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Exchange-mediated magnon-phonon scattering in monolayer CrI3
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The interplay between magnons and phonons and its influences on magnon dissipation have attracted
widespread attentions. Whereas the previous theoretical works were usually restricted to the interactions between
low-frequency magnons and acoustic phonons in the long-wavelength region, in the present work we go
beyond this limit and investigate the magnon relaxation in a two-dimensional ferromagnet, a monolayer CrI3,
through magnon-phonon scattering channels mediated by the variation of the exchange strength resulting from
all-wavelength acoustic phonons as well as the optical ones. With a precise description of the magnon and
phonon Bloch states from first principles, we evaluate the magnon relaxation rate due to these exchange-mediated
magnon-phonon scatterings and reveal rich features in its momentum dependence, which reflects nicely the role
of the associated phonons with in-plane atomic vibrations. The magnon-number-conserving scattering is found to
be orders of magnitude stronger than the magnon-number-nonconserving scattering due to the weak anisotropic
exchange coupling or dipole-dipole interaction. Our first-principles-based approach provides a better solution
for the quantitative evaluation of the magnon dissipation by phonons.

DOI: 10.1103/PhysRevB.106.214424

I. INTRODUCTION

Regarded as potential candidates for next-generation infor-
mation carriers, magnons or spin waves in magnetic materials
contain a precessional phase degree of freedom, which allows
us to design various spin-wave-based logic gates [1–7] for
computing applications [8–10] with fast processing speed,
thanks to their high frequency (up to terahertz range) [11–16].
As the spin waves can propagate in magnetic insulators, the
absence of Joule heating therein provides the opportunity to,
as an expected advantage compared to the traditional elec-
tronic devices, remarkably reduce the energy consumption
[17,18]. There is however a bottleneck for realistic spin-
wave-based applications, namely the unavoidable magnetic
damping in magnetic materials, which always causes a de-
cay of the spin-wave signal coherently in the amplitude and
precession phase or incoherently in the magnon number in
both space and time domains. Microscopically, the magnetic
damping originates from various mechanisms, such as mag-
netic inhomogeneity [19–24], spin-lattice interaction [25–31],
spin-spin interaction [32–37], as well as the spin exchange
with itinerant electrons [38–42]. Among them, the spin-lattice
interaction, recognized as the intrinsic interaction, has re-
ceived intensive studies in ferromagnets [43–45], ferrimagnets
[46–50], and also antiferromagnets [51–53].

In the long-wavelength limit, the spin-lattice interaction
can be well described by the phenomenological magnetoe-
lastic coupling [25,26,28]. In practice, for instance in the
thermal magnon transport at a relatively high temperature,
one has to go beyond the long-wavelength limit, as the
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relative atomic displacement can become important and acti-
vate additional contributions, such as the temporal modulation
in the exchange strengths between the magnetic moments
[27,29,30]. The theoretical evaluation of these contributions
is quite challenging, because the spin and lattice dynamics in
the short-wavelength regime is too complicated to meet the re-
quirements for the widely adopted approximation in analytical
calculation [44,45,49,51]. One useful technique to capture the
thermal fluctuation is the so-called “frozen-phonon/magnon
method” in first-principles calculations [54–56], where the
influence of the mechanical vibrations and spin excitation
is modeled by the average over a set of static randomly
disordered lattice and spin configurations, determined from
the thermal occupation of phonon and magnon spectra
[43,47,50,53]. While this technique has been demonstrated to
be sufficient for a quantitative description of the electronic
spin transport [57], it is apparently not suitable to explore
the dynamic and transport properties of the magnons and
phonons themselves. For the latter, one option is to perform
combined spin-lattice atomistic simulations [58,59], which
however require very expensive computation, so that the lat-
tice degree of freedom is usually treated statically for the spin
dynamics [60,61] or vice versa. Our aim is thus to develop a
first-principles approach to quantitatively investigate the spin-
lattice interaction beyond the long-wavelength limit with spin
and lattice treated on an equal footing.

