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Hilbert space shattering and dynamical freezing in the quantum Ising model
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We discuss quantum dynamics in the transverse field Ising model in two spatial dimensions. We show that,
up to a prethermal timescale, which we quantify, the Hilbert space “shatters” into dynamically disconnected
subsectors. We identify this shattering as originating from the interplay of a U(1) conservation law and a one-
form Z2 constraint. We show that the number of dynamically disconnected sectors is exponential in system
volume, and includes a subspace exponential in system volume within which the dynamics is exactly localized,
even in the absence of quenched disorder. Depending on the emergent sector in which we work, the shattering
can be weak (such that typical initial conditions thermalize with respect to their emergent symmetry sector),
or strong (such that typical initial conditions exhibit localized dynamics). We present analytical and numerical
evidence that a first-order-like “freezing transition” between weak and strong shattering occurs as a function of
the symmetry sector, in a nonstandard thermodynamic limit. We further numerically show that on the “weak”
(melted) side of the transition domain wall dynamics follows ordinary diffusion.
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I. INTRODUCTION

Motivated by recent advances in experimental capabil-
ity [1–7], the far-from-equilibrium dynamics of quantum
many-body systems has emerged as one of the central prob-
lems for contemporary physics. A key question relates to
whether an isolated quantum system will thermalize under
its own dynamics, and continues to produce surprising an-
swers. Starting from generic initial conditions, an isolated
system may robustly fail to reach local equilibrium through
the mechanism of “many-body localization” (MBL) in the
presence of sufficiently strong quenched disorder [8–12]. The
origin of this ergodicity breaking in MBL systems is the exis-
tence of an extensive set of emergent, local integrals of mo-
tion [13–15]. While the MBL phase is predicated on the
existence of quenched disorder, a number of new avenues
for avoiding thermalization in systems possessing transla-
tional invariance have recently come to light. These include
quantum many-body “scarring” [16–20], where a small num-
ber of area-law entangled, athermal states are embedded in
an otherwise thermalizing spectrum, disorder-free localiza-
tion [21–29], where local symmetries emulate the effects of
disorder in typical symmetry sectors, and Hilbert space shat-
tering [30,31]. In models that exhibit Hilbert space shattering,
a finite list of additional constraints on the mobility of excita-
tions, typically arising in “fractonic” systems [32–40], lead to
an exponential number of dynamically disconnected Krylov
sectors [20,30,31,41–47].

The typical size of these dynamically disconnected sec-
tors relative to their corresponding global symmetry sectors
gives rise to two distinct flavors of shattering: “weak” and
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“strong” [30,31]. For weak shattering, a state selected at ran-
dom from a typical symmetry sector will, with probability
one, belong to the largest Krylov sector therein. Atypical,
area-law entangled states are therefore measure zero in the
thermodynamic limit, and the system will almost surely reach
an equilibrium state. In contrast, in systems exhibiting strong
shattering, the largest Krylov sector does not include al-
most all of the corresponding global symmetry sector, and
the system can then exhibit localized dynamics from typical
low-entanglement initial conditions, failing to explore an ap-
preciable fraction of states with the same quantum numbers,
thereby evading thermalization. It is also possible for different
symmetry sectors to exhibit disparate shattering properties.
For instance, one-dimensional spin-1 lattice models that con-
serve both charge and dipole moment with strictly local
dynamics exhibit weak shattering at half-filling, at least for k-
local gates (or Hamiltonians) with k � 4 [30,31,42]. However,
as the charge density is altered from its infinite-temperature
value, a critical density is reached, beyond which the system
freezes: For sufficiently high and sufficiently low charge den-
sities, the system suffers a breakdown of connectivity between
its various states, and the corresponding symmetry sectors
exhibit strong shattering [42].

In this paper we analyze the shattering properties and the
putative freezing transition in the two-dimensional transverse
field Ising model (TFIM) deep within its ferromagnetic phase.
In a similar manner to the tilted Fermi-Hubbard model, where
a large tilt imposes strong kinetic constraints that give rise
to emergent charge and dipole conservation [30,31,44,48,49],
Ref. [50] showed that a strong ferromagnetic Ising coupling
imposes restrictions on domain wall motion in the TFIM in
spatial dimensions d � 2 (illustrated for d = 2 in Fig. 1).
We argue that it is the combination of (i) domain wall num-
ber conservation, (ii) a local Z2 constraint on domain wall
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FIG. 1. Domain-wall-conserving moves. (a) “Diagonal” domain
wall motion (kink propagation) preserves the total number of do-
main walls and the number of domain walls intersecting each line
(x = const or y = const) on the direct lattice. (b) Plaquette flipping
motion preserves the number of domain walls emanating from each
dual lattice site, and the parity of domain walls intersecting each
line on the direct lattice. The empty (red) circles denote positive
(negative) spins, while the solid red lines denote domain walls, which
live on the dual lattice, connecting the centers of the plaquettes.

configurations (which may alternatively be phrased as a Z2

one-form constraint), and (iii) strict locality, which are ulti-
mately responsible for the shattering of Hilbert space. This is
notably in contrast to other instances of shattering, which typ-
ically rely on the presence of two mutually commuting global
U(1) symmetries (e.g., charge and dipole moment [30,31],
two species of fermion [41], or domain wall number and
the commuting component of total magnetization [51,52]).
At half-filling for domain walls, we show using exact enu-
meration of states that the system exhibits weak shattering,
in spite of an exponential (in volume) number of fully frozen
states. Since shattering occurs in a tensor product basis, the
restrictions on domain wall motion are essentially classical in
nature [45], and can be phrased as kinetic constraints [53,54].
This allows us to efficiently simulate the system numerically
using stochastic cellular automaton circuits [55,56], using
which we show that transport of domain walls is diffusive
in the weak shattering regime. It also allows us to view the
“freezing” transition as an irreducibility transition of the cor-
responding classical Markov process [53].

In contrast to Ref. [42] we show that the two-dimensional
(2D) TFIM exhibits no freezing transition for any nonzero
density of domain walls in the strict thermodynamic limit,
i.e., where the number of domain walls scales with system
volume, NDW ∝ L2. However, we provide analytical and nu-
merical evidence in favor of a genuine transition between
weak and strong shattering that occurs in a nonstandard ther-
modynamic limit. Specifically, there exists a sharp freezing
transition when domain wall number scales in a subextensive
manner with system size as NDW ∝ L2/ ln L. We argue that
the origin of the slow, logarithmic decay of the critical do-
main wall density is a consequence of so-called “large void
instabilities,” known to occur, for instance, in bootstrap perco-
lation [57,58] and other models with kinetic constraints [53].
This propensity for weak shattering is further confirmed by a

strong even-odd effect in the presence of periodic boundary
conditions. For antiferromagnetic coupling, the system ex-
hibits ring frustration on the square lattice, which guarantees
a subextensive number of defects in the classical ground state.
This is another context in which a subextensive number of
defects, here NDW ∝ L, is sufficient to prevent the system from
freezing. By the same token, we additionally show that no
freezing transition occurs for geometrically frustrated lattices
(e.g., the triangular lattice) with antiferromagnetic coupling
since the system always possesses a nonzero density of defects
in its classical ground states. We work throughout with lattice
models, avoiding the complications inherent with analyses of
quantum dynamics in the continuum [59–61].

The paper is structured as follows. We begin by introducing
the model in Sec. II. We discuss the limit of strong Ising
coupling and the corresponding effective Hamiltonian that
can be obtained in this limit by means of a Schrieffer-Wolff
transformation. When the Schrieffer-Wolff transformation is
truncated at first order in the transverse field, we discuss
the kinetic constraints on domain wall motion, the resulting
frozen states, and the relevant timescales for melting and for
thermalization. In Sec. III we perform an exact enumeration
of the system’s Krylov sectors. When the enumeration is re-
solved by symmetry sector (domain wall number), we show
that a finite-size freezing transition occurs for a sufficiently
low density of domain walls. Section IV is concerned with
quantifying “sufficiently low.” First, we benchmark the au-
tomaton circuits by showing that domain wall density diffuses
when the system is weakly shattered, and then move on to
characterizing the freezing transition numerically. In Sec. V,
we provide analytical evidence that the (un)freezing transition
observed numerically in Sec. IV is a consequence of “large
void instabilities.” Finally, we discuss our results and their
experimental implications in Sec. VI.

II. MODEL

We consider the transverse field Ising model (TFIM), deep
in the ferromagnetic phase, J � h,

Ĥ = −J
∑
〈i j〉

σ̂ z
i σ̂ z

j − h
∑

i

σ̂ x
i . (1)

In this paper, the spin- 1
2 degrees of freedom σ̂i live on the sites

of either a square or a triangular lattice in d = 2 spatial di-
mensions, as canonical examples of bipartite and nonbipartite
lattices, respectively. In contrast to d = 1, where the Hamil-
tonian can be mapped to free fermions [62,63], the model
is interacting in d � 2. Unless otherwise specified, we will
impose periodic boundary conditions on the spins throughout.
Absent the transverse field, i.e., h = 0, the Hamiltonian (1)
is diagonalized by σ̂ z

i product states |{σ z
i }〉 (colloquially, the

“computational basis”). The eigenstates |{σ z
i }〉 have a definite

number of domain walls. It is therefore convenient to define
charges Q̂i j living on the links 〈i j〉, defined by Q̂i j = 1

2 (1 −
σ̂ z

i σ̂ z
j ), such that a link hosting a ferromagnetic (antiferro-

magnetic) arrangement of neighboring spins satisfies Qi j = 0
(Qi j = 1) [operators (eigenvalues) are distinguished by the
presence (absence) of a “hat”]. Equivalently, the idempotent
operator Q̂i j counts the number of (bare) domain walls living
on the link 〈i j〉. For sufficiently weak magnetic fields, h � J ,
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we may apply a Schrieffer-Wolff transformation that is chosen
in such a way that the number of (dressed) domain walls is
conserved.

