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Detecting subsystem symmetry protected topological order through strange correlators
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We employ strange correlators to detect 2D subsystem symmetry protected topological (SSPT) phases which
are nontrivial topological phases protected by subsystem symmetries. Specifically, we analytically construct
efficient strange correlators in the 2D cluster model in the presence of the uniform magnetic field and then
perform the projector quantum Monte Carlo simulation within the quantum annealing scheme. We find that
strange correlators show a long-range correlation in the SSPT phase, from which we define strange order
parameters to characterize the topological phase transition between the SSPT phase at low fields and the trivial
paramagnetic phase at high fields. Thus the detection of the fully localized zero modes on the 1D physical
boundary of the SSPT phase has been transformed to the bulk correlation measurement about the local operators
with the periodic boundary condition. We also find interesting spatial anisotropy of a strange correlator, which
can be intrinsically traced back to the nature of spatial anisotropy of subsystem symmetries that protect SSPT
order in the 2D cluster model. By simulating strange correlators, we, therefore, provide the first unbiased
large-scale quantum Monte Carlo simulation on the easy and efficient detection in the SSPT phase and open
the avenue of the investigation of the subtle yet fundamental nature of the novel interacting topological phases.
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I. INTRODUCTION

Exemplified by the Haldane chain, bosonic symmetry pro-
tected topological (SPT) phases in interacting boson/spin
systems are short-range entangled states protected by global
symmetry [1–5]. SPT phases are sharply distinct from topo-
logical orders [6,7] that admit a long-range entanglement
and robustly persist regardless of symmetry protection. More
concretely, SPT phases can be adiabatically connected to
trivial direct product states by local unitary transforma-
tions if symmetry is allowed to be broken. However, such
adiabatic paths are forbidden if symmetries are respected.
For the past decades, SPT phases have been intensively
studied through different approaches including group co-
homology [5], cobordism groups [8,9], nonlinear sigma
models [10,11], topological field theories [12–16], conformal
field theories [17–19], decoration picture [20], topological
response/gauged theory [21–27], projective/parton construc-
tion [28–33], braiding statistics approach [34–37], and strange
correlators [38–43], which ignites great research interests and
joint efforts from condensed matter physics, mathematical
physics, and quantum information.

However, as short-range entangled states, SPT phases are
nonfractionalized in the bulk and are not characterized by
the more interesting properties found in topological orders.
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For example, the behavior of entanglement entropy of SPT
phases is trivially dominated by area law, which is a common
feature for all gapped phases. In contrast, topological or-
ders admit exotic subleading term—topological entanglement
entropy—which is quantitatively determined by total quantum
dimension of anyons [44–47]. Also in quantum critical points
and other gapless systems, the entanglement entropy admits
logarithmic corrections with coefficient representing the con-
formal field theory content [48–51]. In all these situations,
the strong entanglement becomes the organizing principle of
highly entangled quantum matter. Therefore one of subse-
quent directions, in the field of SPT physics, is to find ways
to design and detect new types of SPT phases with potentially
richer entanglement properties despite the absence of fraction-
alization in the bulk.

Along this line of thinking and motivated by the field
of fracton physics [52–86], recently, an exotic class of SPT
orders dubbed as subsystem symmetry protected topological
(SSPT) orders was proposed [87–95], and shows a series
of intriguing properties beyond aforementioned SPT phases
protected by global symmetries, such as spurious topological
entanglement entropy [96–99] and duality into fracton topo-
logical orders [87,89–94,100,101]. Besides, SPT protected
by fractal subsystem symmetries [95,102,103], subsystem
symmetry enriched topological orders [104], higher order
topological superconductors protected by subsystem symme-
tries [105], and the computational properties of SSPT phases
[95,106,107] have also been discussed. The subsystem sym-
metry refers to a kind of symmetries that by definition lies
between global and local (gauge) symmetries [108–110],
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which is, in this conceptual level, similar to the higher rank
symmetry [74–77] despite the subtle difference. In other
words, a local symmetry can act on degrees of freedom inside
an area that is negligible at the thermodynamic limit, while
a global symmetry acts on degrees of freedom from all of
the system. As an interpolation between global and gauge
symmetry transformations, a subsystem symmetry transfor-
mation acts on degrees of freedom inside a subdimensional
area which is subextensive at thermodynamic limit. Thus
the definition of SSPT phases is clear: nontrivial SPT phase
protected by a subsystem symmetry that is generated by
subextensively infinite number of symmetry generators. For
example, in Ref. [87], the 2D cluster model [111], which is
also denoted as topological plaquette Ising model (TPIM), is
identified as having an SSPT order protected by a linear sub-
system symmetry. By linear, we mean that the Hamiltonian is
invariant under flipping spins sitting along a straight line, i.e.,
a subsystem of the whole 2D spin model. The number of such
straight lines is subextensively infinite.

Theoretically, Ref. [87] finds that the 1D edge states pro-
tected by such unconventional symmetries are fully localized
zero modes that are exactly on the endpoints of symmetry
generators (see Sec. II A). Therefore such highly localized
(dispersionless) edge modes of SSPT phases actually cast
shadow in the SSPT detection and render featureless results in
traditional correlation-based theoretical analysis and numeri-
cal simulation in transport and spectroscopic measurements,
compared with the easy detection with such means of their
2D SPT cousins protected by global symmetries. Further-
more, creating a clean boundary with less finite-size effect
is challenging both in experiments and large-scale simula-
tions. Especially, in a practical quantum Monte Carlo (QMC)
simulation, it is generally convenient to compute correlation
functionlike observables, but unfortunately all gapped topo-
logical phases including SPT, SSPT, and topological orders
do not show any defining properties in such easily accessible
observables in the bulks.

To apply QMC simulation on SSPT order with a periodic
boundary condition, in this paper, we attempt to take full ad-
vantage of strange correlators initially proposed in Ref. [38].
While more details about strange correlators are present in
the main text, here let us briefly introduce the notion of
strange correlators. The “strange” definition of such correla-
tors is that the bra- and ket- wave functions are respectively
a trivial symmetric direct-product state and the state to be
diagnosed. Then, strange correlators are defined as such a
strange type of two-point correlation of a local operator φ.
In contrast to traditional correlation functions that exponen-
tially decay in topological phases without symmetry-breaking
orders, strange correlators of some φ will either saturate to
a constant or show a power law decay at long distances
for a nontrivial SPT state. Since the calculation of strange
correlators are performed with periodic boundary condition,
one obvious advantage of strange correlators is that a spatial
interface (i.e., physical boundary) between the trivial state and
the ground state to be diagnosed is unnecessary, rendering
bulk measurement of correlation functions of strange type.
In the literature, a series of SPT orders protected by global
symmetries, including free and interacting fermion topologi-
cal insulators, the Haldene phase and some other exotic SPT

phases, have been successfully detected by strange correlators
[38–43]. Besides, the theoretical idea of strange correlator has
also been utilized and generalized in the study of various top-
ics, including intrinsic topological orders and conformal field
theories [112–126]. While there has been exciting progress on
numerical simulation of fracton ordered lattice models as well
as systems with subsystem symmetries [99,127–132], such a
strange correlator diagnosis of SSPT phases is still lacking.

