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Influence of the surface states on the nonlinear Hall effect in Weyl semimetals
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We investigate the influence of surface states on the nonlinear Hall response driven by the Berry curvature
dipole in non-centrosymmetric time-reversal invariant Weyl semimetals. To do so, we perform a tomography
of the Berry curvature dipole in a slab system using a minimal two-band model. We find that in the type-I
phase, the nonlinear Hall response is not particularly sensitive to the presence of Fermi arcs or other trivial
surface states. However, in the type-II phase, we find that these surface states, be they topologically trivial or not,
contribute substantially to the Berry curvature dipole, leading to a strong thickness dependence of the nonlinear
Hall response. This feature depends on the nature of the surface states and, henceforth, on the slab geometry
adopted. In order to assess the validity of this scenario for realistic systems, we performed Berry curvature
dipole calculations by first principles on the WTe,, confirming the dramatic impact of surface states for selected
slab geometries. Our results suggest that surface states, being topological or not, can contribute much more
efficiently to the nonlinear Hall response than bulk states. This prediction is not limited to topological semimetals
and should apply to topologically trivial noncentrosymmetric materials and heterostructures, paving the way to

interfacial engineering of the nonlinear Hall effect.

DOLI: 10.1103/PhysRevB.106.214435

I. INTRODUCTION

Conventional wisdom inherited from Hall’s foundational
work [1,2] states that Hall currents flowing transverse to
the injected charge direction are only permitted as long as
time-reversal symmetry is globally broken. In other words, or-
dinary, anomalous, or topological Hall effects only exist either
in the presence of an external magnetic field or in magnetic
materials displaying a net magnetization [3]. However, this
long-lived statement has been recently challenged by two im-
portant observations. First, it has been realized that anomalous
Hall effect does not necessitate the presence of a net magnetic
moment to exist. For instance, in an antiferromagnet the Hall
effect can be nonzero as long as no crystal symmetry reinstalls
the time-reversal effectively. This is particularly true for cer-
tain classes of antiferromagnets with a noncollinear magnetic
configuration [4-7] (see also Ref. [8]). Second, the time-
reversal symmetry breaking necessary to obtain Hall effect is
not required anymore at the second order in the electric field.
Under certain conditions, anomalous Hall effect can appear in
nonmagnetic materials to the second order of the electric field
[9-11]. Recently, it has been proposed that such a second-
order Hall effect exists in collinear antiferromagnets where
the linear Hall effect is absent, e.g., CuMnSb [12]. Whereas
the intrinsic contribution to the linear anomalous Hall effect
in ferromagnetic and antiferromagnetic compounds is associ-
ated with the Berry curvature of the material’s ground state,
the second-order, nonlinear anomalous Hall effect (NLHE)
is rather associated with the Berry curvature dipole (BCD).
From a symmetry standpoint, the minimal requirement is

*diego-fernando.garcia-ovalle @univ-amu.fr
farmando-arquimedes.pezo-lopez@univ-amu.fr
faurelien.manchon @univ-amu.fr

2469-9950/2022/106(21)/214435(12)

214435-1

inversion symmetry breaking which ensures that the Berry
curvature does not vanish, but this is not sufficient: mirror
symmetry also needs to be broken to obtain a finite BCD.
Sodemann and Fu [9] identified the crystallographic point
groups that possess the minimal requirements for the obser-
vation of NLHE, a study recently refined by Du et al. [13] to
include both intrinsic (BCD related) and extrinsic mechanisms
[14] allowed by symmetry.

Different material candidates have been explored experi-
mentally and theoretically as suitable options to obtain NLHE.
From an experimental point of view, quadratic responses in
the electric field have been detected, among others, in bilay-
ers and few layers of WTe, [10,11] which have C,, point
group. From a theoretical perspective, other possibilities for
large BCD values have been proposed, including transition
metal dichalcogenides [15-20], graphene [21-23], and espe-
cially Dirac [24] and Weyl semimetals (WSM) [25] (see also
Ref. [26]). Ab initio simulations [27] have stimulated further
theoretical studies of BCD in 3D WSMs, because of their
rich geometrical features and their potential benefits to create
highly efficient electronic transport devices. NLHE in WSMs
has also been verified analytically by applying perturbation
theory [28], suggesting that the transport is sensitive to intra-
band processes, the chemical potential and the tilting of the
Weyl nodes. Besides, similar optical effects such as second
harmonic generation can be confirmed by applying Floquet
[29] and many-body quantum formalisms [30]. Last but not
least, a full Green function theory of the NLHE has been
proposed recently [13], pointing out the differences between
extrinsic and intrinsic contributions. The former is associated
with higher moments of the impurity potential whereas the
latter is solely associated to the band structure. In this paper,
we focus on the nonlinear response arising on the intrinsic
mechanism driven by the BCD.