The transverse field contribution can be written in terms of
operators T̂n that increment the number of domain walls by
n [64–66]. Up to a trivial energy shift,

Ĥ = 2JQ̂ − h
∑
n∈N

T̂n, (2)

where N is the set of permitted changes in the domain
wall number (e.g., for the square lattice, N = {0,±2,±4}),
the total number of domain walls is denoted Q̂ = ∑

〈i j〉 Q̂i j ,
and the operators T̂n satisfy [Q̂, T̂n] = nT̂n. As described in
Appendix A, the effective Hamiltonian that conserves the
number of dressed domain walls up to second order in the
magnetic field is given by

Ĥ ′ = 2JQ̂ − hT̂0 + h2

4J
[T̂2, T̂−2] + h2

8J
[T̂4, T̂−4] + · · · . (3)

This procedure can, in principle, be carried out to very high
orders in the field using the method of perturbative continuous
unitary transformations [64,67,68]. If the higher-order terms
denoted by the ellipsis are dropped, the effective Hamiltonian
by construction commutes with total domain wall number:
[Ĥ ′, Q̂] = 0. The operators T̂n can be written in terms of the
spins as

T̂n =
∑

i

σ̂ x
i �̂n(i), (4)

where the local projector �̂n(i) projects out spin configu-
rations that violate the constraint σ z

i

∑
j:〈i j〉 σ z

j = n, where
j : 〈i j〉 denotes the nearest neighbors of the ith spin. For a
d-dimensional hypercubic lattice, the projector �̂0(i) can be
written explicitly as [50]

�̂0(i) =
d∏

m=1

1

(2m)2

[
(2m)2 −

(∑
j:〈i j〉

σ̂ z
j

)2]
. (5)

The generalization of (5) to the triangular lattice is straight-
forward: Spin configurations satisfying

∑
j:〈i j〉 σ z

j = n with
n ∈ N \ {0} must be projected out. First, we keep only the
leading-order term ∝T̂0 [note that since the effective Hamilto-
nian Ĥ ′ conserves Q̂, the first term in (3) is trivial and can be
dropped without consequence, at least for states with a definite
number of quasi-domain-wall excitations]. We are therefore
left with the effective Hamiltonian

Ĥ1 = 2JQ̂ − hT̂0. (6)

We will work throughout the paper with the effective Hamil-
tonian Ĥ1, truncated at first order in the magnetic field, which
may be considered as a two-dimensional generalization of
the domain-wall-conserving model in Ref. [69]. Much of the
phenomenology that we will discuss hinges on the strictly
finite support of the local operators in (4).

We now comment on timescales. The Schrieffer-Wolff
transformation procedure is valid up to an order n∗ set by
n∗ ∼ J/h, which determines a prethermal timescale that is
exponentially large in n∗ up to logarithmic corrections, i.e.,
τ ∼ eϒn∗ for some ϒ > 0, as shown rigorously in Ref. [70].

For times beyond τ , the conservation of quasi-domain-wall
number breaks down and the system is able to thermalize.
However, the truncation of the Schrieffer-Wolff transforma-
tion to leading order in magnetic fields is only valid up to
a timescale τ ′ ∼ J/h2. Nevertheless, we expect some of our
results to remain applicable up to the true (exponentially
long) prethermal timescale τ , and we will discuss the relevant
timescales as we present our results.

The dynamics implied by an application of the term T̂0

on a computational basis state |{σ z
i }〉 on the square lattice is

depicted in Fig. 1. A given spin is flippable if and only if its
neighboring spins sum to zero. If this constraint is satisfied,
there are two possibilities: (i) spins of opposite sign are di-
ametrically opposite one another with respect to the central
spin, or (ii) the spins of opposite sign neighbor one another.
For case (i) [Fig. 1(a)] the domain walls move “diagonally”
across the central spin (giving rise to propagation of domain
wall “kinks”), and the update to the domain wall configuration
therefore preserves∑

〈i j〉x :
y=const

Qi j and
∑
〈i j〉y:

x=const

Qi j, (7)

where, e.g., 〈i j〉x denotes an x-oriented bond. The conserva-
tion laws (7) therefore correspond to a subsystem symmetry,
which commonly appear in the context of fractonic sys-
tems [32–39]. For case (ii) [Fig. 1(b)] the domain walls exhibit
a dimerlike [71] flipping motion across a plaquette, and the
update preserves the number of domain walls emanating from
each dual lattice site. When (i) and (ii) are combined, however,
they conserve only the parity of domain walls intersecting
any closed loop γ on the direct lattice, although this fol-
lows directly from the definition of domain walls in terms
of the underlying spins:

∏
〈i j〉∈γ σ̂ z

i σ̂ z
j = ∏

i∈γ σ̂ 2
i = 1. Since

we are able to write
∏

〈i j〉∈γ σ z
i σ z

j = exp(iπ
∑

〈i j〉∈γ Qi j ), the
constraint can be rephrased as

∑
〈i j〉∈γ Qi j = 0 mod 2, and

can therefore be thought of as a one-form Z2 constraint on the
Hilbert space of domain wall configurations. Additional dis-
crete global symmetries possessed by the Ising model, such as
the Z2 Ising symmetry

∏
i σ̂

x
i , and various mirror symmetries

(see, e.g., Ref. [72]) do not affect the shattering properties,
and as a result we will not discuss them further.

An alternative way to view this constraint makes use of
the duality between the two-dimensional transverse field Ising
model and Z2 lattice gauge theory [73,74]. If we introduce
gauge spins τ̂i j living on the links 〈i j〉 of the lattice, satisfy-
ing σ̂ x

i = ∏
j:〈i j〉 τ̂ x

i j , and τ̂ z
i j = σ̂ z

i σ̂ z
j , then the Hamiltonian (1)

becomes

Ĥ = −h
∑

i

∏
j:〈i j〉

τ̂ x
i j − J

∑
�

τ̂ z
� . (8)

The Hamiltonian exhibits a Z2 gauge symmetry, [Ĥ , B̂p] = 0,
where B̂p = ∏

〈i j〉∈p τ̂ z
i j , for each plaquette p of the lattice.

The Hamiltonian is therefore supplemented by the Gauss law
constraint B̂p |	〉 = |	〉, which restricts the Hilbert space to
gauge-invariant states (equivalently, states of the gauge spins
that correspond to configurations of the local degrees of free-
dom σ̂ z

i ). Since we consider the ferromagnetic phase of the
Ising model, J � h, this maps to the confining phase of the
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FIG. 2. Growth of a minority-spin cluster. The domain-wall-
conserving dynamics permits a minority-spin cluster to grow in area,
but the maximum extent of the domain is set by the perimeter of the
cluster, which is fixed by conservation of domain walls.

Z2 lattice gauge theory [75]. Indeed, we will show that it is
the combination of nonzero line tension (the defining feature
of the confining phase) and strict locality that are responsible
for the “shattering” of Hilbert space.

The dynamics depicted in Fig. 1 differs fundamentally
from the behavior of pointlike quasiparticles. This may be
illustrated by the behavior of (1) in the paramagnetic phase,
h � J , or, alternatively, by (8) in its deconfined phase, where
the toric code [76] emerges perturbatively. In this opposite
limit, the quasiparticles are not domain walls but isolated
flipped spins relative to the state |{σ x

i }〉 aligned with the mag-
netic field. Repeating the Schrieffer-Wolff transformation in
this limit, we obtain a simple two-dimensional tight-binding
model, which by construction conserves the number of quasi-
particles (the Ising interaction ∝σ̂ z

i σ̂ z
j hops the flipped spin

to a neighboring site along the bond 〈i j〉). An isolated flipped
spin can therefore propagate freely throughout the lattice since
particle-number conservation alone imposes no restrictions on
the mobility of quasiparticles. In contrast, in the ferromagnetic
regime, an isolated domain of minority spins can only grow to
be as large as its perimeter allows, under dynamics generated
by the effective Hamiltonian Ĥ1, since the number of domain
walls must remain fixed. This phenomenon is illustrated in
Fig. 2. Infinite line tension, which fixes univocally the length
of domain walls, leads to “frozen states,” which exhibit no
dynamics under Ĥ1, as we will shortly show.

Frozen states

A state |σf〉 is fully frozen if it is not dynamically connected
to any other states, i.e., 〈σ ′|Ĥ1|σf〉 = 0, ∀ σ ′ �= σf [30,31]. If
the state |σf〉 satisfies this condition, it is an eigenstate of
Ĥ1, and it belongs to its own one-dimensional Krylov sec-
tor [44]. If the system is initialized in such a state, it will
retain the same spin configuration for all times thereafter,
under time dynamics generated by Ĥ1. One may immedi-
ately observe that ferromagnetic spin configurations, with all
spins pointing along ±ẑ, correspond to completely frozen
states of the Hamiltonian (6), since σ z

i

∑
j:〈i j〉 σ z

j = z > 0 (the
coordination number of the lattice). For the square lattice,
fully antiferromagnetic configurations of spins are also fully
frozen since

∑
j:〈i j〉 σ z

j = ±4, where the sign depends on the
sublattice to which the central spin belongs. No such antiferro-
magnetic configuration is possible for the triangular lattice, a
consequence of geometric frustration [77]. Such translation-

FIG. 3. Frozen and active spin configurations of Eq. (6). (a) A
region of spins on the square lattice surrounded by “crenellations” is
fully frozen. (b) For the triangular lattice, one can similarly construct
frozen states from enclosed regions of flipped spins. Again, the
region can be compact, as long as the domain walls make coarse-
grained 120◦ turns only. The number of such configurations scales
with the volume of the system. On the other hand, if any spins are
surrounded by exactly z/2 domain walls, then they are active. In
(c) and (d) we show examples of spin configurations that contain
active spins for the square and triangular lattices, respectively. Spins
that can be flipped are shaded in light gray.

ally invariant spin configurations do not, however, exhaust
the list of fully frozen states. Alternating stripes of “all up”
and “all down” ferromagnetic domains, with perfectly straight
domain boundaries, will also be frozen, yielding a number of
frozen states exponential in linear system size, as anticipated
in Ref. [50]. Other possibilities are shown in the top row of
Fig. 3: a “snaking” pattern of domain walls along the bound-
ary of a compact closed region of the lattice also leads to fully
frozen states of Ĥ1 in (6). Since such compact regions can
tile the lattice, e.g., Fig. 3 can be regarded as a unit cell that
tiles the lattice periodically, the number of frozen states that
such a configuration can give rise to is ∼2N/Na , where Na is
the number of spins per frozen lattice animal since each ani-
mal can be either present or absent in every location. Hence,
the number of frozen states Nf scales exponentially with the
volume of the system, although at a slower rate than the total
dimension of the Hilbert space, i.e., Nf ∝ exp(αN ), up to
polynomial corrections, with 0 < α < ln 2. This phenomenol-
ogy is quite similar to the “shattering by charge and dipole
conservation” discussed in Refs. [30,31], but it is generated
by the combination of a global U(1) conservation law (on
domain wall number) and a Z2 one-form constraint, instead of
the two global U(1) conservation laws that describe the dipole
conserving case. Since the shattering occurs in a product state
basis, it is “classical” in nature in the sense of Ref. [45], a
feature that we will exploit to efficiently simulate the model
in Sec. IV.