The idea is quite straightforward. Starting from a spin-
lattice coupled atomic model, we derive the analytical
formalism for the magnon-phonon interaction, including both
linear [62] and higher order coupling contributions. By
evaluating the modeling parameters from first-principles cal-
culation, we obtain the proper Bloch states of both magnons
and phonons, not only their spectra but also the correspond-
ing wave functions, in the entire Brillouin zone (BZ), which

2469-9950/2022/106(21)/214424(12) 214424-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1021-5278
https://orcid.org/0000-0001-8677-5584
https://orcid.org/0000-0002-0842-5711
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.214424&domain=pdf&date_stamp=2022-12-20
https://doi.org/10.1103/PhysRevB.106.214424


CONG, LIU, XUE, LIU, LIU, AND SHEN PHYSICAL REVIEW B 106, 214424 (2022)

then allows us to calculate the interaction strength between
magnons and phonons in the derived formalism [62]. Tak-
ing the monolayer of two-dimensional (2D) van der Waals
(vdW) ferromagnet CrI3 [63] as an example, we study the
magnon-phonon scattering processes due to the aforemen-
tioned phonon-induced variation of the exchange interaction.
From the explicit analysis on the contributions from dif-
ferent scattering channels, the essential role of the phonon
modes with in-plane atomic vibrations is revealed in both
magnon-number-conserving (MNC) scattering derived from
the isotropic exchange interaction and the magnon-number-
nonconserving (MNNC) scattering due to the anisotropy of
the exchange interaction or dipole-dipole interaction.

II. MODEL AND FORMALISM

We consider an easy-axis ferromagnetic system and start
with a minimal Hamiltonian containing Heisenberg-type ex-
change interaction and on-site magnetic anisotropy as

H0 =
∑

i

Az
i

(
Sz

i

)2 − 1

2

∑
i, j

Ji jSi · S j, (1)

where the anisotropy coefficient Az
i < 0 defines the easy axis

along z direction. Assuming that the exchange constant Ji j

depends solely on the atomic distance between magnetic ions
ri j = |ri − r j |, one can expand the exchange tensor around the
equilibrium coordinates Ri through ri = Ri + X i as

Ji j ≈ J̄i j + J ′
i j[(X i − X j ) · d i j], (2)

with d i j = (Ri − R j )/|Ri − R j | and J ′
i j = ∂Ji j/∂ri j at r0

i j =
|Ri − R j |. By substituting Eq. (2) into Eq. (1), one can sep-
arately write a pure spin Hamiltonian

Hm =
∑

i

Az
i

(
Sz

i

)2 − 1

2

∑
i, j

J̄i jSi · S j, (3)

and a coupling term between spin and lattice

Hmp = −1

2

∑
i, j

J ′
i j[(X i − X j ) · d i j]Si · S j . (4)

After performing the standard procedures with Holstein-
Primakoff (HP) transformation [64] to the spin opera-
tors S+

i = Sx
i + iSy

i � √
2Sai and Sz

i = S − a†
i ai followed by

Fourier transformation, one can calculate all magnon states in
the momentum space from Eq. (3). The atomic displacement
in the spin-lattice coupling can be expressed as

X i = N− 1
2

∑
q,σ

eiqσ Xiqσ eiq·Ri , (5)

where N is the number of unit cells and Xiqσ =√
h̄/(2miωqσ )(cqσ + c†

−qσ ) with mi being the mass of the ith

magnetic atom. ωqσ and cqσ (c†
−qσ ) represent the frequency

and the annihilation (creation) operator of the σ th phonon
mode at wave vector q, respectively. And eiqσ stands for the
corresponding projection of the polarization vector on the ith
magnetic atom. The phonon spectrum and polarization vectors
can be carried out from a first-principles calculation [65,66].
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FIG. 1. (a) Top and (b) side view of the monolayer CrI3. (c) The
honeycomb lattice of the magnetic Cr3+ ions. The red arrows a1 and
a2 are the basic translation vectors. The green, orange, and purple ar-
rows indicate the nearest-, next-nearest-, and third-nearest-neighbor
exchange pairs, whose isotropic exchange parameters are defined as
J1, J2, and J3, respectively.