In this paper, we investigate strange correlators of the 2D
cluster model [87,111] via the projector QMC method within
the quantum annealing (QA) scheme where the SSPT-ordered
ground state is accessible by sampling an operator strings
acting on a trial state [133–135]. We analytically study strange
correlators of various local operators φ when exact solvability
can be achieved. Based on the analytic results, we propose
a set of SSPT-order-detectable and QMC-accessible strange
correlators for the purpose of the large-scale numerical simu-
lation on the effect of uniform magnetic fields that drive the
system away from the exactly solvable point. Numerically,
we find that in the presence of symmetry-respecting magnetic
field, strange correlators show a long-range correlation in a
finite range of magnetic field, and most importantly, strange
correlators unambiguously signal the first-order phase tran-
sition between the SSPT phase and the trivial paramagnetic
phase. We also introduce the notion of a strange order pa-
rameter, which is defined as the remaining finite value of
strange correlators at long-distances (i.e., half of the linear
size of the 2D system with the periodic boundary condition),
in order to signal the existence of the SSPT phase by following
the general wisdom of Landau’s theory of symmetry-breaking
phases. In summary, by means of strange correlators, the
detection of the fully localized zero modes on the 1D physical
boundary of SSPT phase has been transformed to the bulk
correlation measurement about the local operators with the
periodic boundary condition. We also find interesting spatial
anisotropy of a strange correlator, which can be intrinsically
traced back to the nature of spatial anisotropy of subsystem
symmetries that protect SSPT order in the 2D cluster model.
Our findings therefore provide the first unbiased large-scale
quantum Monte Carlo simulation on the easy and efficient
detection in the SSPT phase and open the avenue of the
investigation of the subtle yet fundamental nature of the novel
interacting topological phases. Along with previous studies in
conventional SPT physics [38–43], the present study on SSPT
phases provides new evidence of the effectiveness of strange
correlators in characterizing nontrivial orders in topological
phases of matter, and is expected to stimulate the theoretical
effort towards a more systematic understanding on strange
correlators.

The rest of the paper is organized as follows. In Sec. II A,
the 2D cluster model for SSPT phase is introduced, focus-
ing on the subsystem symmetries that protect the topological
nature of the SSPT phase. In Sec. II B, we introduce the
field-induced phase diagram of 2D cluster model. Then in
Sec. II C, the construction of the strange correlator in the
present model is explained, along with the basic description
of the projector QMC method employed (the detailed descrip-
tion of the projector QMC methodology is in Appendix A).
Section II D contains the main results of our work, where the
strange correlator in strong and weak SSPT phases, and across
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their SSPT to trivial phase transition points by means of the
transverse magnetic field, are presented and discussed. Based
on these results, the advantageous usage of the strange corre-
lator in the SSPT order detection is unambiguously shown. A
few immediate future directions and conclusions are given in
Sec. III.

II. THE 2D CLUSTER MODEL IN THE PRESENCE OF
ZEEMAN FIELDS

A. Model Hamiltonian and its sign-problem-free basis

The Hamiltonian of the 2D cluster model defined on a
square lattice is given as

H = −K
∑

i

Xi

∏
j

Z j , (1)

where K > 0, Xi and Zi are the Pauli matrices of the spin-1/2
degree of freedom living on site i in the square lattice and j
for the four spin around the site i. Since Xi is an off-diagonal
operator in the {Zi} basis, the direct projector QMC simulation
of the Hamiltonian (1) would meet the sign problem. In order
to avoid this sign problem, we divide the square lattice into
two sublattices and rewrite their associated spins respectively
as τ

x,y,z
i and σ

x,y,z
i . And the index i denotes the site of the unit

cell, which contains one τ spin and one σ spin. Under the
external Zeeman magnetic fields, the 2D cluster model can be
expressed as [87,88]

H = −K
∑

i

Ai − K
∑

i

Bi − hx

∑
i

τ x
i − hx

∑
i

σ x
i , (2)

where Ai ≡ τ x
i

∏
j σ

z
j and Bi ≡ σ x

i

∏
j τ

z
j . And we take K = 1

as a unit in the following discussion. As shown in Fig. 1(a),
the red square refers to an A term in Eq. (2) and the blue square
is a B term. Under this expression, taking the {τ z

i σ
x
i } basis, A

terms are purely off-diagonal and B terms are purely diagonal.
Thus the sign problem can be avoided.

As shown in Ref. [87], the 2D cluster model is invariant
under linear Zsub

2 subsystem symmetry transformations gener-
ated by

∏
i∈lk

σ x
i and

∏
i∈lk

τ x
i operators, where k = x, y, lx (ly)

is an arbitrary straight line parallel to x (y) axis. If we consider
the edges of the 2D cluster model in Fig. 1 with open boundary
condition, taking the upper edge, for instance, for a truncated
cluster with a σ spin sitting on its center, we can define a set
of operators: π x

i = τ z
i σ

x
i τ z

i+x̂, π
y
i = τ z

i σ
y
i τ z

i+x̂, π
z
i = σ z

i , where
we set a unit cell to be composed of a τ spin located at
(a, b) and a σ spin located at (a + 1

2 x̂, b + 1
2 ŷ), x̂ and ŷ are

respectively the unit vectors along x and y directions (for
truncated clusters with τ spins sitting on the center, the cor-
responding π operators can be obtained by simply switching
σ and τ ). As these operators form an SU(2) Lie algebra and
simultaneously commute with all Hamiltonian terms, we can
draw a conclusion that such a set of π operators exactly form a
two-dimensional Hilbert space of the 2D cluster model, which
is nothing but a free 1

2 -spin degree of freedom localized on the
site i. Thus, for each site on the upper edge, there is a localized
dangling 1/2 spin whose excitation energy is zero. Such edge
modes are protected by the corresponding linear subsystem
symmetries. Therefore, unlike 2D SPT orders protected by
global symmetries, in the 2D cluster model the degeneracy

(c)

(a) (b)

(d)

FIG. 1. An illustration of the 2D and 1D cluster models. The blue
points denote the τ spins and the red points denote the σ spins.
(a) 2D cluster model with the red (blue) square telling the A (B)
term in Eq. (2). (b) Illustration of the membrane order parameter
in Eq. (3) with the membrane size d = 3. (c) Illustration of the 1D
cluster model and (d) is the phase diagram of 2D cluster model under
the transverse field hx .

introduced by open boundary condition grows exponentially
with the length of edge. Besides, as demonstrated in Ref. [87],
the effective edge Hamiltonian cannot have any nonidentity
local terms that respect all symmetries. That is to say, the
protected edge modes are always nondispersing in the SSPT
phase. Since the model at hx = 0 is exactly solvable, the
ground state can also be analytically obtained, which is re-
viewed in Appendix B.

B. Field-induced phase diagram from projector QMC

In the presence of the transverse fields hx, by duality trans-
forming to the Xu-Moore model, a first order phase transition
has been discovered at hx,c = 1, from the SSPT phase to a
trivial paramagnetic phase [see Fig. 1(d)] [87,136–139]. In
order to characterize this phase transition, we compute three
different physical observables, including the energy density e,
the magnetization of spin σ defined as mσ x = ∑

i σ
x
i /Ns with

Ns referring to the total number of σ spin, and the membrane
order parameter Od defined as [96,140]

Od =
∏
i∈C

τ z
i

∏
j∈M

σ x
j . (3)

Here, C refers to the corners of the membrane M, which
corresponds to the blue spins (τ ) living inside the small dashed
squares in Fig. 1(b). M is a membrane, which is the collection
of the red spins (σ ) inside the solid squares in Fig. 1(b), and
the factor d is the linear size of the membrane, which is shown

214428-3



ZHOU, LI, YAN, YE, AND MENG PHYSICAL REVIEW B 106, 214428 (2022)

(a) (b)

(d)(c)

FIG. 2. The values of different physical observables under the
transverse field hx . [(a), (b), and (d)] The energy per site, the mag-
netization of spin σ along x direction, and the membrane order
parameter, respectively. Among them, the blue line with triangle are
annealing from the exactly solvable point hx = 0 while the red line
with circle is from the high field limit hx = 2. (c) The behavior of the
membrane order parameter with increasing membrane size, in which
the blue line is inside the SSPT phase (hx = 0.5) and the red is in the
paramagnetic phase (hx = 1.5).

by the green line for d = 3 in Fig. 1(b). In the SSPT phase, the
values of 〈Od〉 would approach a constant as d → ∞, while it
would tend to zero in the trivial paramagnetic phase.