As in other models that exhibit Hilbert space shatter-
ing [51], the number of frozen states depends on the order
at which the Schrieffer-Wolff transformation is truncated.
Spin configurations that are frozen at a particular order in
the Schrieffer-Wolff transformation may become active in
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FIG. 4. Exact enumeration of Krylov sectors. Ratio of the largest
Krylov sector size to the dimension of its corresponding symmetry
sector for the Hamiltonian Ĥ1 (6) on the square lattice. There is no
appreciable variation of the ratio with system size for a fixed aspect
ratio, consistent with weak shattering of Hilbert space. The inset
shows the absolute value of the maximum Krylov sector dimension,
which is consistent with the scaling max j,n D( j)

n ∝ 2N (gray dashed
lines).

the presence of higher-order terms that act on larger regions
of the lattice, e.g., an isolated flipped spin surrounded by
four domain walls becomes mobile at second order in the
magnetic field. In contrast, a “stripelike” pattern, with per-
fectly straight domain walls at least a distance � � 1 apart,
will only become mobile at order ∼� in perturbation theory.
Generically, if a spin configuration becomes mobile at order
n in the Schrieffer-Wolff transformation, then this movement
will manifest at times of order ht ∼ (J/h)n−1. If n > n∗ ∼
J/h then the timescale will be set instead by the prethermal
timescale associated with the breakdown of the Schrieffer-
Wolff procedure τ ∼ exp(ϒn∗).

Even if the state of the system is not fully frozen, there
may be distinct frozen and active regions. A simple example
is a minority-spin cluster embedded in an otherwise ferro-
magnetically ordered system, as shown in Fig. 2: All flipped
spins in the right panel are “active” (flippable), and the re-
mainder are frozen (unflippable). Since each symmetry sector
(i.e., the set of states with fixed domain wall number) con-
tains many disconnected Krylov sectors, the Hamiltonian (6)
exhibits Hilbert space shattering [30] (also known as fragmen-
tation [31]). We may quantify the extent to which the system is
shattered by inspecting the distribution of Krylov sector sizes
within each symmetry sector. In all that follows, we will be
working with the effective Hamiltonian in Eq. (6).

III. EXACT ENUMERATION

To quantify the extent to which the Hilbert space shatters,
we begin with exact enumeration: For sufficiently small sys-
tems, it is possible to explicitly construct all Krylov sectors
within each symmetry sector. We denote the size of the sym-
metry sector defined by a domain wall density n by Dn, and
the individual Krylov sectors that live within this symmetry
sector by D( j)

n , labeled by the index j. When defined in this
way, the dimensions satisfy

∑
j D( j)

n = Dn. Technically, this
is carried out by performing a breadth first search of the sys-

FIG. 5. Finite-size freezing transition. Top: adjacency graph of
the NDW = 4, 12 symmetry sectors for a system of size 3 × 3, where
connections between states are depicted by solid lines. Middle: ratio
of the maximum Krylov sector dimension to the corresponding sym-
metry sector dimension, resolved by domain wall density (symmetry
sector). Bottom: active site density ρA = 1 − ρF resolved by symme-
try sector. Domain wall density is normalized per bond such that an
(anti)ferromagnetic spin configuration has density 0 (1). Odd linear
system size gives rise to ring frustration, forbidding the frozen Néel
spin configuration.

tem’s adjacency matrix graph (i.e., the system’s Hamiltonian
represented in the basis of |{σ z

i }〉 tensor product states) to find
all connected subgraphs of Ĥ1.

If the Hamiltonian exhibits strong shattering, then
max j[D

( j)
n ]/Dn vanishes for typical values of n as system

size is increased, L → ∞ [30,31]. That is, the largest Krylov
sector comprises a vanishingly small fraction of its corre-
sponding symmetry sector, and a typical initial state will be
unable to efficiently explore an appreciable fraction of the
symmetry sector (correspondingly, the time-evolved state will
exhibit an anomalously high overlap with the initial state).
This scenario is illustrated in the top left panel of Fig. 5,
where all states in the symmetry sector are dynamically dis-
connected. If, conversely, the system exhibits weak shattering
then max j[D

( j)
n ]/Dn → 1 as L → ∞ [30,31] for typical n.

Now, a state selected at random from a typical symmetry
sector will, with probability one, belong to the largest Krylov
sector, and, given sufficient time, will explore the states be-
longing to the symmetry sector densely. This scenario is
demonstrated in the top right panel of Fig. 5. Note that the
number of states that do not belong to the largest Krylov sector
can still be exponentially large in the volume of the system, as
long as they still correspond to a vanishingly small fraction of
total states in the thermodynamic limit:

∑
j �= jm

D( j)
n /D( jm )

n →
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0 as L → ∞, where jm denotes the index of the largest Krylov
sector.

The results obtained by performing an exact enumera-
tion of sectors for systems of size up to and including N =
30 are shown in Fig. 4. Since we work directly with the
system’s Hamiltonian, which is sparse, rather than with its
eigenstates, we are able to reach significantly larger system
sizes than those accessible to exact diagonalization (as in,
e.g., Ref. [50]). Further details pertaining to the numerical
simulations are presented in Appendix B. We note in passing
that Ref. [42] presented analogous results on a spin-1 chain
with N = 18, which corresponds to a similar Hilbert space
size to N = 30 with spin- 1

2 degrees of freedom.
We observe that there is no appreciable variation in the

ratio max j,n[D( j)
n ]/Dn with system size, at least for a fixed

aspect ratio. Note that while we plot the results for the largest
Krylov sector, where the maximum is taken over all symmetry
sectors, the obtained ratio is not atypical; analogous results are
found by averaging over symmetry sectors at infinite temper-
ature1 (see the middle panel of Fig. 5 in the vicinity of n = 1

2 ,
the infinite-temperature value).

We can gain further insight into the behavior of the system
by looking at the ratio max j[D

( j)
n ]/Dn resolved by symmetry

sector, parametrized by n. As explained in Sec. II, in the
limit of low domain wall density, in which domain walls form
small, isolated clusters, we expect that the states should be
predominantly frozen and therefore the corresponding sym-
metry sectors should exhibit strong shattering. This intuition is
borne out in the middle panel of Fig. 5. Note, however, that the
ratio assumes the value 1

2 at zero domain wall density: The two
ferromagnetic spin configurations both belong to the n = 0
sector and are dynamically disconnected from one another.
We additionally plot the average density of active sites, the
complement of the frozen site density. A site is frozen if it is
not dynamical, i.e., a given spin is frozen in the context of a
Krylov sector if all states belonging to the Krylov sector share
the same spin direction. A site that is not frozen is active;
once all states within the Krylov sector have been explored,
the spin will have flipped. The average is over all Krylov
sectors, with each Krylov sector weighted by the number
of states that it hosts. In both plots we observe a crossover
from strong shattering (where a vanishing density of spins are
active) at low domain wall density to weak shattering (where
a given spin is active with probability one) at high densities.
However, the system sizes accessible to exact enumeration are
rather limited, and the existence of a putative weak-strong
transition versus a smooth crossover cannot be established
from the data in Fig. 5 alone. That the crossover appears to
drift towards smaller values of domain wall density n with
increasing system size is worthy of note, and will be explained
in detail in Sec. V.

Observe that Fig. 5 is not symmetric under n → 1 − n, as
one might have expected. The origin of this asymmetry is
ring frustration; since we plot systems with both Lx and Ly

1Here, by infinite-temperature average we mean that the probability
of picking a given symmetry sector is proportional to the number of
states that it contains.

odd, and periodic boundary conditions are applied, it is not
possible for the system to exhibit perfect Néel order. Instead,
each row and each column must have (at least) one ferromag-
netic bond, which bridges two antiferromagnetic regions with
opposite parity. If even Lx, Ly are used instead then Fig. 5
becomes exactly symmetric under n → 1 − n. Typically, this
even-odd effect is inconsequential in the thermodynamic limit
since the minimal number of ferromagnetic bonds scales as
∼Lx + Ly, so that the density of “defective” ferromagnetic
bonds is subextensive, ∼L−1. In the context of the existence of
a finite-size freezing transition, however, ring frustration plays
an important role. With both Lx, Ly odd, the state that maxi-
mizes the number of domain walls has two straight loops of
ferromagnetic bonds that wind around the torus and intersect
at a point. It is then possible to show that the linear number of
defective bonds in this state are sufficient to make all sites
active, as is observed in Fig. 5. Consequently, there is no
freezing transition as n → 1 for both Lx, Ly odd. If exactly one
of Lx, Ly is odd, then the state that maximizes the domain wall
density now has a single winding ferromagnetic loop. Since
an intersection point is no longer present, the single winding
loop remains frozen, and a finite-size freezing transition can
again occur in the vicinity of both n → 0 and n → 1.2

The triangular lattice does not support antiferromagnetic
Néel order, irrespective of the parity of its linear dimensions;
geometric frustration gives rise to a nonzero density of fer-
romagnetic bonds in the classical antiferromagnetic ground
states. This results in behavior analogous to that shown in
Fig. 5, whereby no freezing transition occurs for the largest
attainable values of domain wall density (n = 2

3 ). No such ob-
struction exists as n → 0, however, and a finite-size freezing
transition can occur, which will be explored in further detail
in the next section.