The magnon-phonon scattering rates due to Eq. (4) can
then be calculated from the Fermi’s golden rule

Wi→ f ≈ 2π

h̄
|〈 f |Hmp|i〉|2δ(E f − Ei ), (6)

where |i〉 and | f 〉 stand for the initial and final states, respec-
tively, and Ei and E f are the corresponding total energies.
The δ function reflects the energy conservation and, for
numerical calculations, is usually replaced by a Gaussian
function [49]

δ(E1 − E2) → 1√
πζ

e
− (E1−E2 )2

ζ2 , (7)

with ζ being a broadening parameter. In this work we
adopt ζ = 1 meV, which is sufficient to achieve the
convergences.

III. NUMERICAL RESULTS IN A MONOLAYER CrI3

For explicit calculations we specify a monolayer of the
ferromagnetic vdW insulator CrI3, where the strong mag-
netocrystalline anisotropy protects the long-range magnetic
order. As schematically shown in Fig. 1, there are two in-
equivalent types of Cr atoms, denoted as A and B, forming
a honeycomb lattice, each surrounded by six I atoms forming
a slightly warped octahedron. The spin of the magnetic Cr
atoms are S = 3/2. J1, J2, and J3 in Fig. 1(c) representing the
exchange parameters between the nearest (A-B), next-nearest
(A-A or B-B), and third-nearest (A-B) neighbors, which are
currently assumed to be isotropic while the anisotropy in the
exchange interaction will be discussed in Sec. IV.

A. Magnon spectrum

After straightforward calculation [67–69] we derive the
magnon Hamiltonian as

Hm =
∑

k

Ak(a†
kak + b†

kbk) + Bka†
kbk + B∗

kakb†
k, (8)
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where

Ak/S = 3J1 + 6J2 + 3J3 − 2Az

− 2J2

[
cos(kxa) + 2cos

(
kxa

2

)
cos

(√
3kya

2

)]
, (9)

Bk/S = −J1

[
ei

√
3kya
3 + 2cos

(
kxa

2

)
e−i

√
3kya
6

]

− J3

[
e−i

2
√

3kya
3 + 2cos(kxa)ei

√
3kya
3

]
, (10)

with a being the lattice constant. ak (a†
k) and bk (b†

k) are
annihilation (creation) magnon operators of A (B) sublattice
for a wave vector k, which satisfy the boson commutation
rules [ak, a†

k′] = δk,k′ and [bk, b†
k′] = δk,k′ , respectively.

By diagonalizing Eq. (8), one obtains the dispersion rela-
tions of the acoustic (denoted as αk) and optical (denoted as
βk) magnon branches

ωαk/βk = Ak ∓ |Bk|, (11)

where “−” and “+” on the right-hand side are referred to as
α and β modes, respectively, and the corresponding magnon
operators of the Bloch states

αk/βk = μαk/βk ak + ναk/βk bk, (12)

with

μαk/βk = ∓ B∗
k√

2|Bk|
, ναk/βk = 1√

2
. (13)

In order to evaluate the three exchange interaction coeffi-
cients J1–3, we perform first-principles calculation to compute
total energy for 11 inequivalent collinear spin configura-
tions with atomic spins flipped on different sites and then
linear regressions of the total energies to extract the ex-
change coefficients [47,50]. Self-consistent calculations for
the configurations are carried out using density functional
theory implemented in the Vienna ab initio simulation pack-
age (VASP6) [70,71]. The Perdew-Burke-Ernzerhof (PBE)
[72] functional is employed to describe the exchange and
correlation. The PBE version of all-electron projector aug-
mented wave (PAW) [73,74] potentials are adopted with the
3p63d54s1 states of Cr and 4d105s25p2 states of I treated as
valence electrons. The plane-wave basis set is truncated with
a cut-off energy of 600 eV and the k points in the BZ are
sampled with a 10 × 10 × 1 mesh using the Monkhorst-Pack
scheme [75]. The exchange parameters are obtained as