©2022 American Physical Society
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Nonmagnetic WSMs such as TaAs or WTe, are par-
ticularly interesting platforms for the realization of NLHE
because inversion symmetry is necessarily broken and Berry
curvature diverges at the Weyl nodes. WSMs possess pairs
of doubly degenerate linearly dispersive states, forming Weyl
cones at Fermi level [31]. According to the Nielsen-Ninomiya
theorem [32], each pair of nodes carries Berry curvature
monopoles of opposite chirality which are connected via
Fermi arcs lying at opposite surfaces of the slab [33]. Type-I
WSMs, such as elemental Tellurium [34], Janus superlattices
[35] and Ta or As compounds [36-38], are characterized by
pointlike Fermi surface in the bulk and vanishing density
of states. Type-II WSMs, such as MoTe; [39,40] and WTe,
[41,42] but also the magnetic candidate CosSn,S, [43-48],
offer a slightly different paradigm as the Weyl cone spectrum
is tilted in momentum space, breaking Lorentz invariance.
As a result, the Weyl points arise at the boundary between
electron and hole pockets. Notice that certain compounds can
support type-I as well as type-1I Weyl nodes [49,50].

A remarkable aspect of WSMs is the nature of their sur-
face states. As mentioned above, alike topological insulators
WSMs possess topologically protected surface states in the
form of spin-momentum locked Fermi arcs that connect bulk
Weyl nodes of opposite chirality. In type-I WSMs, the Fermi
arcs coexist with the projection of electron (or hole) pockets
when the chemical potential lies away from the neutrality
point. In type-II WSMs, the Fermi arcs coexist with projected
electron and hole pockets irrespective of the value of the
chemical potential, as well as with trivial closed loops called
“track states” [S1]. As a consequence, surface states of WSMs
can be rich, resulting in enhanced Edelstein effect [52], and
unconventional patterns in quantum oscillation experiments
[53-55] (see also Ref. [56]). Previous works pointed out that
topological materials defined in slab geometries can exhibit
interesting transport properties due to finite size effects and
the behavior of surface states inside the samples. In this con-
text, it has been shown that the anomalous Hall conductivity is
highly influenced by surface states such as Fermi arcs in Weyl
systems without time-reversal symmetry [57], even in pres-
ence of disorder [58]. Additional studies have been performed
in confined geometries to clarify, among others, the behavior
of chiral magnetic effects [59], the magnetoresistance [60],
and the quantum Hall effect in Dirac semimetals [61].

In this work, we seek to understand how the surface states
of nonmagnetic WSMs influence the NHLE response driven
by the BCD. To do so, we consider a minimal two-band model
of a time-reversal invariant WSM with inversion symmetry
breaking in a slab geometry, so that bulk and surface states are
treated on equal footing [51]. This model exhibits four Weyl
points: the minimum number of degeneracies due to time-
reversal symmetry. These four points are associated with local
divergencies of the Berry curvature, as depicted on Fig. 1. In
this sense, after neglecting the vanishing components of the
BCD tensor due to mirror symmetries in the 3D lattice, Zeng
et al. [25] recently reported that NLHE requires Weyl cone
tilting and an asymmetric Fermi surface when the nodes lie at
the same energy. The NLHE is also influenced by the distance
between nodes. Accordingly, our study gives further insight
about the implications of the Fermi arc configurations on the
BCD. Remarkably, it also complements a recent study that
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FIG. 1. Berry curvature of the Hamiltonian (4) in the (k,, k;)
plane with k, = 0 and intrinsic parameters ko = %, m=2t = %,
y =1, and t+ = 1. Note that the Berry curvature of the two-band
model is not sensitive to the value of y [51]. The solid lines represent
the Berry curvature vector field (€2,, €2.), whereas the blue (red) dots
represent the local positive (negative) divergencies taking place at the

Weyl nodes.

comprises a surface BCD due to the projection of Fermi arcs
in type-I WSMs [62].