IV. AUTOMATON NUMERICS

To analyze the putative weak-strong shattering transition
that occurs at low domain wall density, we make use of
classical cellular automaton circuits, following Ref. [55]. This
allows us to access significantly larger system sizes than those
accessible to the exact enumeration performed in Sec. III.
While finite size no longer represents an insurmountable bar-
rier, the automaton numerics are instead limited principally
by finite time: while the automaton circuits will sample a
representative selection of states, the Hilbert space dimensions
(2N ) are so large that not all states will be sampled.

Cellular automaton dynamics is a class of discrete, uni-
tary time evolution in which entanglement does not grow
in a particular, privileged basis. In this paper, the privileged
basis corresponds to the “computational” basis |{σ z

i }〉. An
automaton gate Û acts as a permutation operator when acting
on states belonging to the privileged basis, returning another
state belonging to the same basis, up to a phase: Û |{σ z

i }〉 =

2While the classical ground states with antiferromagnetic coupling
are frozen when exactly one of Lx and Ly is odd, the fraction of frozen
sites is still not symmetric under n → 1 − n due to the presence of
a macroscopic number of ferromagnetic bonds in the ground states,
equal to min(Lx, Ly ).
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FIG. 6. Autocorrelation functions for the bond variables τ̂ z
i j ≡

σ̂ z
i σ̂ z

j (blue), which are locally conserved by the dynamics, and for
the spins σ̂ z

i (red). The bond variables τ̂ z
i j exhibit a diffusive ∝1/t

decay of the autocorrelation function (dashed line), while the non-
conserved σ̂ z

i correlator decays exponentially in time, as shown in
the inset. The dynamics makes use of the gate G3 in a system of size
Lx = Ly = 256.

eiθ |{σ̃ z
i }〉. In this paper we make use of stochastic automata,

in which the permutations are chosen stochastically.
The simplest dynamics that one can implement is “single

spin flip” (SSF). In SSF dynamics, a candidate spin is chosen
at random, and it is flipped only if its neighboring spins sum to
zero: this corresponds to a stochastic automaton with five-site
gates (for the square lattice). On the triangular lattice, the
z = 6 neighboring spins determine whether the central spin
can be flipped. To help ameliorate the finite-time limitation,
we work with gates of larger size. On the square lattice, we can
consider gates of size Gn = n2 + 4n, i.e., n2 flippable spins,
and 4n boundary spins that determine which of the “bulk”
spins are flippable (SSF dynamics then corresponds to the
choice n = 1). For each state of the 4n boundary spins, we
find all spin states that can, in principle, be accessed by ap-
plying the fundamental SSF gates. More precisely, we find the
Krylov sectors of the subregion of size Gn that can be accessed
by flipping the n2 bulk spins, subject to the domain-wall-
conserving constraints in Fig. 1. The dynamics then proceeds
by picking with uniform probability a random state from the
configurations that are dynamically accessible. This proce-
dure is equivalent to performing infinite-temperature Monte
Carlo on the gate subregion for infinite time, and then select-
ing the output: each state, if it is dynamically connected to
the initial state, is selected with equal probability, including
the initial state. In this way, the dynamics satisfies detailed
balance.

A. Autocorrelation functions

In Fig. 6 we plot the autocorrelation functions for the
spins σ̂ z

i , and for the locally conserved operators τ̂ z
i j ≡ σ̂ z

i σ̂ z
j =

2Q̂i j − 1, related to the local density of the conserved charge
Q̂. Before presenting our results, we place some bounds on
what could happen. In the absence of a one-form constraint,
we would expect the locally conserved operators to relax via

diffusion. With a subsystem U(1) conservation law in addition
to the global U(1) conservation law, we would expect k4 subd-
iffusion in the manner of “fracton hydrodynamics” [55,78]. A
global U(1) conservation law plus a subsystem Z2 constraint
should presumably produce relaxation no faster than diffusion
and no slower than k4 subdiffusion.

We now determine numerically what obtains. We use the
operators τ̂ z

i j in place of the charges Q̂i j since the average
〈τ z

i j〉 vanishes at infinite temperature. Since the autocorrelation
function can be interpreted as a return probability, normaliza-
tion of the domain wall density distribution gives rise to the
asymptotic behavior 〈τ̂ z

i j (t )τ̂ z
i j (0)〉 ∼ 1/t d/2 = 1/t if domain

wall density spreads diffusively, as is observed in Fig. 6.
The numerics therefore shows that the weak one-form Z2

constraint on the Hilbert space of domain wall configurations,∏
〈i j〉∈γ τ̂i j = 1 for all closed loops γ , has no measurable

impact on the decay of the autocorrelation function, which
follows ordinary diffusion. This result is to be contrasted with
the behavior of the autocorrelation function of the local mag-
netization 〈σ̂ z

i (t )σ̂ z
i (0)〉: Since σ̂ z

i is not locally conserved, its
associated autocorrelation function instead (asymptotically)
decays exponentially in time, as shown in the inset of Fig. 6.

B. Frozen sites

1. Definition of frozen-site density

To study in further detail the crossover from weak to strong
shattering as domain wall density is reduced from n = 1

2 , as
observed in Fig. 5, we must introduce a finite-time generaliza-
tion of the frozen-site density. We make use of the definition
proposed in Ref. [42]. At time t = 0, all sites are classified as
frozen. At a later time, a site is classified as frozen if it has
flipped in any of the prior configurations that the system has
passed through:

ρF(t ) = 1

N

∣∣{σ z
i

∣∣σ z
i (t ) = σ z

i (t − 1) = · · · = σ z
i (0)

}∣∣. (9)

Correspondingly, the number of active sites is given by the
complement: ρA(t ) ≡ 1 − ρF(t ). When defined in this way, a
frozen site can become active, but the converse is not true:
an active site can never become frozen. If it were possible to
run the automaton circuits for infinite time, the definition (9)
would agree exactly with the definition used previously in
Sec. III. Note also that limt→∞ ρF(t ) does not depend on the
size of the gate Gn chosen to evolve the system. In prac-
tice, we run the automaton circuits until ρF(t ) has plateaued.
This does not, however, rule out the existence of states with
a significantly higher density of active sites, although such
states would need to be atypical. To mitigate the possibility
of a diverging timescale, invisible to large automaton simu-
lations, after which the behavior of ρF(t ) changes drastically,
we start with system sizes that can be accessed using exact
enumeration, and show that there exists a unique plateau (i.e,
no metastable behavior) in ρF(t ), whose value coincides with
the exact result obtained using the enumeration results from
Sec. III. While this procedure does not rigorously rule out the
existence of a diverging timescale that only manifests in larger
system sizes, it makes it plausible that the plateaus observed
in our simulations do indeed coincide with the true asymptotic
behavior of the frozen-site density ρF(t ).
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FIG. 7. Finite-size scaling of the frozen-site density. The asymp-
totic value of the frozen-site density obtained from the square-lattice
automaton circuit is plotted as a function of the initial magnetization
density m. The data are for systems of size Lx = Ly = 12, 16, . . . , 36
in equally spaced intervals. The data are collapsed as a function
of δ = (1 − m)/2 in the inset using a system-size-dependent criti-
cal magnetization density mc(L) = 1 − 2λ/ ln L. Each data point is
taken once ρF has equilibrated, and is averaged over at least 213

independent histories.

2. Initial-state distribution

To access states with domain wall density n < 1
2 , i.e., away

from infinite temperature, we must specify a distribution of
initial states with unequal weighting. We choose to work with
uncorrelated states in the computational basis with nonvanish-
ing magnetization density. That is, each spin is drawn from a
biased, bimodal probability distribution P(σ z

i ) = 1
2 (1 + σ z

i m),
such that each spin individually satisfies 〈σ z

i 〉 = m in the ini-
tial state. Since the distribution of domain walls is symmetric
under m → −m, we work without loss of generality with
initial states satisfying m > 0. An alternative choice would be
to work with eigenstates of Ĥ0 = 2JQ̂, weighted according to
the Boltzmann distribution ∝exp(−βĤ0), where the tempera-
ture T = β−1 controls the density of domain walls. However,
at low temperatures T � J , where the correlation length is
O(1), the two distributions should agree quantitatively with
one another.

3. Automaton results

The asymptotic frozen-site density obtained using the au-
tomaton circuit is shown in Fig. 7. It is clear from Fig. 7
that the crossover from strong to weak shattering (i) becomes
sharper with increasing system size, and (ii) drifts towards
larger values of the magnetization density m (smaller values
of the domain wall density). These two features are verified
quantitatively in the scaling collapse shown in the inset of
Fig. 7, which establishes that ρF(m, L) � F ([δ − δc(L)]Lσ ),
where δ parametrizes the number of domain walls via m ≡
1 − 2δ, σ = 1.0(1), and δc(L) = λ/ ln L, with λ = 0.22(2).
This scaling of the critical domain wall density will be
justified analytically in Sec. V. We therefore conclude that
there is no phase transition at nonzero excitation density in
the standard thermodynamic limit, i.e., limL→∞ ρF(m, L) = 0

FIG. 8. Finite-size scaling of the triangular-lattice frozen-site
density. The asymptotic value of the frozen-site density obtained
from the triangular-lattice automaton circuit is plotted as a function
of the initial magnetization density m. The data are for systems
of size Lx = Ly = 12, 16, . . . , 32 in equally spaced intervals. The
data are collapsed in the inset using a system-size-dependent crit-
ical magnetization density mc(L) = 1 − 2λ/ ln L. Each data point
is taken once ρF has equilibrated, and is averaged over at least 214

independent histories.

for all m < 1 (i.e., δ > 0). While there exists no transition in
the standard thermodynamic limit, two comments are in order.
First, the slow decay of δc(L) with system size L implies that
finite-size effects are extremely important; even macroscop-
ically large systems will exhibit a finite-size transition due
to the slow (logarithmic) dependence of δc on L. Second,
the transition becomes sharp as a function of the rescaled
density δ ln L. Although the critical density of domain walls
vanishes in the strict thermodynamic limit, the system requires
a macroscopic number of defects relative to the ferromagnetic
spin configurations to lead to melting. One may therefore view
the behavior in Fig. 7 as a freezing transition in a nonstandard
thermodynamic limit. While we have presented the data using
a power-law ansatz for the width of the transition regime in
ρF, a collapse of comparable quality can be obtained using a
width that scales as (ln L)−2 (motivated by the connection to
bootstrap percolation discussed in Sec. V [79]). Even though
the data cannot distinguish between these two ansatze, both
give rise to an asymptotically sharp transition as a function of
the rescaled density.