J1 = 2.94 ± 0.04 meV,

J2 = 0.62 ± 0.02 meV,

J3 = −0.16 ± 0.02 meV, (14)

comparable to the reported values in the literature [76–79]. All
of our above calculations have been carried out without taking
into account relativistic (spin-orbit) effects which have been
approved to have negligible effects upon isotropic exchange
interactions in Ref. [79]. A similar energy-based calculation
with tilted spins gives the on-site magnetic anisotropy param-
eter Az ≈ −0.364 meV. With these exchange and anisotropy
parameters, the magnon spectrum from Eq. (11) is plotted as
red curves in Fig. 2(d) with a magnon gap at � point � ≈

(d)

(a) (c)(b)

Г

K
M

19

20, 21

24

22, 23

(e) (f)

4, 5
6

7
8, 9

10
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13, 14

15,16
17,18

FIG. 2. (a) The BZ of CrI3 with the red lines constructing a
closed path �-K-M-�. (b) and (c) The spin precession of the acoustic
and optical magnon modes at � point. (d) The magnon spectrum
(red curves) and phonon spectrum (black curves) in the monolayer
CrI3 along the closed path �-K-M-� with the phonon density of
states (PDOS) and its projection on the Cr atoms shown in the right
panel. (e) and (f) Enlarged plotting of the two frequency windows in
(d) with each branch indexed according to their energies, from the
lowest to the highest value, and grouped by colors as explained in
the main text.

1.1 meV, showing a fairly good agreement with the previous
theoretical result from time-dependent density-functional per-
turbation theory [62] and the experimental observation [80].
The eigenfunctions, obtained meanwhile, describe the dynam-
ics of the specific magnon modes. As illustrated in Figs. 2(b)
and 2(c), around the � point, the acoustic (optical) magnon α�

(β�) corresponds to in-phase (out-of-phase) precession of the
two sublattices.

B. Phonon spectrum

To calculate the phonon spectra, we follow the density-
functional perturbation theory approach [81,82] with the
QUANTUM ESPRESSO software package [65,66]. A 4 ×
4 × 1 mesh is used to sample the phonon modes in the whole
BZ. For each k point we obtain the frequencies as well as
the polarization vectors that describe the directions of the
oscillation of each atom. The phonon energies are plotted as
black curves in Fig. 2(d) together with the magnon modes
(in red). It is worth mentioning that there are imaginary
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frequencies for the lowest acoustic branch within the range
of less than 8% of BZ around � point, as found with many
other 2D materials [83–85], though our calculations are well
converged and the lattice structure has been completely re-
laxed (the residual interatomic forces are below 0.01 eV/Å).
To correct this artificial effect and avoid unphysical conse-
quence in magnon-phonon scattering calculations, we adopt
the analytical solution Eph

q,1 ∼ q2, which is expected for layer
bending (or ripple) modes in 2D materials [86,87], for the
lowest acoustic phonon mode in this small area, as shown
by the dashed curve. Interestingly, the imaginary frequency
problem was fixed in a similar phonon calculation reported in
Ref. [62], which might be due to the calculation details there,
such as the choices of pseudopotentials or other parameters.
A recent paper showed that a proper acoustic sum rule might
also help us to solve the imaginary frequency problem in the
2D phonon calculation and recover the quadratic dispersion
of the bending mode [88]. The projected density of states of
phonons (PDOS) in the right panel of Fig. 2(d) show that the
high frequency is mainly contributed by the Cr atoms because
of their smaller mass than that of the I atoms.

The magnon and phonon spectra overlap with each other,
providing vast opportunities for magnon-phonon scattering.
Lattice oscillations described by phonon modes give rise to
changes in distances between Cr atoms, which in turn affect
the exchange interaction. In the following we focus on the
spatial displacements of the Cr atoms by assuming that the
exchange parameters are only negligibly affected by the shift
of the I atoms (although the latter can in principle be taken into
account in our formalism but that requires explicit treatment
of the indirect exchange interaction). Taking � point as an
example, we analyze the changes of distances between Cr
atoms due to phonons. We have 24 phonon branches in total.
Besides the acoustic branches, there are 15 branches in the
low energy window (blue window) and 6 branches in the high
energy range (purple window), as shown in Figs. 2(e) and 2(f),
respectively.