Our paper is organized as follows. In Sec. II, we recall the
general formalism for nonlinear Hall transport driven by BCD
and basic physical considerations for our model of interest.
In Sec. III, we provide and discuss our results regarding the
connection between surface states and NLHE, its dependency
on the Weyl cones tilting and its layer decomposition. In
Sec. IV, we also collate these outcomes with realistic numeri-
cal simulations on a WTe; slab with different cuts. Finally, we
summarize and state our main conclusions in Sec. V.

II. GENERAL THEORY AND MODEL

Let us begin by recalling basic elements of NLHE theory
[9]. We start with a nonmagnetic crystal and its correspond-
ing Bloch Hamiltonian Hy, whose eigenstates |u,x) satisfy
Schrodinger equation Hy |u,x) = €,k |uqk) With eigenenergies
€. If the crystal is subjected to a sufficiently small elec-
tric field E = Re[€ exp(iwt)], £ € C?, such that the adiabatic
limit is still valid, and assuming weak disorder, the first order
Hall current is induced by the Berry curvature [3]

@ = iz (ke [Vic | U)X <uml;|€7k|unk>, )
matn (enk - emk)

where Vi = dxHx is the velocity operator. Upon time rever-
sal operation 7 we have TR, 7 ' = —R,_x, and thus the
anomalous Hall effect vanishes. Nonetheless, when inversion
symmetry P is further broken, then PR, P~ # &,_y, and
one can show to the lowest order in scattering time t, that the
(rectified) second order Hall current reads [9]

" et .
Ja=\72 €aacDpaEpE; . (2)
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Here, latin indices refer to the components of the usual
Cartesian basis and €,4,. is the Levi-Civita tensor. Dy, is the
BCD defined as [9]

d’k dfy
Dy = [Z(vmb(sznk)d ) “}, 3)

~ Jpz 2n)? 0€k

with v, = dxe,x the eigenvalues of the velocity operator and
fux the Fermi distribution function. In the zero-temperature
limit, 9, fuk — —8(exx — 1), setting v as the chemical po-
tential. Equation (2) neglects the intrinsic contribution to
NLHE that appears when time reversal is broken as well as
higher order extrinsic contributions (i.e., side-jump and skew
scattering) [13,14].

The nonmagnetic WSM slab is built on the spinless two-
band model in a cubic lattice introduced in Ref. [51]. The bulk
Hamiltonian reads

Hp = y(cos 2k, — cos ky)(cos k, — cos kg)do
— [m(1 = cos’ k, — cos ky) 4 2tc(cos k, — cos ko)]61

— 2t sink, 6y — 2t cos k.63, 4

withé;,i = 1, ..., 3 being the 2x2 Pauli matrices, 6y = 1,2
and the cubic Brillouin zone is C = [—, 7]°. The parameters
of Eq. (4) are set to kg = %, m=2,t = %, and r = 1. This
WSM possesses four Weyl nodes of zero energy located at
k* = £7(& +2) (see Fig. 1). Importantly, for the parame-
ters adopted in this work, y =2 sets the transition point
between type-I (y < 2) and type-II (y > 2) WSM phases.
In the remaining of this paper, the transport properties will
be investigated as a function of the chemical potential u as
well as of the tilting of the Weyl cones controlled by y.
Interestingly, Eq. (4) is constrained by the following mirror
symmetries [25]:

M Hp ke, ky, k)M = Hp(—ky, ky, k), &)

MIHp(ky, ky, k)M, = Hp(ke, ky, —k2), (©6)

which impose that the Fermi arcs connecting the Weyl nodes
lie on the (z, x) surfaces. In addition, these symmetries con-
strain the BCD tensor, so that the only nonvanishing elements
are D, and D,;. In other words, a second order Hall current
can only be obtained in the (y, z) (= D) and (x, y) (= D,;)
planes. Consequently, the Fermi arcs cannot contribute to
the NLHE response. Nevertheless, as discussed below, other
trivial surface states can substantially impact the second order
response.