Equivalent results for the triangular lattice are shown in
Fig. 8, which also exhibits a finite-size freezing transition
as m → 1. We observe that the data again exhibit a high-
quality collapse upon rescaling the magnetization density
m → [m − mc(L)]Lσ , with σ ≈ 0.9(1) and a system-size-
dependent δc(L) = (1 − mc)/2 = λ/ ln L, with λ = 0.34(2).
While λ differs substantially between the square and triangu-
lar lattices, the values for σ are consistent with one another.

4. Analyzing the transition

To gain further information about the weak-strong tran-
sition, we perform an analysis of the system’s spin clusters
once ρF has reached equilibrium. We will show that the
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freezing transition coincides with a percolation threshold for
minority-spin clusters. A cluster is defined as a contiguous
region of spins with the same sign, separated from spins of
the opposite sign by domain walls. The system is percolating
if it contains a so-called wrapping cluster of spins that were
initially in the minority (the analog of spanning clusters in the
context of open boundary conditions). A wrapping cluster is
defined as a spin cluster that contacts itself around the periodic
boundary conditions in either direction, i.e., it has a nontrivial
winding number. The number of nonwrapping clusters of size
s per site is given by ns(m), which implies that the pro-
bability that a given spin belongs to a nonwrapping cluster
of size s is given by

ws(m) = sns(m)∑
s sns(m)

. (10)

This probability distribution can then be used to define the
mean cluster size via S(m) = ∑

s sws(m). Note that while we
parametrize the cluster properties by the initial-state mag-
netization m, the measurements are made in the plateaus of
ρF where the magnetization of the system is related nontriv-
ially to m. Finally, we introduce the percolation probability
�(m) defined by the fraction of histories that contain (at
least) one wrapping cluster. Since the mapping between spins
and domain walls is not one to one (i.e., there are two spin
configurations |{σ z

i }〉 and |{ς z
i }〉 for each configuration of

domain walls, {τ z
i j}, related by the Ising symmetry |{σ z

i }〉 =∏
j σ̂

x
j |{ς z

i }〉), the spin species that is initially in the minority
may, if the system is only weakly fragmented, become the
majority-spin species. If the minority species is able to per-
colate, we therefore expect the percolation probability � � 1

2 .
That is, if ρF � 1, we expect that the system will be able to ex-
plore states with magnetization �m and �1 − m. If the system
spends roughly equal amounts of time in each configuration,
then the probability that the spin species that was initially in
the minority has become the majority species, at a particular
point in time, is roughly 1

2 .
The percolation probability � as a function of initial-state

magnetization m for various system sizes is shown in Fig. 9.
The data exhibit a high-quality collapse using parameters
that are consistent with those used to collapse the frozen-
site density in Fig. 7. Figure 9 therefore suggests that the
unfreezing transition as domain wall number is increased
can alternatively be viewed as a percolation transition for
the minority-spin clusters. For a density of excitations less
than the critical value, nc ∼ λ/ ln L, isolated minority clusters
remain disconnected, with a finite mean size S(m), and are
unable to make the system active. While the disconnected
clusters may exhibit dynamics, any active spins represent a
vanishing fraction of the total system volume. Conversely,
above nc, the initially disconnected clusters are able to grow
under the domain-wall-conserving dynamics, maintaining a
constant perimeter, and are able to coalesce to form a perco-
lating cluster of spins that covers a macroscopic fraction of the
system, making it active in the process. In the next section we
will propose a mechanism by which this growth process is
able to occur.

FIG. 9. Square-lattice percolation probability. The fraction of
histories that contain a wrapping cluster �(m) as a function of initial-
state magnetization on the square lattice. In the inset, we observe an
excellent collapse of the data as a function of δ = (1 − m)/2 using
parameters consistent with Fig. 7. Each data point is taken once
ρF has equilibrated, and is averaged over at least 213 independent
histories. The data are for systems of size Lx = Ly = 12, 16, . . . , 36
in equally spaced intervals.

V. LARGE VOID INSTABILITIES

In the limit of low domain wall density in the initial state,
δ ≡ (1 − m)/2 � 1, the average separation between flipped
spins is large, ∼δ−1/d � 1. However, in sufficiently large
systems, there will exist rare regions where the local density
of flipped spins significantly exceeds δ. We will argue that
such rare regions, which must be present in an infinite system,
provide a mechanism through which the entire system is able
to melt (i.e., become active). Equivalently, for a fixed system
size L, there will exist a domain wall density δc(L) above
which there exists an appreciable probability of such a rare
region, allowing the system to melt.

Suppose that there exists a square region of minority spins
of size � × � somewhere in the system. If the square is sur-
rounded by boundary layer of the majority-spin species of
width two, then the square is unable to grow. Conversely, if
there exists a single flipped spin on one of its edges, creating
a neighboring kink and antikink,

(11)

both the kink and the antikink can be propagated outwards,
away from the arbitrary initial position of the flipped spin,
increasing the width or height of the � × � square by one unit:

(12)

If there is one flipped spin on each of the four edges [and
there are no spins in outer rows to obstruct the growth process
shown in (12)], then the square can be grown from size � ×
� → (� + 2) × (� + 2) using the moves in (12).

Having shown that a single flipped spin on every edge of
the square is able to enlarge the width and height of a square
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by two units, all that remains is to show that flipped spins in
outer rows, required for further growth of the square, do not
significantly impede the growth of the minority cluster. We
perform this task in Appendix C, where we show construc-
tively that exactly one spin per row can allow the minority
cluster to grow and engulf the entire system.

Scaling of the critical magnetization

Given that exactly one flipped spin per edge is sufficient to
melt the system, we now bound the probability of melting by
assuming that additional flipped spins will help to facilitate
growth of the cluster, rather than impede it. This statement
is certainly true on average since the frozen fraction ρF(δ)
is a monotonic decreasing function of domain wall density,
parametrized by δ, for all system sizes. It is therefore plausible
that at least one defect per side is required in order for the
square of size � × � to be able to grow to become infinitely
large in the thermodynamic limit L → ∞. If this assumption
is satisfied, then the probability that a region of size � × � is
able to grow to size (� + 2) × (� + 2) is therefore

P�→�+2 = [1 − (1 − δ)�]4. (13)

Analogous expressions for the growth probability arise in the
context of, e.g., self-diffusion [80], bootstrap percolation [58],
and other kinetically constrained models [53]. The probability
for this process to be able to continue indefinitely is given
by iterating the above expression, implying that P�→∞ =∏∞

k=0 P�+2k→�+2k+2, or, using (13),

P�→∞ = exp

{
4

∞∑
k=0

log[1 − (1 − δ)�+2k]

}
. (14)

This expression should represent a lower bound on the prob-
ability for the entire system to be become active since growth
can proceed via alternate, e.g., rectangular, pathways. For suf-
ficiently large �, (1 − δ)� � 1, allowing the logarithm to be
expanded. This allows the summation to be performed exactly,
and leads to the approximate expression

P�→∞ � exp

(
−4

(1 − δ)�

2δ − δ2

)
. (15)

As explained in, e.g., Ref. [53], for � � �∗ the probability
that the � × � minority cluster grows to envelop the whole
system saturates to unity; an “unstable void.” From Eq. (15),
we identify �∗ = ln[(2δ − δ2)/4]/ ln(1 − δ) � − log(δ/2)/δ.
The probability that such an unstable cluster is present in the
system’s initial condition is exponentially small in �2

∗ � 1.
Instead, it is more likely that a small cluster grows to become
unstable by reaching a size �∗ × �∗, after which its ability to
grow is guaranteed. The summation appearing in (14), for
growth beginning from a single site, P1→∞, can be bounded
from below by turning the summation into an integral [53,79]

∞∑
k=0

ln[1 − (1 − δ)1+2k] � −1

2 ln(1 − δ)

∫ ∞

0
dx g(x), (16)

where g(x) = ln[1 − e−x]. The integral can be evaluated
exactly to give − ∫ ∞

0 dx g(x) = Li2(1) = π2/6, with Lin(z)
the polylogarithm function. Combining the above re-
sults, the probability that a single minority spin can grow to

FIG. 10. Melting around a nucleation site. The configuration in
(a) has a 2 × 2 square of flipped spins surrounded by one flipped
spin per row, while (b) is a typical uncorrelated random state with the
same magnetization (on average). In (c) we plot the frozen fraction
ρF(t ) as a function of time for the configuration (a) (solid line)
and averaged over typical uncorrelated states with m ≈ 0.83 (dashed
line). The initial state (a) saturates to ρF = 0, while the average over
random configurations has a nonzero asymptotic frozen fraction.
Both curves are computed for a system of linear size L = 24, and
are averaged over 500 circuit realizations.

cover the entire system is bounded by

P1→∞ � exp

{
π2

3

1

ln(1 − δ)

}
> 0. (17)

The probability P1→∞ vanishes as P1→∞ ∼ exp{−const/δ} as
δ → 0+. Nevertheless, it is still nonzero, and for sufficiently
large systems, there will exist such a nucleation site. The
probability that the system contains a minority spin that is
able to grow and melt the system is set approximately by
δL2P1→∞ [53] (alternatively, the probability can be bounded
more rigorously by subdividing the system into L independent√

L × √
L regions [79,81]), and the critical value of δ is found

by solving δL2 exp[−π2/(3δ)] = c = O(1) (valid for δ � 1),
leading to a critical value of δ that vanishes logarithmically
with increasing system size,

δc(L) = π2

3W
(

L2π2

3c

) ∼ π2

6 ln L
, (18)

where W (x) is the product-logarithm function. In the con-
text of bootstrap percolation, the prefactor π2/6 appearing
in Eq. (18) is in fact provably asymptotically exact for d =
2 [82]. However, the subleading corrections as δ → 0+ can
lead to sizable corrections to the asymptotic behavior in sys-
tem sizes that are accessible numerically [58,83].