By carefully checking the polarization vectors ei�σ of these
modes, we find: (i) Branches 7 and 15–18 (black ones) con-
tain only the motions of I atoms as shown in Fig. 2(d). (ii)
Branches 9 and 20, 8 and 21, and 6 and 24 (brown ones) lead
to Cr atoms at A and B sublattices vibrating with the same
amplitude in the directions of x, y, and z, respectively. (iii)
Branches 10 and 19 (gray ones) result in opposite motion of
the two Cr sublattices along z direction. All these modes yield
negligible changes in the bond length and thus the exchange
interactions between Cr atoms. This can be seen from the
rather small amplitude in the left panel of Fig. 3(a), where
we take branches 19 and 20, belonging to (iii) and (ii), respec-
tively, as examples. The time evolution of the atomic distances
between nearest CrA and CrB is calculated as

√
NδRi j,σ (t ) = |

√
NX A�σ −

√
NX B�σ | cos(ω�σ t ). (15)

As a contrast, the vibrations of CrA and CrB from branches 5,
11, and 14 (opposite along y direction) as shown in Fig. 3(b),
vibrations from branches 4, 12, and 13 (opposite along x
direction) as shown in Fig. 3(c), and those from branches 22
(opposite along x direction) and 23 (opposite along y direc-
tion) as shown in Fig. 3(d), lead to significant modification

(c)

(d)

(b)

(a)

22th

23th

20th

19th

FIG. 3. The evolution of the distance (left panel) between neigh-
boring CrA and CrB and the illustration of the dynamics of the
magnetic atoms (right panel) for the typical phonon modes around
� point.

in the Cr-Cr distance. It is worth mentioning that, though
the PDOS, as shown in Fig. 2(d), for branches 5, 11, and 14
and branches 4, 12, and 13, are much smaller than those for
branches 22 and 23, important influences on magnon-phonon
scattering from branches 4, 5, and 11–14 are found, as shown
in the next section.

C. MNC magnon-phonon scatterings

We further write out the atomic displacement given in
Eq. (5) into the present two-sublattice system as

X iA(B) = N− 1
2

∑
q,σ

eA(B)qσ Xqσ eiq·RiA(B) , (16)
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where Xqσ = √
h̄/(2mCrωqσ )(cqσ + c†

−qσ ). By applying
Eqs. (12) and (16), the magnon-phonon interaction
Hamiltonian (4) can be expressed as

Hmp
c = 1√

N

∑
q,k,σ

[
c,αα

k,k−q,σ
α

†
kαk−q + 

c,ββ

k,k−q,σ
β

†
kβk−q

−
c,αβ

k,k−q,σ
α

†
kβk−q − 

c,βα

k,k−q,σ
β

†
kαk−q

]
Xqσ , (17)

where the sum runs over all momenta q and k in the BZ and
the coupling coefficients are defined as


c,κ1κ2

k,k′,σ = S

(ν∗
βk

μ∗
αk

− ν∗
αk

μ∗
βk

)(νβk′ μαk′ − ναk′ μβk′ )

×
{ ∑

〈i, j〉,〈〈〈i, j〉〉〉
J ′

i j

[
h∗

1,kh2,k′e−ik′ ·Ri j + h∗
1,kγ2,k′

+ γ ∗
1,kγ2,k′e−ik·Ri j + γ ∗

1,kh2,k′e−i(k+k′ )·Ri j
]

×(
ei j

B,k−k′σ eik·Ri j − ei j
A,k−k′σ eik′ ·Ri j

)
+

∑
〈〈i, j〉〉

iJ ′
i j

(
h∗

1,kh2,k′ei j
A,k−k′σ + γ ∗

1,kγ2,k′ei j
B,k−k′σ

)

× [sin((k′ − k) · Ri j )+ sin(k · Ri j )− sin(k′ · Ri j )]