We now design the slabs by discretizing Eq. (4) along a
given direction, X, J, or Z, of the cubic Brillouin Zone (see,
e.g., Ref. [63]). The Hamiltonian loses periodicity along the
chosen axis. The new Hamiltonian 7—[2 of size 2L x2L, with
i =2x, ¥, Z depending on the growth direction, and L the

number of layers, is given by

HY HI MR 0 .. 0
HIT MR WD MR
O s A BTG
0 MM . o
E ... .'. .‘A. .': H’;’
0 ... 0 M H H

For the block matrices in Eq. (7), H} is the intralayer
Hamiltonian that retains in-plane periodicity after the cut,
while H} and H’ are the nearest neighbor and second near-
est neighbor interlayer Hamiltonian, respectively. For the cut
along %, the block matrices are given by

Hi = —y cos ko(cos 2k, — cos k)b

1
_ I:m(z — cos ky) + 2t (cos k, — cos ko)i|61

— 2t sink,6s, ®)
Wi = %(cos 2k, — cos kg)6o — 163, ©)
HE = %al. (10)

A cut along ¥ leads to
'Hf) = y(cos 2k, — cos kg)(cos k, — cos ky)bo

—[msin® ky + 2t,(cos k, — cos ky)161

—2t cos k, 63, (11)
1 = gﬁl +itéy. (12)
Finally, a cut along Z gives
’Hg = —y cos ko(cos k, — cos ky)by

—[m(1 — cos? ky — cos ky) — 2t, cos ko161

— 2t sinky65 — 2t cos k63, (13)
Hs = —1,61, (14)
’H% = g(cos k, — coskg)by. (15)

We illustrate the slab band structures for each cut in Fig. 2,
for y =1 (type-I WSM) and y = 3 (type-1I WSM). Since the
slab Hamiltonians retain a Berry curvature perpendicular to
the plane of the slab, we define D, as the BCD associated
with H{ when the electric field is applied along 2, and Df’cz is
the BCD associated with ’HS when the electric field is along
X. These are the only relevant BCD components for the slab
geometries presented above due to the symmetry restrictions.
We now move forward to the method for calculating the layer
decomposition of transport coefficients in the slabs. Since the
periodic part of the Bloch function can be written in terms
of the complete layer basis as |u,x) = Z,L:I |w) (@ |tnk),
one can extract information about layer / by applying the
projection operator S; = |wjk) (wi|, [ € [1, L] to an observ-
able O. In this way, it is easy to see that O = ZIL:I S0
and ZZL: 1 S = Logxor. We use this description to separate the
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FIG. 2. Band structures of the WSM slab of 25 layers, with
y =1 [(a)—(c)] and y = 3 [(d)—(f)] along the high symmetry path
of the cubic lattice for different cuts: (left panels) £ for k, =0
and k, € [—m, 7], (center) y along the path A = (—x,0, —7) —
I'=(0,0,0) > A, = (,0,7) and (right) Z for k, =0 and &, €
[—m, ]. The central panels clearly displays type-1 (b) and type-II
(e) Weyl cones. The surface states at the top and bottom surfaces are
represented with a solid red line. The flat red bands in (a), (c), (d),
and (f) are surface states at zero energy that are highly localized at
the corresponding surfaces.

contributions of the density of states for a slab with a fixed
number of layers,

le = —%Im[Tr (S[GE)], (16)

with the retarded Green’s function

Gi = lim [(e +im1 i (17)
n—0*

This decomposition provides an insight about the influence
of the surface states for each growth direction. Additionally,
in order to obtain the contribution of layer / to the NLHE
response along, say, y, one simply needs to perform the sub-
stitution 9, — S;d, into Eq. (1) and then into (3).

III. RESULTS AND DISCUSSION

A. Band structure and surface states

Let us first consider how the Weyl cone tilting impacts the
slab band structure and its surface states. Since only Df and
D;A”C‘Z are nonvanishing, and because the Weyl nodes are located
in the (k,, k;) plane, we focus on slabs composed of L = 25
layers and normal to the X and Z directions. Without loss of
generality, we fix the chemical potential to 4 = 0.2 and select
the exemplary cases y = 1, 3 to illustrate the differences
between a type-I and a type-Il WSM, respectively. To better
understand how bulk and surface states evolve upon tilting
the Weyl cones, we represent the density of states in the 2D
Brillouin zone and projected on a set of representative layers,
ranging from the bottommost surface to the topmost surface.

Our results are depicted in Figs. 3(a) and 3(c) for the X cut and
Figs. 3(b) and 3(d) for the Z cut.