The above provides a justification of the slow (ln L)−1

scaling of δc(L) observed in Figs. 7 and 9. Intriguingly, the
more constrained triangular lattice appears to exhibit similar
logarithmic decay. To provide further numerical evidence that
the above mechanism is responsible for the melting transi-
tion, we plot in Fig. 10 the frozen fraction as a function of
time for a system that (a) contains a nucleation site, and (b)
has uncorrelated initial states with the same magnetization
as (a). We observe that the nucleation site permits all sites
to become active for times t � 104 (importantly, this time is
system size dependent), while the uncorrelated initial states
lead to a substantial fraction of asymptotically frozen sites.
This figure confirms that nucleation sites, if present, have the
ability to melt the entire system.
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VI. DISCUSSION

We have shown that the transverse field Ising model in
two spatial dimensions, deep within its ferromagnetic phase,
exhibits a rich and hitherto largely unappreciated structure
to its quantum dynamics. In particular, up to a prethermal
timescale, the Hilbert space shatters into a number of dis-
connected Krylov subsectors exponentially large in system
volume. The precise timescale on which the Krylov subsectors
reconnect depends on the particular patterns that are being
tiled to make the subsectors, but could be as small as J/h2, and
large as ∼ exp(ϒJ/h), where ϒ > 0 is some undetermined
numerical constant. An easy to visualize example of a pattern
for which the timescale saturates the prethermal upper bound
is a stripelike pattern with locally ferromagnetic stripes of
width greater than J/h.

We have explored in detail the dynamics with the Hamil-
tonian obtained by truncating at leading nontrivial order in
Schrieffer-Wolff perturbation theory, and have provided nu-
merical evidence that the resulting Hamiltonian exhibits at
least one “freezing” transition between weak and strong shat-
tering as a function of symmetry sector in a nonstandard
thermodynamic limit. We have also provided analytical and
numerical evidence that this transition is linked to an insta-
bility of sufficiently large minority-spin clusters. It is also
important to emphasize that the freezing transition occurs for
the effective Hamiltonian in Eq. (6). Whether the transition
survives the inclusion of corrections at higher order in the
Schrieffer-Wolff procedure, or whether the “strongly shat-
tered” phase disappears upon inclusion of higher-order terms
(and the transition with it), remains to be resolved.

This paper has concentrated on Ising models in two spa-
tial dimensions. Our construction of exponentially many (in
system volume) Krylov subsectors, which results from tiling
compact motifs, should extend to arbitrary higher spatial di-
mensions. Consequently, we expect that the transverse field
Ising model in higher spatial dimensions will also display
an exponential-in-volume shattering of its Hilbert space.
Whether a weak-strong freezing transition exists in higher di-
mensions, and whether it can also be described by the growth
of unstable minority-spin clusters, remains to be explored.

It is interesting to wonder if the observations contained
herein could be probed in solid-state experiments. Effective
Ising models are, of course, ubiquitous in solid-state systems.
However, solid-state systems also generically have phonons,
which open up “thermal” relaxation pathways. We generi-
cally expect thermal relaxation times for, e.g., the stripe-based
scar states to follow the Arrhenius law τth ∼ exp(−�/T ),
where T is temperature and the activation gap � increases
as we go deeper into the ferromagnetic phase. This thermal
relaxation will compete with the intrinsically quantum relax-
ation pathways that we have discussed herein. As one lowers
the temperature and moves deeper into the ferromagnetic
regime, however, one would generically expect the thermal
relaxation channels to become subleading to the intrinsically
quantum relaxation channels that we have discussed. For
example, for a “striped” configuration based on stripes of
width �, we estimated a quantum lifetime of order hτq ∼
min[(J/h)�−1, exp(ϒn∗)] where, we recall, n∗ ∼ J/h, and
exp(ϒn∗) is the prethermal timescale up to which domain wall

number is conserved. If we go to low enough temperatures,
such that the thermal timescale is longer than the quantum
timescale, then the physics discussed in this paper will ap-
ply to the relaxation of stripelike scar states. Experimental
probes of the dynamics deep in the ferromagnetic phase may
therefore be able to see signatures of the Hilbert space shatter-
ing discussed herein. Of course, the precise numerical values
of the associated timescales would be highly sensitive to the
particular microscopic realization of the Ising model (and also
to how deep in the phase we were). In one well-studied quan-
tum Ising system [84] the characteristic dynamical timescales
were on the order of milliseconds, but this could easily
vary by multiple orders of magnitude with microscopic re-
alization and location in the phase diagram. For example,
in a recent structural realization [85,86] the characteristic
timescales seem to be of order seconds. Needless to say, our
analysis applies to all microscopic realizations of the quan-
tum Ising model, regardless of the characteristic timescales
therein.

Finally, it would be interesting to explore whether the
“freezing transition” discussed herein could be obtained in re-
alistic models in a standard thermodynamic limit. Given that
the combination of a U(1) conservation law and a one-form
Z2 constraint does not seem to be enough, it is tempting to
attempt to upgrade to a U(1) conservation law and a one-form
U(1) constraint, which lattice gauge theories could in princi-
ple provide [74]. The mapping of the Ising model to the Ising
gauge theory suggests that such a transition, if it exists, would
exist in the confining phase of the gauge theory. Whether
U(1) lattice gauge theories in the confining phase do indeed
support a freezing transition in a conventional thermodynamic
limit would be another fruitful problem to explore in future
work.
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APPENDIX A: SCHRIEFFER-WOLFF TRANSFORMATION

The operators T̂n can be expressed explicitly in terms of
the orthogonal projectors �̂1

i j = Q̂i j (�̂0
i j = 1 − Q̂i j), which

project onto states whose bond hosts (does not host) a charge.
In 2D, we will adopt the notation that Q̂i1, Q̂i2, Q̂i3, Q̂i4 label
the charges on the bonds surrounding the site i on the square
lattice in a clockwise direction, starting from the top. Then,

T̂4 =
∑

i

σ̂ x
i �̂0

i1�̂
0
i2�̂

0
i3�̂

0
i4, (A1a)

T̂2 =
∑

i

σ̂ x
i �̂1

i1�̂
0
i2�̂

0
i3�̂

0
i4 + 3 permutations, (A1b)

T̂0 =
∑

i

σ̂ x
i �̂1

i1�̂
1
i2�̂

0
i3�̂

0
i4 + 5 permutations, (A1c)
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where the permutations are over the superscript indices.
The operators T̂−4 and T̂−2 are obtained from Eqs. (A1a)
and (A1b), respectively, by interchanging the projectors
�̂1

i j ↔ �̂0
i j . The generalization to other spatial dimensions

and other lattices is transparent. The property σ̂ x
i Q̂i j = (1 −

Q̂i j )σ̂ x
i implies that the operators in (A1) satisfy T̂ †

n =
T̂−n. To construct an effective Hamiltonian that conserves
quasi-domain-wall number, we perform a Schrieffer-Wolff
transformation parametrized by the Hermitian operator Ŝ =
Ŝ†. That is,

Ĥ ′ = eiŜĤe−iŜ = Ĥ + [iŜ, Ĥ ] + 1
2! [iŜ, [iŜ, Ĥ ]] + . . . .

(A2)
The eigenstates of the effective Hamiltonian Ĥ ′ are then
dressed by the operator e−iŜ to obtain the eigenstates of the
original Hamiltonian Ĥ . The operator Ŝ is chosen such that
Ĥ ′ conserves the number of domain walls up to a particular
order in h/J . Specifically, we write Ŝ = ∑

k Ŝ(k) where Ŝ(k)

is chosen such that Ĥ ′ conserves domain walls up to order
(h/J )k . At leading order, we find that

iŜ � iŜ(1) = − h

4J
(T̂2 − T̂−2) − h

8J
(T̂4 − T̂−4). (A3)

Note that this expression does not derive from the specific
form of the operators T̂n, only from their mutual commutation
relations and [Q̂, T̂n] = nT̂n. The property T̂ †

n = T̂−n ensures
that the operator iŜ is anti-Hermitian. The first-order term in
Ŝ gives us access to the second-order effective Hamiltonian
(since the second-order term in Ŝ is chosen in such a way as
to remove the terms generated at second order in h that do
not conserve domain wall number, leaving only the number-
conserving terms that are generated by the first order Ŝ). We
are therefore left with the result

Ĥ ′ = 2JQ̂ − hT̂0 + h2

4J
[T̂2, T̂−2] + h2

8J
[T̂4, T̂−4] + . . . . (A4)

An isolated flipped spin, which is frozen at first order in the
field, becomes mobile at second order as a result of the term
[T̂2, T̂−2], which allows an adjacent spin to flip followed by
the reversal of the original isolated spin.

APPENDIX B: NUMERICAL DETAILS

Here we provide some additional details relating to the
exact enumeration presented in Sec. III of the main text. To
identify the disconnected subgraphs of the Hamiltonian, we
make use of a breadth-first search of the system’s adjacency
matrix. Since the adjacency matrix is sparse, we only need
to store O(N2N ) connections. Furthermore, the kinetic con-
straints often forbid a substantial fraction of the N possible
states from being connected (e.g., for the 5 × 5 square lattice,
the average number of connections per state is ≈9 of the
possible 25).