Using the projector QMC method and QA process (see
details in Appendix A 1), we have simulated the 2D cluster
model with system size L = 16 and annealing step �h =
0.01, and measured the energy density 〈e〉, the magnetization
〈mσ x 〉, and the membrane order parameter 〈Od〉, which is
shown in Fig. 2. Firstly, we observe 〈Od〉 as a function of d ,
which is plotted as the blue line for the SSPT phase (hx = 0.5)
and the red line for the trivial paramagnetic phase (hx = 1.5)
in Fig. 2(c). As expected, 〈Od〉 approaches a constant as the
membrane size of 〈Od〉 increasing in the SSPT phase. In
contrast, 〈Od〉 is zero for a large membrane size in the trivial
paramagnetic phase.

Meanwhile, to pin down the phase transition point of the
2D cluster model induced by the transverse field hx, we have
plotted the value of 〈e〉, 〈mσ 〉, and 〈OL/2〉 as a function of hx

respectively in Figs. 2(a), 2(b) and 2(d). The blue lines in these
figures with the triangle points are measured by scanning from
the exactly solvable point (hx = 0) while the red lines with dot
points are from the strong field limit (hx = 2). From Figs. 2(a),
2(b), and 2(d), a clear first-order phase transition has been
observed at hx,c = 1, which is consistent with the result of
analytical mapping mentioned above.

In addition, we consider the effect of longitudinal field hz.
The Hamiltonian in Eq. (2) is changed to

Hl = −K
∑

i

Ai − K
∑

i

Bi − hz

∑
i

τ z
i − hz

∑
i

σ z
i . (4)

The insertions of hz would actually break the subsystem sym-
metry as it does not commute with the symmetry generators.
Therefore the SSPT order is immediately broken when hz > 0
[99,139,141]. Here, we have again measured the energy den-
sity 〈e〉, and the magnetization 〈mτ z〉 for the longitudinal field
with system size L = 8, and the results are shown in Fig. 3.

(a)

(c) (d)

(b)

FIG. 3. The values of different physical observables under the
longitudinal field hz. (a) and (b) are respectively the energy per site
and magnetization of spin τ along z direction. Among them, the blue
lines with triangles are annealing from the exactly solvable point
hz = 0 while the red lines with dots is from the strong field limit
hz = 2.

From Figs. 3(a) and 3(b), one sees there is no phase transi-
tion at any finite hz and the values of 〈e〉 and 〈mτ z〉 smoothly
change as predicted and measured in Refs. [99,139]. In addi-
tion, since hz breaks the SSPT order, 〈Od〉 decay to zero as the
membrane size d enlarging for both values of hz as shown as
in Fig. 3(c). What’s more, setting the membrane size d = L/2
with L for the system size, 〈OL/2〉 also rapidly decays as hz

increases. The behavior of 〈Od〉 means that the SSPT order is
indeed immediately destroyed by the insertion of hz field that
violates symmetry.

C. Construction of a class of strange correlators

Proposed in Ref. [38], the strange correlator can be roughly
understood as a quantity about local operator φ(i) overlapped
by a symmetric trivial direct-product state |�〉 and a short-
range entangled state |�〉 to be diagnosed, which is given by

Cφ (�r) = 〈�|φ(i + �r)φ(i)|�〉
〈�|�〉 , (5)

where �r is a two-dimensional vector �r = (�rx,�ry) for
the 2D cluster model. The trivial state |�〉 should hold all the
symmetry of |�〉. In the framework of the projector QMC
method [133–135], the ground state of the Hamiltonian (2)
is projected out via an operator string with n bond operators,
|�〉 = (−H )n|�(0)〉. The strange and normal correlators can
respectively be computed as

Cφ (�r) = 〈�|φ(i + �r)φ(i)(−H )2n|�(0)〉
〈�|(−H )2n|�(0)〉 (6)

and

Cn
φ (�r) = 〈�(0)|(−H )nφ(i + �r)φ(i)(−H )n|�(0)〉

〈�(0)|(−H )2n|�(0)〉 ,

(7)
where the superscript “n” is for the normal correlation.

From Eqs. (6) and (7), in the imaginary time setting of
the projector QMC simulations, the strange correlator Cφ (�r)
reflects the correlation property at the imaginary time bound-
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ary between the states |�〉 and |�〉 [38]. Therefore, for φ(i)
defined as a local operator, the strange correlator Cφ (�r) will
either saturate to a constant or decay as a power law in the
limit of �r → ∞ if |�〉 is a nontrivial SPT state, correspond-
ing to the spatial interfaces between the trivial and nontrivial
SPT phases [38]. Considering the 2D cluster model case, the
nontrivial SSPT state |�〉 is taken to be the ground state of
the 2D cluster model, which is projected out with a projection
length proportional to the system size (see Appendix A for
detailed explanation). Then, the trivial state |�〉 is preferred
to be

|�〉 =
∏

i

∣∣τ x
i,+

〉 ⊗ ∣∣σ x
i,+

〉 =
∏

i

1√
2

[∣∣τ z
i,+

〉 + ∣∣τ z
i,−

〉] ⊗ ∣∣σ x
i,+

〉
,

(8)
where |τ x

i,+(−)〉 refers to the state that spin τi is pointing along
(against) the x direction, |τ z

i,+(−)〉 and |σ x
i,+(−)〉 are similarly

defined. Note that the state |�〉 can be viewed as the ground
state at the infinite external field hx. In the {τ z

i σ
x
i } basis, the

state |τ x
i,+〉 ⊗ |σ x

i,+〉 can be express as 1√
2
[|τ z

i,+〉 + |τ z
i,−〉] ⊗

|σ x
i,+〉. Thus, at the boundary between |�〉 and |�〉, flipping

τ spins does not change the weight of given configuration but
flipping σ spins would lead to zero weight. In another word,
within the framework of the projector QMC method, Cφ (�r)
is actually about the correlation properties at the boundary of
an operator string with a particular boundary condition that
all the τ spins are free to change but the σ spins are pinned.
However, such a condition causes low efficiency in our pro-
jector QMC simulation because all the clusters that touch a
σ spin are rejected to be flipped and the operator string in
our projector QMC simulation is trapped in a local minimum
configuration. To overcome it, within the consideration of the
subsystem symmetry generators in the 2D cluster model, we
also apply the update process that flipping all the τ spins
along a straightforward line parallel to the x or y direction
(see Appendix C for further details).

From the theoretical side, within the symmetry between
τ and σ spin, the strange correlator of the following op-
erators, including the single spin like φ(i) = τ z

i and φ(i) =
σ x

i , the dimer operator like Di = τ z
i τ

z
i+ŷ, and the multispin

operator like φ(i) = Bi, can be considered. Also, because a
well-established criteria for the optimal choice of φ operator
has not been achieved especially for SSPT case, before the
numerical exploration, it is beneficial to obtain some theo-
retical expectation about the different choices. At the exactly
solvable point (hx = 0), we can straightforwardly obtain these
strange correlators listed in Table I. In the 2D cluster model,
the strange correlator of the single spin are independent of the
transverse field hx. For instance, the strange correlator about
σ x

i is always 1 regardless of hx, so such strange correlators are
not useful in detecting SSPT order. The numerical calculation
and discussion of the strange correlator about the single spin
are collected in Appendices C and D. In summary, in the main
text, we will focus on the strange correlators of both Di and Bi

whose behaviors under the field hx can be used to efficiently
detect SSPT order. Specially, for the Di case, we will show
that due to its anisotropic behavior (to be demonstrated in
Sec. II D), the direction of strange correlator also matters in
the detection.

TABLE I. Strange correlators of the 2D cluster model at the
exactly solvable point. All strange correlators except for φ =
τ z

i τ
z
i+ŷ, σ

z
i σ z

i+ŷ case are constants at the exactly solvable point (i.e.,
hx = 0). Here x̂ and ŷ respectively denote the unit vector along x and
y directions shown in Fig. 1.