Figures 3(a), 3(c) and 3(b), 3(d) show different behaviors
of the bulk and surface states when tuning the tilting param-
eter. When 7 = X [Figs. 3(a) and 3(c)], notice two distinct
situations depending on the value of y: if y =1 [type-I,
Fig. 3(a)], the density of states is dominated by the Weyl nodes
across the whole slab, with a surface state composed of the
projected nodes connected by degenerate Fermi arcs. When
y =3, [type-I1, Fig. 3(c)], the density of states of the central
layer is composed of electron and hole pockets touching at the
Weyl nodes, as expected. These pockets result in large trivial
surface Fermi pockets enclosing the nodes, whose connec-
tions change direction from Z (type-I) to & (type-1I) WSMs
[51]. A map of the Fermi arcs’ reconnection and surface
states’ evolution as a function of the tilting y can be found
in Appendix A.

On the other hand, for i =2 [Figs. 3(b) and 3(d)],
we obtain a different behavior. Whereas for y = 1 [type-],
Fig. 3(b)], the Weyl nodes remain disconnected throughout the
slab, for y = 3 [type-II, Fig. 3(d)], a surface contribution ap-
pears due to the emergence of track states [51]. Nonetheless,
the surface Fermi pockets associated with the projection of the
bulk electron and hole pockets remain very small and the sur-
face states are dominated by the Weyl nodes, in sharp contrast
with the % cut discussed in Figs. 3(a) and 3(c). We therefore
expect the surface states to have completely different impact
on the NLHE signal in these two different slab geometries.

B. Nonlinear Hall response

Let us now turn our attention towards the NLHE response
for the two slabs. We compute the BCD components given
by Eq. (4) in both slab geometries, (a) D’ZEX /L (% cut) and (b)
D%, /L (2 cut), as well as in the 3D bulk structure, D7, | (black
symbols), in order to better identify the impact of the surface
states. Notice that the BCD calculated in the slab geometry is
normalized by the number of layers L to allow for a quanti-
tative comparison with the BCD calculated in the bulk. By
definition, the BCD is therefore unitless. In the following,
we set the chemical potential to © = 0.2 and represent the
BCDs as a function of the tilting parameter y, as displayed
in Figs. 4(a) and 4(b). In addition, the corresponding ratio
between the BCD and the density of states is reported on
Figs. 4(c) and 4(d) and discussed further below.

For the £ cut [Fig. 4(a)], the bulk BCD (D3P, black sym-
bols) displays a nonlinear dependence as a function of the
tilting parameter, as observed by Zeng et al. [25]: it first
increases smoothly with y, reaches a maximum and decreases
for large y. We attribute this tendency to the contribution of
the Fermi surface between the Weyl nodes, as also mentioned
by Zeng et al. [25], and the upper limit that should reach the
tilting parameter regarding the inclination of the Weyl nodes.
In contrast, the slab BCD (D’;, colored symbols) increases
sharply and reaches a plateau at large y. Furthermore, the
value of this plateau is substantially larger than the maximum
value obtained in the bulk although it slightly decreases when
increasing the number of layers, suggesting that surface states
play a major role in the NLHE response. Since the transition
between type-I and type-II regimes produces a change in the
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FIG. 3. Projected density of states (DOS) for [(a) and (c)] 7 = X and [(b) and (d)] 72 = Z as a function of the momentum coordinates for
selected layers / for the type-I (y = 1) [(a) and (b)] and type-II (¥ = 3) phases [(b) and (d)]. For the % cut in the type-I phase (a), the Weyl
nodes dominate in the bulk and get connected by degenerate Fermi arcs at the surface, whereas in the type-II phase (c), large trivial Fermi
pockets appear across the slab. For the Z cut in the type-I phase (b), the Weyl nodes remain disconnected across the slab, whereas in the type-II
phase (d), trivial Fermi pockets dominate in the bulk with track states and projected Weyl nodes at the surface. The track states’ projections
are centered around k, = 0, £, which are indicated with blue arrows on each corresponding layer.

configuration of the surface states, with the apparition of large
Fermi pockets [Fig. 3(c)], it is clear that the mismatch between
the slab and bulk responses arise from the influence of the
Fermi pockets’ projections on the BCD across the slab.