To perform the classification of sectors, we keep track of
whether each state has been visited. In a loop over all states, if
the state has not yet been visited, then it acts as the root node
for a breadth-first search. All neighbors of the root node are
added to a queue. For all states in the queue, their neighbors
are added to the queue if they have not yet been visited, and
the state is subsequently dequeued. This procedure is repeated

until the queue is empty, at which point all states that can be
reached from the root node have been classified and added to
a Krylov sector. The loop over all states ensures that all states
are classified as belonging to a unique Krylov sector.

APPENDIX C: MELTING FROM ONE SPIN PER EDGE

In the main text, we showed how a single flipped spin on
each edge of a rectangular minority cluster can increase the
width and the height of the cluster by two units. Here, we
explain with the use of explicit sequences of spin flips that ex-
actly one flipped spin per “row” is sufficient to melt the entire
system. The spin-flip pathways that we provide are certainly
not unique; there are other ways in which the minority-spin
cluster can grow for a given initial condition of independent
and identically distributed (i.i.d.) spins. Also note that we
are not concerned with the timescale over which this growth
occurs, i.e., we characterize whether the system’s dynamics is
irreducible (two states selected at random will be connected
by the dynamics) as opposed to ergodic (two states selected
at random will be connected in finite time by the dynamics).3

First, we consider the interaction of the kink structure in (11)
with spins in outer rows. Making use of reflection symmetry
of an edge and the ability to translate the isolated flipped
spin, there are just two situations that we need to consider
(up to corner cases considered in the Supplemental Material
(SM) [87]). First, consider the special case that the flipped
spins in adjacent rows are nearest neighbors. In this case, the
baseline can immediately be increased by one unit using only
the permitted local rearrangements of domain walls:

1 2 3123

. (C1)

The spins have been flipped in the order 1, 2, 3, denoted by the
integers next to the spins on the right-hand side. The state of
the system has therefore been reduced to that of state (11), and
requires no further classification. If the spins are not nearest
neighbors, then the bump can (almost) always be translated
such that the red spins are arranged with the following relative
positions (special cases, in which the spin in the top row hangs
over the corner of the square, are dealt with separately in the
SM [87]):

1 2 345

. (C2)

In the above, the isolated flipped spin that is separated from
the cluster is attached by flipping the intervening spin. The
baseline is subsequently increased by one unit to produce a
new type of kink structure. We must therefore classify how the
new structure in (C2) interacts with flipped spins in adjacent
rows. Note that, in the absence of spins in outer rows, the
structure on the right-hand side of (C2) can be freely trans-
lated along the surface. First, we consider the case where the

3A nonzero frozen fraction is a sufficient condition for reducibility
and the breaking of ergodicity, but it is not necessary. For example,
the one-magnon sector of the XY model is reducible, but ρF = 0.
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flipped spin appears to the left of the kink structure

1234 5 6
. (C3)

The isolated spin is incorporated into the cluster by first
flipping the spin underneath, after which the baseline can
be increased by propagating kinks outwards, as in (12). The
configuration is therefore reduced to that found in (11). While
the void that is left behind in the spin cluster may appear
frozen in (C3), note that, for instance, the kink structure could
have been translated to the right prior to incorporating the
isolated spin. If the isolated spin instead appears to the right of
the kink structure, a more intricate rearrangement of domain
walls is required:

4 3 2 1

. (C4)

The first step brings in a kink from the right corner.4 The
“tower” of minority spins can then be disconnected from

4Bringing in a kink from the right corner can alternatively be
thought of as undoing the moves 2, 3 in (C2) that were used to
propagate the kink away.

the main cluster and subsequently reconnected in a differ-
ent location to allow the baseline to be increased by one
unit:

1

2

3 1

23

4

5

6

7

8

9
, (C5)

reducing the configuration to (11) with a void. As above, the
spin in the void is not frozen since the kink structure can
be translated to the left prior to incorporating the spin. The
final situation to consider corresponds to the case where the
the spin in the top row of either (C3) or (C4) is a nearest
neighbor of the spin in the row below. In this case, spins in
rows above must facilitate the inclusion of the tower of spins
into the cluster. It is possible to use an analogous sequence
of moves to those presented in (C3)–(C5) to absorb a tower
of arbitrary height into the cluster. This sequence of moves
is presented explicitly in the SM [87], along with a num-
ber of special cases that occur at the corners of the square.
While it may appear that the condition of exactly one spin
per row is overly restrictive, and could instead be relaxed
to the condition that no two adjacent rows are empty, there
exist edge cases that do not permit growth in the manner
described in this section. If there exist pathways that allow
such edge cases to be melted, then the prefactor in (18) below
will be modified, but the scaling with system size will remain
unchanged.
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scars and weak breaking of ergodicity, Nat. Phys. 17, 675
(2021).

[20] S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum
many-body scars and Hilbert space fragmentation: A review of
exact results, Rep. Prog. Phys. 85, 086501 (2022).

[21] A. Smith, J. Knolle, D. L. Kovrizhin, and R. Moessner,
Disorder-Free Localization, Phys. Rev. Lett. 118, 266601
(2017).

[22] A. Smith, J. Knolle, R. Moessner, and D. L. Kovrizhin, Absence
of Ergodicity without Quenched Disorder: From Quantum Dis-
entangled Liquids to Many-Body Localization, Phys. Rev. Lett.
119, 176601 (2017).

[23] A. Smith, J. Knolle, R. Moessner, and D. L. Kovrizhin, Dynam-
ical localization in Z2 lattice gauge theories, Phys. Rev. B 97,
245137 (2018).

[24] M. Brenes, M. Dalmonte, M. Heyl, and A. Scardicchio, Many-
Body Localization Dynamics from Gauge Invariance, Phys.
Rev. Lett. 120, 030601 (2018).

[25] S. A. Parameswaran and S. Gopalakrishnan, Non-Fermi
Glasses: Localized Descendants of Fractionalized Metals, Phys.
Rev. Lett. 119, 146601 (2017).

[26] A. Smith, J. Knolle, R. Moessner, and D. L. Kovrizhin,
Logarithmic Spreading of Out-of-Time-Ordered Correlators
without Many-Body Localization, Phys. Rev. Lett. 123, 086602
(2019).

[27] A. Russomanno, S. Notarnicola, F. M. Surace, R. Fazio, M.
Dalmonte, and M. Heyl, Homogeneous Floquet time crys-
tal protected by gauge invariance, Phys. Rev. Research 2,
012003(R) (2020).

[28] P. Karpov, R. Verdel, Y.-P. Huang, M. Schmitt, and M. Heyl,
Disorder-Free Localization in an Interacting 2D Lattice Gauge
Theory, Phys. Rev. Lett. 126, 130401 (2021).

[29] O. Hart, S. Gopalakrishnan, and C. Castelnovo, Logarith-
mic Entanglement Growth from Disorder-Free Localization in
the Two-Leg Compass Ladder, Phys. Rev. Lett. 126, 227202
(2021).

[30] V. Khemani, M. Hermele, and R. Nandkishore, Localization
from hilbert space shattering: From theory to physical realiza-
tions, Phys. Rev. B 101, 174204 (2020).

[31] P. Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann,
Ergodicity Breaking Arising from Hilbert Space Fragmentation
in Dipole-Conserving Hamiltonians, Phys. Rev. X 10, 011047
(2020).

[32] C. Chamon, Quantum Glassiness in Strongly Correlated Clean
Systems: An Example of Topological Overprotection, Phys.
Rev. Lett. 94, 040402 (2005).

[33] J. Haah, Local stabilizer codes in three dimensions without
string logical operators, Phys. Rev. A 83, 042330 (2011).

[34] C. Castelnovo and C. Chamon, Topological quantum glassiness,
Philos. Mag. 92, 304 (2012).

[35] S. Vijay, J. Haah, and L. Fu, A new kind of topological quantum
order: A dimensional hierarchy of quasiparticles built from
stationary excitations, Phys. Rev. B 92, 235136 (2015).

[36] S. Vijay, J. Haah, and L. Fu, Fracton topological order, general-
ized lattice gauge theory, and duality, Phys. Rev. B 94, 235157
(2016).

[37] M. Pretko, Subdimensional particle structure of higher rank
U (1) spin liquids, Phys. Rev. B 95, 115139 (2017).

[38] A. Gromov, Towards Classification of Fracton Phases: The
Multipole Algebra, Phys. Rev. X 9, 031035 (2019).

[39] R. M. Nandkishore and M. Hermele, Fractons, Annu. Rev.
Condens. Matter Phys. 10, 295 (2019).

[40] S. Pai, M. Pretko, and R. M. Nandkishore, Localization in
Fractonic Random Circuits, Phys. Rev. X 9, 021003 (2019).

[41] T. Rakovszky, P. Sala, R. Verresen, M. Knap, and F. Pollmann,
Statistical localization: From strong fragmentation to strong
edge modes, Phys. Rev. B 101, 125126 (2020).

[42] A. Morningstar, V. Khemani, and D. A. Huse, Kinetically con-
strained freezing transition in a dipole-conserving system, Phys.
Rev. B 101, 214205 (2020).

[43] G. De Tomasi, D. Hetterich, P. Sala, and F. Pollmann, Dynamics
of strongly interacting systems: From fock-space fragmenta-
tion to many-body localization, Phys. Rev. B 100, 214313
(2019).

[44] S. Moudgalya, A. Prem, R. Nandkishore, N. Regnault, and
B. A. Bernevig, Thermalization and its absence within Krylov
subspaces of a constrained hamiltonian, in Memorial Volume for
Shoucheng Zhang (World Scientific, Singapore, 2021), Chap. 7,
pp. 147–209

[45] S. Moudgalya and O. I. Motrunich, Hilbert Space Fragmen-
tation and Commutant Algebras Phys. Rev. X 12, 011050
(2022).

[46] A. Khudorozhkov, A. Tiwari, C. Chamon, and T. Neupert,
Hilbert space fragmentation in a 2d quantum spin system with
subsystem symmetries, arXiv:2107.09690.

[47] B. Mukherjee, D. Banerjee, K. Sengupta, and A. Sen, Minimal
model for hilbert space fragmentation with local constraints,
Phys. Rev. B 104, 155117 (2021).