}
,

(18)

in which

γ1(2),k = μβk , h1(2),k = νβk , if κ1(2) = α,

γ1(2),k = μαk , h1(2),k = ναk , if κ1(2) = β, (19)

and ei j
A(B),qσ

= d i j · eA(B)qσ . The superscript “c” indicates that
the magnon number is conserved during the scattering process
given by Eq. (17), guaranteed by the spin conservation in the
isotropic exchange Hamiltonian. The numerical evaluation of
the parameters J ′

1–3 gives

J ′
1 ≈ 1.483 meV/Å, J ′

2 ≈ −0.460 meV/Å,

J ′
3 ≈ 0.404 meV/Å,

which are comparable with those reported in previous works
[79,89]. The technical details and more discussions on this
calculation can be found in Appendix A.

Specifically, for the scattering process with an initial ηk

magnon (with a wave vector k in the η = α, β for acoustic and
optical branches, respectively) scattered to another magnon
η′

k′ with different momentum by absorbing or emitting a
phonon with wave vector q, the scattering rate by substituting
Hmp

c into Eq. (6) is expressed as

W c
ηk→η′

k′ = S0

4πmCr

∑
σ

∫
1

ω
ph
qσ

[(
Nη′

k′ + 1
)
nqσ

∣∣c,ηη′

k,k′,σ

∣∣2

× δ
(
ωη′

k′ − ωηk − ωph
qσ

)
δk′,k+q

+ (
Nη′

k′ + 1
)
(nqσ + 1)

× ∣∣c,ηη′

k,k′,σ

∣∣2
δ
(
ωη′

k′ − ωηk + ωph
qσ

)
δk′,k−q

]
dq, (20)

with the first and second terms in the square bracket rep-
resenting the phonon absorption and emission processes,

(a) Γ→ ′ (c) Γ→ ′ (d) Γ → ′(b) Γ → ′

Г

K

K′

K

FIG. 4. The scattering rates of different MNC channels, W c
α�→αk′ ,

W c
α�→βk′ , W c

β�→βk′ , and W c
β�→αk′ , for the � magnons.

respectively. Here S0 is the area of the unit cell and Nηk (nqσ ) is
the Planck distribution function for magnons (phonons). The
total relaxation rate of a specific magnon state ηk then can be
carried out through

W c
ηk

=
∑

k′

∑
η′=α,β

W c
ηk→η′

k′ . (21)

Unless otherwise specified, the temperature is taken to be
5 K in our numerical calculations and the (weak) temperature
dependence is discussed in Sec. III C 4. Next, we consider
the scattering processes from magnon states at some specific
wave vectors.

1. Scattering from � magnon

The scattering rates from a magnon state at � point (k = 0)
to other BZ points, i.e., W c

ηk→η′
k′

in Eq. (20) with ηk = α�

(β�) for the acoustic (optical) branch, are plotted in Fig. 4 by
applying the Gaussian function for the δ function addressed
in Eq. (7). Explicitly, we find, similar to the case in the three-
dimensional case [49], all W c

α�→η′
k′

vanish in Figs. 4(a) and

4(b). This can be seen from the expression of 
c,κ1κ2

k,k′,σ by speci-
fying κ1 = α and k = 0, which leads to Bk = −3(J1 + J3)S <

0, therefore, μβ�
= −νβ�

= −1/
√

2 and γ1 = −h1 = −1/
√

2
according to Eqs. (13) and (19), respectively. The substitution
of these relations into Eq. (18) immediately gives 

c,ακ2

�,k′,σ = 0.
For the intraband scatterings channel β� → βk′ , as shown

in Fig. 4(c), the initial β� magnons are most efficiently scat-
tered to the nearby final states and those near K (K ′) point,
by emitting or absorbing a low-energy acoustic phonon of
a large occupation factor nqσ . Large magnitude comes from
nonzero coupling coefficient, i.e., 

c,βκ2

�,k′,σ �= 0, by substituting

γ1 = h2 = 1/
√

2 into Eq. (18). The optical phonons do not
contribute to W c

β�→βk′ because their energies are all above
the maximum value of the magnon energy transfer �E1 =
Eβ�

− EβK = 4.14 meV for any possible intraband channels
β� → βk′ .