Conversely, for the Z cut [Fig. 4(b)], the bulk and slab
BCDs show a similar behavior, increasing continuously and
displaying local plateaus at the type-I-type-II transition, as
well as for large tilting parameter y. Based on Fig. 3(d), we
infer that the surface track states and other trivial states do not
affect qualitatively the behavior of BCD in finite slab samples.
In fact, in the Z cut, the slab BCD converges faster towards the
bulk BCD when increasing the number of layers than in the
X-cut configuration.

Since the density of states of carriers also changes when
tuning the band structure, we report the corresponding ratio
between the BCD and the density of states in Figs. 4(c) and
4(d). In Fig. 4(c), for a slab normal to %, the renormalized BCD
exhibits a qualitatively similar trend across the type-I-to-type-
I transition, although the slab BCD is markedly larger than
the bulk BCD when approaching the type-II regime. Therefore
the Fermi pockets’ projections on this slab enhance the value
of the BCD due to the reconfiguration of the surface states
and the presence of more local states within the unit cell. In

contrast, for a slab normal to Z in Fig. 4(d) shows a smaller
discrepancy between the slab and bulk calculations suggesting
that the BCD is weakly impacted by the track states and other
trivial states.

The calculations displayed in Fig. 4 have been performed
at u = 0.2. Looking a the band structures in Fig. 2, one
expects the relative contribution of bulk and surface states to
the NLHE to vary when increasing the chemical potential.
In particular, when p leaves the regions of the Weyl cones,
the bulk states should dominate the transport. Nonetheless, as
further discussed in Appendix B, we find that as long as the
chemical potential lies close to the Weyl cones, the distinct be-
havior of the BCD in the two different slabs, x cut and z cut, is
qualitatively the same in the type-II regime: the surface states
substantially contribute to the nonlinear transport for the x cut,
whereas they are negligible in the z cut. To complement this
analysis, we compute the layer decomposition of the NLHE
in slab geometries, for y = 1, 3 and L = 25. The result is
reported in Fig. 5 for (a) y = 1 and (b) y = 3 for x (black)
and Z cut (red). As we can see from Fig. 5(a), in a type-I WSM
the NLHE response strongly differs at the edges, i.e, at the top
(I = 1) and bottom (I = 25) layers. From Figs. 3(a) and 3(b),
we attribute this behavior to the surface states driven by the
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FIG. 4. BCD components as a function of the tilting parameter y for slab and bulk systems. (a) Slab (foX /L) and bulk (fo) components
for the % cut, for different slab thicknesses. (b) Slab (Di;Z /L) and bulk (Di]z)) components for the Z cut, for different slab thicknesses. [(c) and
(d)] Corresponding ratio between the BCD coefficient and the corresponding density of states for bulk and slab systems for the % cut (c) and Z

cut (d).

degenerate Fermi arcs that only appear in the X cut. In the case
of the type-II WSM, Fig. 5(b), we note that the magnitude of
the central layer (I = 13) in the X cut is larger than that in
the Z cut. Actually, the main contributions stem from layers
located underneath the surfaces (I =5, [ = 21) rather than
on the surface layers. This fact corroborates our claim that
in type-II WSMs a decisive factor to enhance NLHE is the
presence of Fermi pockets’ projections at the surface rather
than track states. It is worth mentioning that as long as the
surface states are topologically protected (i.e., Fermi arcs), a
weak influence of surface disorder is expected. Nonetheless,
topologically trivial states, such as the ones that contribute the
most to the NLHE in our study, are more sensitive to surface
disorder, which should impact their overall response. We leave
this observation to further studies.

Finally, let us comment on the experimental signature of
the surface contribution to the NLHE. Based on the analysis
provided above, it is clear that the surface states contribute
substantially to the overall signal in the X cut, whereas it
contributes marginally to the signal in the Z cut. As a con-

sequence, one expects a strong difference between these two
slabs when measuring the NLHE as a function of the thick-
ness. Figure 6 displays the thickness dependence of the NLHE
in a type-Il WSM calculated at 4 = 0.2 and y = 3, in both 2
cut (blue) and x cut (red). Whereas the NLHE of both slabs
converge towards the bulk values at large thicknesses (dashed
lines), they exhibit a distinct behavior at small thicknesses. In
the x cut where the surface states contribute massively to the
NLHE (see Fig. 4), the signal increases substantially at small
thicknesses, whereas in the Z cut, no such behavior is reported.
This distinct feature can be used as an indication of surface
state-driven NLHE in experiments.