[48] E. van Nieuwenburg, Y. Baum, and G. Refael, From Bloch
oscillations to many-body localization in clean interacting sys-
tems, Proc. Natl. Acad. Sci. U.S.A. 116, 9269 (2019).

[49] S. R. Taylor, M. Schulz, F. Pollmann, and R. Moessner, Exper-
imental probes of Stark many-body localization, Phys. Rev. B
102, 054206 (2020).

[50] A. Yoshinaga, H. Hakoshima, T. Imoto, Y. Matsuzaki, and R.
Hamazaki, Emergence of Hilbert Space Fragmentation in Ising
Models with a Weak Transverse Field, Phys. Rev. Lett. 129,
090602 (2022).

[51] Z.-C. Yang, F. Liu, A. V. Gorshkov, and T. Iadecola, Hilbert-
Space Fragmentation from Strict Confinement, Phys. Rev. Lett.
124, 207602 (2020).

[52] I.-C. Chen and T. Iadecola, Emergent symmetries and slow
quantum dynamics in a rydberg-atom chain with confinement,
Phys. Rev. B 103, 214304 (2021).

[53] F. Ritort and P. Sollich, Glassy dynamics of kinetically con-
strained models, Adv. Phys. 52, 219 (2003).

[54] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van
Saarloos, Dynamical Heterogeneities in Glasses, Colloids, and
Granular Media, Vol. 150 (Oxford University Press, Oxford,
2011).

[55] J. Iaconis, S. Vijay, and R. Nandkishore, Anomalous subdif-
fusion from subsystem symmetries, Phys. Rev. B 100, 214301
(2019).

214426-14

https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1103/PhysRevLett.118.266601
https://doi.org/10.1103/PhysRevLett.119.176601
https://doi.org/10.1103/PhysRevB.97.245137
https://doi.org/10.1103/PhysRevLett.120.030601
https://doi.org/10.1103/PhysRevLett.119.146601
https://doi.org/10.1103/PhysRevLett.123.086602
https://doi.org/10.1103/PhysRevResearch.2.012003
https://doi.org/10.1103/PhysRevLett.126.130401
https://doi.org/10.1103/PhysRevLett.126.227202
https://doi.org/10.1103/PhysRevB.101.174204
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1080/14786435.2011.609152
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevX.9.031035
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1103/PhysRevX.9.021003
https://doi.org/10.1103/PhysRevB.101.125126
https://doi.org/10.1103/PhysRevB.101.214205
https://doi.org/10.1103/PhysRevB.100.214313
https://doi.org/10.1103/PhysRevX.12.011050
http://arxiv.org/abs/arXiv:2107.09690
https://doi.org/10.1103/PhysRevB.104.155117
https://doi.org/10.1073/pnas.1819316116
https://doi.org/10.1103/PhysRevB.102.054206
https://doi.org/10.1103/PhysRevLett.129.090602
https://doi.org/10.1103/PhysRevLett.124.207602
https://doi.org/10.1103/PhysRevB.103.214304
https://doi.org/10.1080/0001873031000093582
https://doi.org/10.1103/PhysRevB.100.214301


HILBERT SPACE SHATTERING AND DYNAMICAL … PHYSICAL REVIEW B 106, 214426 (2022)

[56] J. Feldmeier, P. Sala, G. De Tomasi, F. Pollmann, and
M. Knap, Anomalous Diffusion in Dipole- and Higher-
Moment-Conserving Systems, Phys. Rev. Lett. 125, 245303
(2020).

[57] J. Adler, Bootstrap percolation, Phys. A (Amsterdam) 171, 453
(1991).

[58] P. De Gregorio, A. Lawlor, and K. A. Dawson, Bootstrap per-
colation, in Encyclopedia of Complexity and Systems Science,
edited by R. A. Meyers (Springer, Berlin, 2016), pp. 1–26.

[59] R. Nandkishore, Many-body localization and delocalization
in the two-dimensional continuum, Phys. Rev. B 90, 184204
(2014).

[60] I. V. Gornyi, A. D. Mirlin, M. Müller, and D. G. Polyakov,
Absence of many-body localization in a continuum, Ann. Phys.
529, 1600365 (2017).

[61] G. Bertoli, B. L. Altshuler, and G. V. Shlyapnikov, Many-body
localization in continuum systems: Two-dimensional bosons,
Phys. Rev. A 100, 013628 (2019).

[62] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. 16, 407 (1961).

[63] P. Pfeuty, The one-dimensional ising model with a transverse
field, Ann. Phys. 57, 79 (1970).

[64] J. Stein, Flow equations and the strong-coupling expansion for
the Hubbard model, J. Stat. Phys. 88, 487 (1997).

[65] J. Vidal, S. Dusuel, and K. P. Schmidt, Low-energy effective
theory of the toric code model in a parallel magnetic field, Phys.
Rev. B 79, 033109 (2009).

[66] J. Vidal, R. Thomale, K. P. Schmidt, and S. Dusuel, Self-duality
and bound states of the toric code model in a transverse field,
Phys. Rev. B 80, 081104(R) (2009).

[67] C. Knetter and G. S. Uhrig, Perturbation theory by flow equa-
tions: dimerized and frustrated S = 1/2 chain, Eur. Phys. J. B
13, 209 (2000).

[68] C. Knetter, K. P. Schmidt, and G. tz S Uhrig, The structure of
operators in effective particle-conserving models, J. Phys. A:
Math. Gen. 36, 7889 (2003).

[69] T. Iadecola and M. Schecter, Quantum many-body scar states
with emergent kinetic constraints and finite-entanglement re-
vivals, Phys. Rev. B 101, 024306 (2020).

[70] D. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers, A rig-
orous theory of many-body prethermalization for periodically
driven and closed quantum systems, Commun. Math. Phys. 354,
809 (2017).

[71] D. S. Rokhsar and S. A. Kivelson, Superconductivity and the
Quantum Hard-Core Dimer Gas, Phys. Rev. Lett. 61, 2376
(1988).

[72] R. Mondaini and M. Rigol, Eigenstate thermalization in the
two-dimensional transverse field ising model. ii. off-diagonal
matrix elements of observables, Phys. Rev. E 96, 012157
(2017).

[73] F. J. Wegner, Duality in generalized ising models and phase
transitions without local order parameters, J. Math. Phys. 12,
2259 (1971).

[74] J. B. Kogut, An introduction to lattice gauge theory and spin
systems, Rev. Mod. Phys. 51, 659 (1979).

[75] E. Fradkin, Field Theories of Condensed Matter Physics,
2nd ed. (Cambridge University Press, Cambridge, 2013).

[76] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. 303, 2 (2003).

[77] C. Lacroix, P. Mendels, and F. Mila, Introduction to Frus-
trated Magnetism: Materials, Experiments, Theory, Vol. 164
(Springer, New York, 2011).

[78] A. Gromov, A. Lucas, and R. M. Nandkishore, Fracton hydro-
dynamics, Phys. Rev. Research 2, 033124 (2020).

[79] M. Aizenman and J. L. Lebowitz, Metastability effects in boot-
strap percolation, J. Phys. A: Math. Gen. 21, 3801 (1988).

[80] J. Jöckie, K. Froböse, and D. Knödler, Size dependence of self-
diffusion in the hard-square lattice gas, J. Stat. Phys. 63, 249
(1991).

[81] W. Ertel, K. Froböse, and J. Jäckle, Constrained diffusion dy-
namics in the hard-square lattice gas at high density, J. Chem.
Phys. 88, 5027 (1988).

[82] A. E. Holroyd, Sharp metastability threshold for two-
dimensional bootstrap percolation, Probab. Theory Relat. Fields
125, 195 (2003).

[83] P. De Gregorio, A. Lawlor, P. Bradley, and K. A. Dawson,
Exact solution of a jamming transition: closed equations for a
bootstrap percolation problem, Proc. Natl. Acad. Sci. U.S.A.
102, 5669 (2005).

[84] A. W. Kinross, M. Fu, T. J. Munsie, H. A. Dabkowska, G. M.
Luke, S. Sachdev, and T. Imai, Evolution of Quantum Fluctua-
tions Near the Quantum Critical Point of the Transverse Field
Ising Chain System CoNb2O6, Phys. Rev. X 4, 031008 (2014).

[85] P. Massat, J. Wen, J. M. Jiang, A. T. Hristov, Y. Liu, R. W.
Smaha, R. S. Feigelson, Y. S. Lee, R. M. Fernandes, and I. R.
Fisher, Field-tuned ferroquadrupolar quantum phase transition
in the insulator TmVO4, Proc. Natl. Acad. Sci. U.S.A. 119,
e2119942119 (2022).

[86] Ian Fisher (private communication).
[87] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.106.214426 for a discussion of corner cases
pertaining to the growth of an unstable minority cluster.

214426-15

https://doi.org/10.1103/PhysRevLett.125.245303
https://doi.org/10.1016/0378-4371(91)90295-N
https://doi.org/10.1103/PhysRevB.90.184204
https://doi.org/10.1002/andp.201600365
https://doi.org/10.1103/PhysRevA.100.013628
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1007/BF02508481
https://doi.org/10.1103/PhysRevB.79.033109
https://doi.org/10.1103/PhysRevB.80.081104
https://doi.org/10.1007/s100510050026
https://doi.org/10.1088/0305-4470/36/29/302
https://doi.org/10.1103/PhysRevB.101.024306
https://doi.org/10.1007/s00220-017-2930-x
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevE.96.012157
https://doi.org/10.1063/1.1665530
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevResearch.2.033124
https://doi.org/10.1088/0305-4470/21/19/017
https://doi.org/10.1007/BF01026602
https://doi.org/10.1063/1.454683
https://doi.org/10.1007/s00440-002-0239-x
https://doi.org/10.1073/pnas.0408756102
https://doi.org/10.1103/PhysRevX.4.031008
https://doi.org/10.1073/pnas.2119942119
http://link.aps.org/supplemental/10.1103/PhysRevB.106.214426