φ Cφ (�r)

τ z
i , σ

z
i 0

σ x
i , τ x

i 1
Di = τ z

i τ
z
i+ŷ, D′

i = σ z
i σ z

i+ŷ 1 for �ry = 0, 0 for �ry �= 0
Bi, Ai 1

From the numerical side, with the projector QMC simu-
lation in the {τ z

i σ
x
i } basis, the measurement about operators

Bi, τ z
i , σ x

i and Di = τ z
i τ

z
i+ŷ is diagonal, which can be directly

observed in a given operator string. We present the results in
Sec. II D and Appendix C. However, the measurement about
Ai, τ x

i , and σ z
i is off-diagonal and hard to be measured in the

projector QMC simulation directly (see Table I). But due to
the symmetry between the τ and σ spins, the strange correla-
tor of Ai, for instance, actually has the same behavior as that
of Bi. Thus we do not need to simulate the strange correlators
of Ai any more.

D. Projector QMC simulation on strange correlators and
strange order parameters

In the following, we present our numerical results of
strange correlator in the 2D cluster model. Firstly, we consider
the strange correlator Cφ , where φ is Di in Table I.

φ(i) = Di = τ z
i τ

z
i+ŷ,

CD(�r) = 〈�|Di+�rDi(−H )2n|�(0)〉
〈�|(−H )2n|�(0)〉 .

(9)

At the exactly solvable point hx = 0, CD(�r) would be
1 for �r = (�rx, 0), but 0 for �ry �= 0 as demonstrated in
Table I and Appendix D. From the perspective of symmetries,
such an anisotropy is due to the fact that a D operator only
transforms nontrivially under certain subsystem symmetries,
that makes the behavior of Di+�rDi under symmetry trans-
formations rather complicated. More specifically, for operator
Di, we consider two kinds of subsystem symmetry generators
Ux = ∏

i∈lx
τ x

i and Uy = ∏
i∈ly

τ x
i , where lx (ly) is a straight

line along x (y) direction. We can see that, for Ux, if lx
contains site i or i + ŷ, thenUx anticommutes with Di, asUx

and Di share exactly one spin, thusUxDiU†
x = −Di (hereU†

means the Hermitian conjugate ofU, and forUx andUy, we
simply haveU† = U = U−1); otherwise,Ux commutes with
Di, asUx does not share any spin with Di, thusUxDiU†

x = Di.
Meanwhile,Uy always commutes with Di, asUy and Di share
either zero or two spins, thusUyDiU†

y = Di always holds.
Then, we consider the behavior of Di+�rDi under symme-

try transformations. Firstly, taking �r = (�rx, 0), the four
τ spins in Di+�rDi form the four corners of a membrane.
Therefore Di+�rDi shares either zero or two spins with any
Ux orUy operator, thus they always commute. Since we have
σ x

i = 1 for all σ spins at the trivial state |�〉, one can see that,
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(a) (b)

(e)(d) (f)

(c)

FIG. 4. The real-space strange correlator CD(�r) in the 2D clus-
ter (strong SSPT) model. [(a)–(c)] The strong SSPT phase with hx

changing from 0.2 to 0.6, and finally to 1.0, while the others stand
for the trivial paramagnetic phase with hx varying from 1.2 to 1.8.

for example �rx > 0, then

〈�|Di+�rDi = 〈�|Di+�r

∏
k∈S

σ x
k Di = 〈�|

∏
k∈S

Bk , (10)

where S is a straight string composed of σ spins connecting
sites i and i + �r − x̂. Therefore we have 〈�|Di+�rDi|�〉 =
〈�| ∏k∈S Bk|�〉 = 〈�|�〉 for a ground state |�〉 at the exactly
solvable point. Consequently, CD(�rx, 0) = 1 at hx = 0.

The case that �r = (�rx,�ry) and �ry �= 0 is different.
Since there are at least two τ spins in the operator Di+�rDi sat-
isfying that for each one of them, its y coordinate is different
from the other three τ spins, one can take one of their locations
as site m. Then, for symmetry transformation Ux = ∏

i∈lx
τ x

i
with m ∈ lx, since Di+�rDi and Ux only share one spin, we
haveUxDi+�rDiU†

x = −Di+�rDi. Noticing that both |�〉 and
|�〉 are invariant underUx, one can obtain that

〈�|Di+�rDi|�〉=〈�|UxDi+�rDiU†
x |�〉 = −〈�|Di+�rDi|�〉.

(11)

As a result, 〈�|Di+�rDi|�〉 = 0. In conclusion, within the
SSPT phase, we expect CD(�r) to decay to nonzero constants
only along x direction, which is the direction ofUx subsystem
symmetry generators of 2D cluster model, but no correlation
for the others.

Figure 4 is the real space strange correlator CD, where our
simulations are carried out with the system size L = 16. As
the field hx increases, the 2D cluster model experiences a
phase transition from the SSPT phase into the trivial param-
agnetic phase, whose critical point is located at hx,c = 1 as
discussed in Fig. 2. Figures 4(a)–4(c) are CD(�r) measured
in the SSPT phase with the transverse field hx changing from
hx = 0.2 to 1.0 annealing from hx = 0.0, while Figs. 4(d)–4(f)
are that in the trivial paramagnetic phase scanning from 2.0.
In the SSPT phase, along x direction, CD decay to nonzero
constants. And along the other directions, like y direction, CD

is exactly zero, which means there are no correlation along the
other directions.

To further characterize the SSPT order using the
anisotropic strange correlator CD, a “strange” order parame-
ter with the corresponding anisotropy can be introduced as

(a)

(b)

FIG. 5. The “strange” order parameter CD(L/2, 0). (a) are
CD(L/2, 0) plotted as a function of hx . (b) is the finite-size
extrapolation of CD(L/2, 0), in which CD(L/2, 0) is fitted with
CD(L/2, 0)(L = ∞) + a/L. Here, hze

x = 1.0 are annealed from hx =
0.0 while hpl

x = 1.0 annealed from hx = 2.0 in the projector QMC
simulations.

CD(L/2, 0), which is CD at the longest distance in the peri-
odic lattice. In 1D case, a similarly defined “strange” order
parameter has been proposed in Ref. [142]. Figure 5(a) shows
that CD(L/2, 0) decreases as hx increasing. And we also ap-
ply the finite-size extrapolation in Fig. 5(b) of CD(L/2, 0) =
CD(L/2, 0)(L = ∞) + a/L, where L is the linear system size
to detect the thermodynamic limit behavior of this “strange”
order parameter. For hx = 0.0, 0.5, the 2D cluster model stays
in the SSPT phase and the extrapolated CD(L/2, 0)(∞) are
finite. In contrast, at the transition point and inside the para-
magnetic phase, i.e., hx � hx,c = 1.0, CD(L/2, 0)(∞) clearly
extrapolates to zero.

Then, we consider the CB with φ = Bi as another “strange”
order parameter to describe the SSPT order, where

φ(i) = Bi,

CB(�r) = 〈�|Bi+�rBi(−H )2n|�(0)〉
〈�|(−H )2n|�(0)〉 .

(12)

Different from the CD case, CB is isotropic at the exactly
solvable point hx = 0.0, and B transforms trivially under all
subsystem symmetries. Our projector QMC data of CB are
shown in Fig. 6. Figs. 6(a)–6(c) tells the real space CB in-
side the SSPT phase, while Figs. 6(d)–6(f) are that in the
paramagnetic phase. One sees CB decay to a constant within
the SSPT phase but zero in the paramagnetic phase. Similar
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(a)

(d) (e)

(b) (c)

(f)

FIG. 6. The real-space strange correlator CB(�r) in the 2D clus-
ter (strong SSPT) model. [(a)–(c)] The strong SSPT phase with hx

changing from 0.2 to 0.6, and finally to 1.0, while the others stand
for the trivial paramagnetic phase with hx varying from 1.2 to 1.8.

with CD, we also use the CB(L/2, L/2) as the “strange” order
parameters and observe how it evolves as hx increasing, which
are presented in Fig. 7.

Figure 7(a) describes the dependence of CB(L/2, L/2) with
respect to hx, which indeed decays to zero as the SSPT
order transit to paramagnetic phase at hx,c. Similar with
the CD(L/2, 0), we also applied the finite-size extrapola-
tion of CB(L/2, L/2) = CB(L/2, L/2)(L = ∞) + a/L, which

(a)

(b)

FIG. 7. The “strange” order parameter CB(L/2, L/2).
(a) CB(L/2, L/2) plotted as a function of hx . (b) The finite-size
extrapolation of CB(L/2, L/2), in which CB(L/2, L/2) is fitted by
CB(L/2, L/2)(L = ∞) + a/L. Here, hx = 1.0(ze) are annealed from
hx = 0.0 while hx = 1.0(pl) from hx = 2.0.