IV. NONLINEAR HALL EFFECT IN WTe, SLABS

Let us now consider a realistic system, WTe, in its
orthorhombic phase, and compute the NLHE from first prin-
ciples. WTe, is a well-known type-II WSM [41,42], in
which NLHE has been originally reported [10,11]. For the
density functional theory simulations [64,65], we used the
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FIG. 5. Layer dependent contribution for the BCD normalized by
the number of layers (in this case, L = 25). We show the tomography
for a type-I WSM with y =1 in (a) and for a type-II WSM with
y =3 in (b).

Perdew-Burke-Ernzerhof [66,67] exchange-correlation func-
tional. The geometry optimizations were performed using a
plane-wave basis as implemented in the Vienna ab initio sim-
ulation package (VASP) [68,69]. We have employed 400 eV
for the plane-wave expansion cutoff with a force criterion
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FIG. 6. Thickness dependence of the BCD in a type-II WSM
for the Z cut (blue) and X cut (red), as compared to the bulk values
(dashed lines). The % cut shows a very strong deviation from the bulk
value at small thicknesses, illustrating the importance of the surface
states in this case.

ry S X rz u

FIG. 7. Bulk band structure of WTe, type-II WSM obtained from
density functional theory simulations. The inset displays the unit cell.

of 5 pev/A and a reciprocal space sampling containing
16x16x14 k points within the Brillouin zone. The ionic
potentials were described using the projector augmented-
wave (PAW) method [70], post-processing calculations were
performed using WANNIERTOOLS [71]. The band structure is
displayed in Fig. 7 with the inset showing the unit cell. The
band crossings are located within the X-I" path in momen-
tum space, such that the Fermi level was set to zero near
this region. With this consideration, we can project the Weyl
points on selected surfaces, i.e., Z [corresponding to the (001)
direction] and X [corresponding to the (100) direction].

Let us first look at the density of states in the bulk and at
the surface. Figure 8 displays the projected density of states
in the bulk [(a)—(c)] and at the surface [(b)—(d)] for a slab cut
along the Z direction [(a) and (b)] and for a slab cut along the x
direction [(c) and (d)]. As can be observed from Figs. 8(a) and
8(b), in the Z cut the resulting density of states of the slab is
larger at the surface than in the bulk, especially near the origin
(T point). On the other hand, the opposite situation happens
when the slab is normal to %, as can be noticed from Figs. 8(c)
and 8(d). From these results and comparing to the lattice
model in Fig. 3, we deduce that the surface states highlighted
in Fig. 8(b) should enhance the value of the BCD for the
slab normal to Z, being strongly dependent on the thickness
of the slab, whereas the geometry normal to X should be less
sensitive to the Fermi arc diversity on the sample.

We now move on to the computation of the surface con-
tribution of the NLHE for the two cuts considered above. For
the calculation of the BCD, we have used Eq. (3) performing
the sum over a sample Brillouin zone containing 500x500 k
points. Figures 9(a) and 9(b) display the band structure and the
BCD, respectively, computed for a slab cut along the % direc-
tion. The color bar in (a) represents the projections on the top
and bottom surfaces of a slab containing 25 layers. One can
distinguish both surfaces by the dark and yellow lines near the
Fermi level. In panel (b), the BCD is computed as a function
of the energy for slabs containing an increasing number of
layers, from 15 to 25. It is clear that the energy profile of the
BCD strikingly depends on the slab thickness. This thickness
dependence reflects the influence of the surface states. For the
sake of comparison, we also reported the value of the BCD
computed in the bulk (dashed line). For an infinitely thick
slab, the peaks present below the Fermi level and associated
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FIG. 8. WTe, density of states at Fermi level, projected on the bulk [(a) and (c)] and top surfaces [(b) and (d)] for a slab geometry containing
25 layers. (a) and (b) correspond to a cut along Z whereas (c) and (d) correspond to a cut along X.

