current that
include vertex corrections for a current operator that arises due
to mean-field self-energy and Coulomb interaction. After that
a global gauge invariance is restored and reliable results are
obtained for any gauge of the vector potential [68,69]. In the
case of the anomalous superconducting Hall effect, restoring
the gauge invariance leads to the large additional quasiparticle
contribution to the edge current [70]. It means that the anoma-
lous Hall supercurrent is significantly renormalized by the
vertex corrections. Thus, we expect a strong renormalization
by the vertex corrections of the Josephson Hall current jy in
the x contact as well. However, microscopic calculations that
include vertex corrections are beyond the scope of this paper.

The results of our work can be easily generalized to other
nontrivial superconductors that have a nondiagonal Meiss-
ner kernel. Such a nondiagonal kernel arises due to finite
mixing terms (Diηα )∗Djηβ in the GL functional. In the case
considered here, the mixing terms are proportional the GL
coefficient J4. The GL functional with such mixing terms has
been proposed for p-wave superconductivity in Sr2RuO4 [71]
and in uranium superconductors [72] and is typical for the
superconductors with the triplet pairing [73].

In conclusion, we study electromagnetic properties of the
Josephson junction between two nematic superconductors in
the Ginzburg-Landau approach. We derive the London equa-
tions for the nematic superconductor with odd Eu pairing
using the second GL equation. We observe that the Meissner
kernel has off-diagonal components. Using this result, we
obtain current-phase relations for different orientations of the
junction plane, crystallographic axes of the sample, and the
nematicity vector. We show that the anomalous Josephson
Hall effect can be observed in the absence of magnetization.
We calculate the magnetic field dependence of the maximum
current through the junction. We show that the period of the
Fraunhofer oscillations depends on the geometry of the junc-
tion, the direction of the magnetic field, and the nematicity
vector.
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