(a)

(c)

(b)

FIG. 8. The values of different physical observables under the
transverse field hx . (a) and (b) are respectively the energy per site
and the magnetization of σ spins. Among them, the blue lines with
triangles are annealing from the exactly solvable point hx = 0 while
the red lines with dots are from the strong field limit hx = 2. (c) tells
the spin-spin correlation functions at hx = 0.8, 1.0, and 1.2.

is shown in Fig. 7(b). As expected, in the thermodynamic limit
CB(∞) is finite inside the SSPT phase (hx = 0, 0.5) while it
is zero for the transition point and inside the paramagnetic
phase.

E. Projector QMC simulation on the 1D cluster model (weak
version of 2D SSPT)

Beside the SSPT in the 2D cluster model, there is a weak
version of the 2D SSPT, which is adiabatically connected to
a decoupled stack of 1D SPT orders without breaking any
symmetry. To investigate the strange correlator in this weak
SSPT, we also study the 1D cluster model with SPT order
protected by global symmetries, whose Hamiltonian can be
given as [see Fig. 1(c)]

H1D = −	
∑

i

Xi

∏
j

Z j

= −	
∑

i

A1D
i − 	

∑
i

B1D
i − hx

∑
i

τ x
i − hx

∑
i

σ x
i ,

(13)
Here, we also define A1D

i = τ x
i

∏
j σ

z
j and B1D

i = σ x
i

∏
j τ

z
j .

Different from the Ai and Bi in the 2D cluster model, A1D
i and

B1D
i are three-spin-coupling terms. Also, we take 	 = 1 in the

following discussion of the 1D cluster model. When hx = 0,
1D cluster model is exactly solvable because all A1D

i and B1D
i

operators commute with each other. Therefore the ground
state of 1D cluster model, |�〉, satisfies A1D

i |�〉 = |�〉, ∀i
and B1D

i |�〉 = |�〉, ∀i, meaning that |�〉 can be obtained in
the same manner as the 2D cluster model (see Appendix B).
And the quantum critical point in 1D cluster model caused by
the external field hx is also located at h1D

x,c = 1 [143].
With the help of the projector QMC simulation, we have

measured the energy density 〈e〉, the magnetization 〈mσ x 〉 and
the normal spin-spin correlation Cn

τ z (�r) = 〈τ z
i τ

z
i+�r〉 for the

1D cluster model, shown in Fig. 8. Different from the 2D
Cluster case, leading by hx, both 〈e〉 and 〈mσ x 〉 experiences
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TABLE II. Strange correlators of the 1D cluster model at the
exactly solvable point. All strange correlators are constants at the
exactly solvable point (i.e., hx = 0).

φ C1D
φ (�r)

τ z
i , σ

z
i 1

σ x
i , τ x

i 1
B1D

i , A1D
i 1

a continuous quantum phase transition at h1D
x,c = 1. Moreover,

the two point correlation Cn
τ z (�r) shows a power-law decay at

h1D
x,c = 1, which is consistent with the prediction in Ref. [143].

So as to capture the SPT nature in the 1D cluster model via
strange correlators, we similarly set the operator φ in Eq. (6)
to be a single τ z, σ x, and B1D

i , respectively [142]. At the
exactly solvable point (hx = 0), all these strange correlators
can all be proved to be 1, which have been listed in Table II.

In the main part of this paper, we mainly focus on the most
simple form of the strange correlator in the 1D cluster model,
which is setting the operator φ to be a single τ z operator

φ(i) = τ z
i ,

C1D
τ z (�r) = 〈�|τ z

i+�rτ
z
i (−H )2n|�(0)〉

〈�|(−H )2n|�(0)〉 .
(14)

(a)

(b)

FIG. 9. The strange order parameter C1D
τ z (L/2). (a) are C1D

τ z (L/2)
plotted as a function of hx . (b) is the finite-size extrapolation of
C1D

τ z (L/2) = C1D
τ z (L/2)(L = ∞) + c/L. Inside the 1D SSPT phase,

hx = 0, 0.5, C1D
τ z (L/2)(L = ∞) is finite, whereas at the critical point

and inside the paramagnetic phase, C1D
τ z (L/2)(L = ∞) is zero.

In Fig. 9(a), we plot the strange correlator C1D
τ z (L/2) as a

function hx for a L = 32 system and one sees this “strange”
order parameter indeed vanishes at the critical point of h1D

x,c =
1. Also, Fig. 9(b) is the extrapolation of C1D

τ z (L) = C1D
τ z (L =

∞) + a/L. In the SPT (or weak SSPT) phase (hx = 0.0, 0.5),
C1D

τ z (∞) is finite. At the quantum critical point hx,c and in-
side the paramagnetic phase (hx = 1, 1.5, 2.0), C1D

τ z (L = ∞)
vanishes, that is consistent with the phase diagram and our
bulk data in Fig. 8. In addition, we also measure the strange
correlator C1D

B , which is taking B1D
i operator as φ. The nu-

merical result of C1D
B is plotted in Fig. 14 of Appendix C,

which also shows the C1D
B potential of being a “strange” order

parameter.

III. SUMMARY AND OUTLOOK

In this paper, by using the projector QMC simulation
within the QA scheme, we have constructed strange correla-
tors of various choices of local operators, and systematically
detected the nontrivial SSPT order and identified the topologi-
cal phase transition in the 2D cluster model in the presence of
transverse magnetic field. In this way, we have successfully
transformed the detection of fully localized zero modes on
the 1D physical boundary of the SSPT phase to the detec-
tion of correlation functions of strange type with the periodic
boundary condition, which are very suitable for the large-scale
QMC simulation. More concretely, for the 2D cluster model
considered in this paper, the strange correlator CD(�r) at large
�r serves as a “strange” order parameter to sensitively detect
the transition between the SSPT phase and the trivial para-
magnetic phase. Moreover, CD shows an interesting spatial
anisotropy, which can be intrinsically traced back to the nature
of spatial anisotropy of subsystem symmetries that protect
SSPT order in the 2D cluster model. Meanwhile, CB(�r)
also serves as a sensitive “strange” order parameter of the
SSPT phase, and together with CD, it is finite inside the SSPT
phase and zero in the trivial paramagnetic phase within the
errorbar. Our constructions of CD and CB, exhibit the versatile
and easy-to-implementment nature of the strange correlator in
studying the SSPT systems.

While our QMC results demonstrate that the strange cor-
relator diagnosis is powerful in the detection of SSPT orders,
given an SSPT phase, which is protected by subsystem sym-
metry with infinite number of independent generators in the
thermodynamic limit, a general principle to design a strange
correlator still needs further exploration and clarification.
More specifically, an optimal choice of the local operator
in a strange correlator for such a case does not have a
well-established criteria yet. Therefore, before numerical ex-
ploration, we firstly give a brief theoretical discussion to see
which operators can be expected to show nontrivial numer-
ical results (see Sec. II C). And in our numerical setting,
for instance, D operator transforms nontrivially under cer-
tain subsystem symmetries, and we can notice that there is
a correspondence between D and edge modes. That is, we
have 〈�|Di = 〈�|Diσ

x
i = 〈�|τ z

i σ
x
i τ z

i+ŷ, where τ z
i σ

x
i τ z

i+ŷ has
the same form with the π x operator of an effective spin on
a boundary extended along y direction with a σ spin sitting on
the center (see Sec. II A). At the same time, B operator trans-
forms trivially under all subsystem symmetries and it does
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not show a similarly direct correspondence with edge modes,
but it can be recognized as a membrane order parameter with
size d = 1 (see Sec. II B). Despite the different symmetry
properties, as demonstrated by the numerical results, both CD