with the surface states disappear. Similarly, Figs. 9(c) and 9(d)
display the band structure and BCD, respectively, calculated
for a slab cut along the % direction. In contrast to the Z cut
discussed above, the surface states cannot be clearly identified
in the band structure that is instead dominated by bulk states.
In panel (d), the BCD is computed for three different slab
thicknesses. Interestingly, the qualitative behavior of the BCD
is similar, displaying a peak whose position is weakly influ-
enced by the slab thickness. For an infinitely thick slab, the
bulk BCD (dashed line) conserves the overall structure, with
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FIG. 9. Band structure of a WTe, slab containing 25 layers and
cut along Z (a) and % (c). For this case the color bar represents the
projections on the bottom (—1) and top (+1) layers. [(b) and (d)]
Corresponding BCD for bulk and slabs containing 15, 20, and 25
layers.

a slight reduction in magnitude. These calculations show that
surface states do substantially impact the NLHE in realistic
materials. An analogous behavior is obtained for the minimal
model in the type-II regime (y = 3), see Appendix B.

V. CONCLUSIONS

We have investigated the influence of surface states on the
NLHE response of noncentrosymmetric time-reversal invari-
ant WSMs. Using both a model Hamiltonian and realistic first
principles calculations, we have demonstrated that depending
on the direction of the cut, surface states emerge that can sub-
stantially contribute to the NLHE of the slab. Notice that the
topological nature of the surface state (topologically protected
arcs, or track states) has no impact on the overall BCD, only
the relative number of states occupying the surface and the
bulk matters. We emphasize that the relative contribution of
the surface states with respect to the bulk states is in fact
very large, leading to dramatic thickness-dependence of the
NLHE response, in particular in type-II WSMs. This observa-
tion, confirmed by first principles calculations on WTe, slab
geometries, suggests that surface states can contribute much
more efficiently to NLHE than their bulk counterpart. We
expect that the experimental signature of the surface-driven
NLHE can be identified upon varying WSMs film thickness,
depending on the growth orientation of the slab. These con-
clusions are not limited to WSMs and should apply to other
topological systems and topologically trivial classes of non-
centrosymmetric materials.
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FIG. 10. Layer-resolved density of states of the topmost (top panels), central (middle panels) and bottommost (bottom panels) surface of a
system with 25 layers and ;o = 0.2. The red arrows indicate the Fermi arcs, and the blue arrows point to the center of the track states. Finally,
indexes (a)—(d) show the cases y = 1, 2, 2.5, 3, respectively, i.e., tracking the transition from type-I to type-Il WSM. The mismatch between
the top and bottom surfaces is in agreement to what is reported in [51], and we assign this behavior to the absence of mirror symmetry along y

in the original Hamiltonian given by Eq. (4).

APPENDIX A: FERMI ARCS RECONNECTION
UPON TILTING

When transiting from type-I to type-II WSM, increasing
the tilting of the Weyl cones induces a reconnection of the
Fermi arcs. This is clearly observed in the y cut, as reported
on Fig. 10. We observe a clear transition from Fermi arcs to
Fermi pockets on the surface states (top and bottom panels).
Indeed, a strong tilting can severely enlarge the Fermi pockets
surrounding the Weyl nodes, leading to the merging between
them and the generation of a trivial pocket. This is in fact
what is happening at y = 3 in Fig. 3(d). In other words, if one
increases the tilting of the Weyl cones, the connectivity of the
Fermi arcs is modified and can even induce the emergence of
a trivial Fermi pocket from the merging of two Fermi pockets
surrounding two opposite nodes.

APPENDIX B: DEPENDENCE ON THE FERMI LEVEL

All our calculations were performed away from the neu-
trality point, for u© = 0.2. One might wonder how the Fermi
level impact the relative contribution of the surface states
and the bulk states to the NLHE. In Fig. 11, we show the
dependence of the BCD as a function of the Fermi level
for the [(a) and (c)] x and [(b) and (d)] z cut, for type-I
(y =1) and type-II (y =3) WSM. We find that the sce-
nario proposed in the main text qualitatively holds: the x
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FIG. 11. Dependence of the BCD as a function of the chemical
potential for the [(a) and (c)] x cut and [(b) and (d)] z cut, for type-I
(y = 1) and type-1I (y = 3) WSM.
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cut, which possesses a strong surface contribution, exhibits
a very strong difference between bulk BCD and slab BCD,
regardless of the Fermi level, contrary to the z cut whose

surface states are much less prominent. This effect is similar
to that observed in the realistic calculations of WTe,, see
Fig. 9.
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