and CB show behavior of strange order parameters of the SSPT
phase in the 2D cluster model within the present numerical
precision. Recently, some discussion on an optimal choice of
local operators in strange correlators of SPT phases protected
by global symmetries has been presented in Ref. [126], while
such a type of discussion on SSPT phases is still lacking.
We expect our numerical results will be beneficial to further
theoretical studies. In addition, it was assumed that the (quasi-
)long-range behavior of strange correlators is related to the
spatial interface between SPT phases and trivial phases by
applying the theoretical argument of Lorentz transformations
[38]; however, subsystem symmetries are incompatible with
Lorentz invariance [110], and yet our results clearly demon-
strate the strange correlators successfully detect the SSPT
phase and its transition to trivial phase. Moreover, it is inter-
esting to build a more direct bridge between more traditional
physical observables (e.g., bulk and boundary excitations)
of SSPT phases and the finite value of strange correlators
at long distances (i.e., the strange order parameter). Over-
all, systematical explorations on the effectiveness of strange
correlators as well as the generic theoretical understanding
for the construction of strange correlators for topological
phases including both SPT and SSPT are clearly posted to
the community. Along with the previous studies in the topic
of strange correlators, we hope all these results will be helpful
in the future in constructing a general theoretical framework
of strange correlators.
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APPENDIX A: NUMERICAL METHOD

Here, we perform our simulation for the 2D cluster model
using the projector quantum Monte Carlo (QMC) method
[133–135]. Such a approach is based on the expression that

(−H )n|�(0)〉 = c0(−E0)n

[
|0〉 +


−1∑
m=1

cm

c0

(
Em

E0

)n

|n〉
]
, (A1)

where state |n〉 refers to the energy eigenstates in a Hilbert
space of 
 states. Noted the (−H )n|�(0)〉 ∝ |0〉 if E0 is the

largest eigenvalue and its expansion coefficient c0 �= 0. There-
fore, in the projector QMC method, the ground state |0〉 can be
projected out from an arbitrary trial state |�(0)〉 by sampling
the terms of (−H )n|�(0)〉 with a final extrapolation n → ∞,
which construct a sampling configuration space [133,144].

Then, under the {τ z
i σ

x
i } basis, we first rewrite the Hamilto-

nian (2) as

H = −
∑

i

HAi −
∑

i

HBi −
∑

i

Hhτ,i −
∑

i

Hhσ,i + HC

(A2)
with HAi = K (Ai + I5), HBi = K (Bi + 3I5), Hhτ,i = hx(τ x

i +
I2), and Hhσ,i = hx(σ x

i + 3I2). And, HC = 4KI5 + 4hxI2,
where In are identity matrix of order n. Following the frame-
work of projector QMC method, all of the nonzero elements in
the Hamiltonian can be read as 〈HAi〉 = K , 〈HBi〉 = 2K or 4K ,
〈Hhτ,i〉 = hx, and 〈Hhσ,i〉 = 2hx or 4hx. In the projector QMC
method, the concept of the operator string is introduced by
writing from a trial state that

(−H )n|�(0)〉 =
∑

α

i=1∏
n

Hi|�(0)〉 =
∑

α

Wα|�(α)〉. (A3)

with Hi standing for different term in Eq. (A2) and α is
the formal label for the different strings. |�(α)〉 denotes the
state obtained when the operators acted on |�(0)〉 and Wα =∏

i〈Hi〉. By sampling a high power of H and its action on trial
state |�(0)〉, the ground state can be projected out.

In our projector QMC simulation, there are two kinds of
update, which are the diagonal and the off-diagonal update.
They are presented as below.

1. Diagonal update

The diagonal update is about exchanging the operators.
Firstly, starting from a initial trial state, a operator string is
constructed by randomly selecting n = 32L3 operators, where
L is the system size. And, in the diagonal update process,
we scan the operator string and find the diagonal operators.
For each diagonal operators, it would be replaced by a new
diagonal operator selected according to the following process.
The type of diagonal operator is firstly determined according
to the probability

PA = KNA

KNA + 4KNB + 5hxNs

PB = 4KNB

KNA + 4KNB + 5hxNs

Phτ
= hxNs

KNA + 4KNB + 5hxNs

Phσ
= 4hxNs

KNA + 4KNB + 5hxNs
, (A4)

where NA is the total number of Ai in Eq. (A2) and NB is that
of Bi. And Ns refers to the number of the spin τ in the 2D
cluster model, which is equal to the number of the spin σ .
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If the type Ai is picked up, we randomly select a position s
from NA and insert a diagonal operator Ai with probability

Pinsert
A = 〈HAs〉

K
= 1, (A5)

where 〈HAs〉 is the expectation value of operator Ai at position
s. Since the only nonzero element of HAs is K , the insertion
must be accepted.

If the type Bi is picked up, a position s is randomly picked
up from NB and inserted with probability

Pinsert
B = 〈HBs〉

4K
, (A6)

where 〈HBs〉 is the expectation value of operator Bi at position
s. If the insertion is rejected, we go back to the selecting
operator type process and repeat the inserting process.

If the type Hhτ,i is chosen, spin τs is randomly selected from
Ns and insert a diagonal operator Hhτ

with probability

Pinsert
hτ

= 〈Hhτ,s〉
h

= 1, (A7)

where 〈Hhτ,s〉 is the expectation value of operator Hhτ,s at spin
τs. Since the only nonzero element of Hhτs

is hx, the insertion
must be accepted.

If the type Hhσ,i is picked up, spin σs is randomly selected
from Ns and inserted with probability

Pinsert
hσ

= 〈Hhσs
〉

4h
, (A8)

where 〈Hhσ,s〉 is the expectation value of operator Hhσ,s at posi-
tion σs. If the insertion is rejected, we go back to the selecting
operator type process and repeat the inserting process.

2. Off-diagonal update

For the off-diagonal update process, both the local update
and the modified cluster update are applied in our simulation
[145–147]. First of all, there are two kinds of operators in the
operator string, which are the pure diagonal operator (HBi and
Hhσ,i ) and the quantum operator (HAi and Hhτ,i ). Caused by
the constant term in Eq. (A2), the diagonal element in HAi

and Hhτ,i are nonzero. Consequently, in the operator string, the
quantum operator can be both diagonal and off-diagonal. To
achieve a high efficiency, we applied both the local update and
the cluster update in the projector QMC simulation.

When it comes to the local update process, a leg of a quan-
tum operator (HAi and Hhτ,i ) is selected randomly in a given
operator string. Then, from this leg, we create all the update
lines of this vertex and evolve them along the operator string
until it meets another operator acting on the same position [see
Fig. 10(c)]. When the update line meets the boundary of the
operator string (〈�l (0)| and |�r (0)〉), the update line would be
ended. The spins included in the update region are proposed
to be flipped [the red region in the Fig. 10(c)].

For the cluster update, also starting from a randomly
selected vertex leg of a quantum operator, the cluster is con-
structed under the rules listed as follows. (1) When the cluster
building line meets a pure diagonal operator (HBi and Hhσ,i ), it
would go through the operator directly which is presented as
Fig. 10(b). (2) When the cluster building line meets a quantum
operator (HAi and Hhτ,i ), it would evolve in two different ways.

FIG. 10. Schematic diagrams of the off-diagonal update. The
red dashed line is the region suggested to flip the spin. Un-
der the METROPOLIS process, its acceptance probability is Pf l =
min(1, Wnew

Wold
). (a) and (b) describe two different way when a cluster

line meets an operator. (c) tells the local update and (d) refers to the
cluster update process in which the operator in the solid rectangle is
deal in the (a) way but that in the dashed rectangle is in the (b) way.

This line can cross the operator directly as Fig. 10(b). Or
it will be ended at its vertex leg but generating update lines
from all the other vertex legs [see Fig. 10(a)]. (3) The update
line would also be terminated when it meets the boundary
(〈�l (0)| and |�r (0)〉). In each cluster update process, we pick
1% of these quantum operators randomly and treat them in
the Fig. 10(a) way in the cluster constructing process while
the others in the Fig. 10(b) ways. Noted that this cluster build-
ing process would turn back into the typical cluster update
with treating each quantum operators in the Fig. 10(b) way.
Finally, the spins including in the cluster [the red region in the
Fig. 10(d)] are suggested to be flipped.

In both of these updates, the spins included in the red re-
gion would be flipped with the acceptances probability given
by

Pf l = min

(
1,

Wnew

Wold

)
,

Wnew

Wold
= 2n+,new−n+,old

. (A9)

Here, n+,new (old) are the number of diagonal operators with
〈HBi (hτ,i )〉 = 4K (h) in the new (old) configuration. It means
that the weight ratio depends on the number of the overlap-
value-changing diagonal operator.

Moreover, due to the first-order phase transition leaded by
hx, the QA process is required in our numerical simulation
to make a faster convergence to the ground state, in which
the quantum parameter, hx, would be slowly changed and the
operator string from the last parameter result would be applied
as a new initial string for projector QMC simulation at the
next parameter. Our simulation in the SSPT phase of the 2D
cluster model scans from the exactly solvable point with an
annealing step �hx = 0.01 and over 104 Monte Carlo steps at
each annealing step [148–150]. And the measurements in the
paramagnetic phase are from large field limit with the same
annealing step.
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3. Measurement

In the projector QMC method, to calculate the expectation
value of operator P in the ground state 〈P〉, one can rewrite it
in the terms of two projector states,

〈P〉 = 〈�l (0)|(−H )nP(−H )n|�r (0)〉
〈�l (0)|(−H )2n|�r (0)〉

=
∑

αl

∑
αr

WαlWαr 〈�l (α)|P|�r (α)〉∑
αl

∑
αr

WαlWαr 〈�l (α)|�r (α)〉 . (A10)

Here, the weight function used in important sampling
is WαlWαr 〈�αl |�αr 〉 and the operator estimator is
〈�αl |P|�αr 〉/〈�αl |�αr 〉. Within the picture of the operator
string, this measurement is applied at the middle of the
operator string.

Moreover, for the ground state energy, a reference state |R〉
that the equal-amplitude superposition of all spin configura-
tion in the {τ z

i σ
x
i } basis is selected, and the ground state energy

takes

E0 = 〈R|H |0〉
〈R|0〉 =

∑
α Wα〈R|H |�(α)〉∑

α Wα〈R|�(α)〉 . (A11)

Here the weight function sampled is Wα〈R|�α〉 and the op-
erator estimator is 〈R|H |�α〉/〈R|�αr 〉 [133]. Since all the
overlaps 〈R|�〉 keeping the same value, they can be canceled.
With the operator string is sampled with probability propor-
tional to Wα , the energy can be read as

E0 = KNA + K
∑

i

nB,±
i + hxNs + hx

∑
i

nσ,±
i , (A12)

where nB(σ ),±
i = ±1 is the expectation values of operator

〈R|Bi|�(α)〉 and nσ,±
i = ±1 for that of 〈R|σ x

i |�(α)〉 on the
σ spin.

APPENDIX B: GROUND STATE OF THE 2D
CLUSTER MODEL

In this section, we review the unique ground state of
2D cluster model with periodic boundary condition in the
exactly solvable point (i.e. hx = 0). Without the transverse
fields hx, the 2D cluster model is exactly solvable. To un-
derstand its ground state, it is worth noticing that when
hx = 0, every term in Eq. (2) commutes with each other.
Consequently, the ground state of the 2D cluster model
|�〉 is the eigenstate of all A and B terms with eigen-
value 1 (i.e., Ai|�〉 = |τ x

i

∏
j σ

z|�〉 = |�〉, ∀i and Bi|�〉 =
σ x

i

∏
j τ

z
i |�〉 = |�〉, ∀i). Therefore, with periodic boundary

condition, we can explicitly construct the unique ground state
by the following steps.

(1) First, we take a reference state |R〉 which is the eigen-
state of all σ z and τ x operators with eigenvalue 1. It is obvious
that Ai|R〉 = |R〉, ∀i. In this section, for convenience, an
eigenstate of all σ z and τ x operators is dubbed as a config-
uration. Obviously, such configurations form a complete and
orthogonal basis of the Hilbert space of the system.

(2) Then, we can find that, the equal-weight superposition
of all configurations that can be obtained by applying B oper-
ators on |R〉 is exactly the ground state |�〉 (as a B operator
always flip the eigenvalues of a σ z and four τ x operators, all

FIG. 11. An illustration of the ground state of 2D cluster model.
The blue arrows denote the τ spins, with right arrows for τ x = 1
and left arrows for τ x = −1. The red arrows denote σ spins, with up
arrows for σ z = 1 and down arrows for σ z = −1. As we can see, the
solid green lines denote the domain walls between σ z’s with opposite
values, and the dashed green squares denote corners of the domain
walls decorated with τ x = −1.

states that can be obtained by applying B operators on |R〉 are
configurations). To see this, we need to notice that because all
A and B operators commute with each other, all configurations
that can be obtained by applying B operators on |R〉 are still
eigenstates of all A operators with eigenvalue 1. And accord-
ing to the construction of |�〉, where two configurations that
are related by a B operator are always equal-weight super-
positioned, |�〉 is also the eigenstate of all B operators with
eigenvalue 1.

By observation, as a B operator can be recognized as
flipping a single σ z at the center of a small membrane and
the four τ x at the four corners of the small membrane, an
arbitrary configuration that can be obtained by applying B
operators on |R〉 can be regarded as an Ising configuration
of {σ z} with τ x = −1 decorated at the corners of the domain
walls between σ z’s with opposite values, and τ x = 1 for all
other τ spins. To see this, we only need to notice that for
an Ising configuration of {σ z}, we can regard all down spins
(i.e., σ z = −1) as being applied by membranes composed of B
operators, and the corners of domain walls between σ z’s with
opposite values are exactly the corners of such membranes,
thus they have to contain τ x = −1 due to the action of B
operators. As a result, |�〉 can described as a superposition
of all Ising configurations of {σ z} with (a) τ x = −1 decorated
on all corners of domain walls between σ z’s with opposite
values and (b) τ x = 1 for all other τ spins [87]. A pictorial
demonstration of such a configuration is given in Fig. 11. At
last, here it should be noticed that in numerical simulation we
use {τ z

i σ
x
i } basis. The discussion about the ground state here

can also be applied in that basis.
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FIG. 12. Schematic diagrams of the free-line update. The green
line is the region selected to flip the τ spin along a straight line. Since
such a flipping do not change the weight in any given configuration
in the 2D cluster model perturbed by hx , its acceptance probability is
given Pf l = 0.5 with the heat-bath algorithm.

APPENDIX C: STRANGE CORRELATOR MEASURMENT
VIA PROJECTOR QMC SIMULATION

For the strange correlator Cφ (�r) with chosen trivial state
|�〉, it can be given as

Cφ (�r) = 〈�|Cφ (�r)|0〉
〈�|0〉 =

∑
α Wα〈�|Cφ (�r)|�(α)〉∑

α Wα〈�|�(α)〉 ,

(C1)
with the weight function Wα〈�|�(α)〉 and estimator
〈�|Cφ (�r)|�(α)〉/〈�|�(α)〉.

It is worth to note that the measurement here is applied at
the boundary between |�〉 and |�(α)〉. Choosing the trivial
state [Eq. (8)] in the strange correlator leads to the particular
boundary condition between |�〉 and |�(α)〉 in the projector
QMC simulation. For instance, taking |�〉 = ∏

i
1√
2
[|τ z

i,+〉 +
|τ z

i,−〉] ⊗ |σ x
i,+〉], in which state |τ z

i,±〉 = ±1 share the same
amplitude but only |σ x

i,+〉 has a nonzero amplitude. Thus any
cluster that flipping spin τ z at the boundary between |�〉 and
|�(α)〉 would not change the weight function Wα〈�|�(α)〉
while that flipping σ x at the boundary causes Wα〈�|�(α)〉 =
0 and is always rejected. Therefore, within the picture of the
projector QMC simulation, spins σ at the boundary between
|�〉 and |�(α)〉 is pinned at the state |σ x

i,+〉, while spins τ at
the boundary are free to be flipped. And finally, the Cφ (�r)
measurement can be simply applied at the boundary between
|�〉 and |�(α)〉.

However, such a particular boundary condition at the
boundary between |�〉 and |�(α)〉 makes the configuration
space 〈�|�(α)〉 become more glassy. As a result, the sam-
pling process in the projector QMC simulation is easy to be
stranded in a local minimum configuration. To improve the
sampling efficiency, coming out of the subsystem symmetry
nature of the 2D cluster model, we introduce a spin update
process that sweeping each row and column, and flipping all
τ z along with this row (or column) with probability Pf l = 0.5
(see the green rectangle in Fig. 12, for instance). Since flipping
all τ z along x or y axis would not change the sampling weight
for the 2D cluster model perturbed by hx, the acceptance
probability of such a flipping process is 0.5 according to the
heat bath method.

Beside the strange correlators mentioned in the main part,
we also measure the following strange correlators. First,

(a) (b) (c)

(e)(d) (f)

FIG. 13. The real-space strange correlator Cτ z (�r) in the strong
SSPT model. (a)–(c) are in the strong SSPT phase with hx changing
from 0.2, to 0.6, and finally to 1.0, while the others stand for the
trivial paramagnetic phase with hx varying from 1.2 to 1.8.

Cτ z (�r), which is

φ(i) = τ z
i ,

Cτ z (�r) = 〈�|τ z
i+�rτ

z
i (−H )2n|�(0)〉

〈�|(−H )2n|�(0)〉 .
(C2)

Figure 13 tells the real space dependence of Cτ z (�r), which
is no correlation in all direction. Also, it is independent of hx.

In the 1D cluster model, we also have measured C1D
B that

φ(i) = B1D
i ,

C1D
B (�r) = 〈�|B1D

i+�rB1D
i (−H )2n|�(0)〉

〈�|(−H )2n|�(0)〉 .
(C3)

Figure 14(a) describe the strange correlator C1D
B (L/2) as a

function hx for a L = 32 system and such “strange” order
parameter also vanishes at the critical point h1D

x,c = 1. Fig-
ure 14(b) is the extrapolation of C1D

B (L) = C1D
B (L = ∞) +

a/L. In the SPT phase (hx = 0.0, 0.5), C1D
τ z (∞) is finite. At the

quantum critical point hx,c and inside the paramagnetic phase
(hx = 1, 1.5, 2.0), C1D

B (L = ∞) tends to 0, consistent with the
phase diagram and our bulk data in Fig. 8.

As an order parameter, both C1D
τ z and C1D

B can be both
applied to tell the SPT phase. However, since C1D

τ z is a simply
two spin correlation, we preform the C1D

τ z in the main part but
C1D

B here.

APPENDIX D: STRANGE CORRELATORS AT THE
EXACTLY SOLVABLE POINT

In this Appendix, we demonstrate how to analytically ob-
tain the strange correlators at the exactly solvable points of
2D and 1D cluster models as in Tables I and II. As there is
no risk of introducing ambiguity, here we use |�〉 to refer
to the ground state for both 2D and 1D cluster models. And
for convenience, in this section we set Cφ (�r) = Cφ (i, j)
(and C1D

φ (�r) = C1D
φ (i, j) for 1D cluster model), where �r =

i − j is the displacement between i and j, and i ( j) is the
site where φi (φ j) acts. Here we noticed that the results of
φ = τ z, σ z case in 1D cluster model has already been analyt-
ically obtained in Ref. [142].
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(a)

(b)

FIG. 14. The strange order parameter C1D
B (L/2). (a) are

C1D
B (L/2) plotted along with hx increasing. (b) is the finite-size ana-

lyzing of C1D
B (L/2), in which C1D

B (L/2) is fitting by C1D
B (L/2)(∞) +

c/L.

In the following computation, i �= j is always assumed.
When i = j, we can obviously obtain Cφ (i, j) = 1. At first,
we consider the 2D cluster model.

(1) φ = B, A. In this case, the ground state |�〉 satis-
fies φiφ j |�〉 = |�〉 according to the definition of the ground
state (see Appendix B), so we can obtain that 〈�|φiφ j |�〉 =
〈�|�〉, thus Cφ (i, j) = 1.

(2) φ = τ x, σ x. In this case, the trivial state 〈�| satisfies
〈�|φiφ j = 〈�|, so we can obtain that 〈�|φiφ j |�〉 = 〈�|�〉,
thus Cφ (i, j) = 1.

(3) φ = τ z, σ z. Without loss of generality, we set φ = τ z.
As discussed in Appendix B, |�〉 can be recognized a equal-
weight superposition of Ising configurations of {σ z} with τ x =
−1 decorated at the corners of domain walls between σ z’s

with opposite values. As 〈�|φiφ j is a state with τ x = −1 for
exactly two τ spins and τ x = 1 for the others, and it is impos-
sible to find an Ising configuration with exactly two corners
of domain walls in 2D, 〈�|φiφ j can only have zero overlap
with an arbitrary configuration from |�〉. Thus Cφ (i, j) = 0.
Similarly, we can obtain Cφ (i, j) = 0 for φ = σ z.

(4) φ = τ z
i τ

z
i+ŷ, σ

z
i σ z

i+ŷ. Without loss of generality, we set
φ = τ z

i τ
z
i+ŷ. At first, when i and j are located on the same

straight line exactly along x direction, we can notice that
〈�|φiφ j = 〈�| ∏k∈S Bk , where S is a straight string con-
necting i and j − x̂ (here we assume the x-coordinate of
j is larger than of i), because the σ x operators in B act
on 〈�| trivially. So 〈�|φiφ j |�〉 = 〈�|∏k∈S Bk|�〉 = 〈�|�〉,
where the second equality is according to the definition of
the ground state |�〉 (see Appendix B), thus Cφ (i, j) = 1. If
i and j do not satisfy the above condition, then following
the same logic as in the φ = τ z, σ z case, 〈�|φiφ j is a state
with τ x = −1 for exactly four τ spins and τ x = 1 for the
others, however, such four sites with τ x = −1 cannot form
the corners of domain walls of any Ising configurations, so
〈�|φiφ j can only have zero overlap with an arbitrary con-
figuration from |�〉. Thus Cφ (i, j) = 0 (this result can also
be obtained based on the behavior of DiDj under symmetry
transformations, see Sec. II D). In conclusion, for i and j on
the same straight line along x direction, Cφ (i, j) = 1, other-
wise Cφ (i, j) = 0. The same results can be obtained for φ =
σ z

i σ z
i+ŷ.

Then, for the 1D cluster model case, we have
(1) φ = B1D, A1D. In this case, the ground state |�〉 satis-

fies φiφ j |�〉 = |�〉 according to the definition of the ground
state (see Sec. II E), so we can obtain that 〈�|φiφ j |�〉 =
〈�|�〉, thus C1D

φ (i, j) = 1.
(2) φ = τ x, σ x. In this case, the trivial state 〈�| satisfies

〈�|φiφ j = 〈�|, so we can obtain that 〈�|φiφ j |�〉 = 〈�|�〉,
thus C1D

φ (i, j) = 1.
(3) φ = τ z, σ z. Without loss of generality, we set φ = τ z.

We can notice that 〈�|φiφ j = 〈�| ∏k∈S B1D
k , where S is a

string composed of σ spins connecting i and j − 1 (here we
set a unit cell to be composed of a τ spin at the left and
a σ spin at the right, and j > i is assumed), because the
σ x operators in B1D act on 〈�| trivially. So 〈�|φiφ j |�〉 =
〈�| ∏k∈S B1D

k |�〉 = 〈�|�〉, where the second equality is ac-
cording to the definition of the ground state |�〉 (see Sec. II E),
thus C1D

φ (i, j) = 1. Similarly, we can obtain C1D
φ (i, j) = 1 for

φ = σ z.
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