The interband scattering rate W c
β�→αk′ in Fig. 4(d) shows

a larger magnitude around the BZ boundary, where the
energy transfer is relatively low. It is however worth
pointing out that the phonon occupation factor nqσ is
irrelevant to this feature, because only the emission
of high-energy phonon (h̄ω

ph
qσ > �E1  kBT ) is allowed

for this case, where we have W c
β�→αk′ ∝ (1 + Nαk′ )(1 +

nk′σ )|c,βα

�,k′,σ |2/ωph
k′σ � (1 + Nαk′ )|c,βα

�,k′,σ |2/ωph
k′σ . In particu-

lar, for those high-energy final magnon states αk′ far away
from the BZ center, Nαk′ � 1, so that the scattering rate is
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(a) → ′ (c) → ′ (d) → ′(b) → ′

K

K′

K

FIG. 5. The MNC scattering rates of different channels for an
initial magnon at K point. The two degenerate K-magnon states are
chosen as αK = (aK + bK )/

√
2 and βK = (aK − bK )/

√
2.

mainly determined by the coupling coefficient 
c,βα

�,k′,σ . For
a detailed analysis we calculate the contribution of W c

β�→αk′
from different phonon branches. The results from the phonon
modes that contribute substantially, σ = 4, 5, and 11–14, are
plotted as Fig. 13(a) in Appendix B, reflecting the essential
role of these active phonon modes in Figs. 3(b) and 3(c).
One may notice that there is a blue ring (inactive channels)
in Fig. 4(d), which results from the forbidden transfer due
to the phonon energy gap within 15–24 meV. For the final
state at the BZ center, the scattering rate vanishes because


c,βα

�,�,σ = (c,αβ

�,�,σ )∗ = 0 as shown by the blue dot in the center
in Fig. 4(d).

2. Scattering from K magnon

Figure 5 shows the scattering rates from the magnon state
locating at one of the Dirac points (labeled as K). Since the
acoustic and optical branches become degenerate at the Dirac
points, the expressions of their wave functions αK = (aK +
bK eiϕ )/

√
2 and βK = (aK − bK eiϕ )/

√
2 contain an arbitrary

factor ϕ, reflecting the nonunique description of (pseudo)spin
orientation of the two degenerate eigenstates. The choice of
ϕ, which specifies their (pseudo)spin orientations, is found
to not affect much on the scattering rate (the scattering rates
from αK and βK rely on the final states almost in the same
way, except for a small difference in the inefficient channels
to the final states around the BZ center). Results in Fig. 5 are
calculated with ϕ = 0. A general feature for the four plots is
that those final states nearby in the same K valley have large
scattering rates, whereas the intervalley scatterings, i.e., from
K valley to K ′ valley, are always forbidden. The latter is due to
the lack of phonon satisfying simultaneously the energy and
momentum conservations, more precisely, the lack of phonon
with vanishing frequency but large wave vector.

The main difference between the scattering rates for the fi-
nal states of α and β magnons, αK (βK ) → αk′ and αK (βK ) →
βk′ , comes from the fact that the K point is the band minimum
(maximum) of the optical (acoustic) magnon branch, hence
only phonon absorption (emission) process can occur. The
large energy transfer leads to a phonon occupation factor in
the phonon absorption process nqσ � 1 and that in the phonon
emission process 1 + nqσ � 1, therefore the scattering rate of
αK (βK ) → αk′ , as shown in Figs. 5(a) and 5(d), associated
with phonon emission could be much larger than that of
αK (βK ) → βk′ , as shown in Figs. 5(b) and 5(c), for k′ far away
from the K valley. The phonon-mode-resolved rate is plotted
as Fig. 13(b) in Appendix B, which reveals that the brightest

(a) → ′ (c) → ′ (d) → ′(b) → ′

M

M M′

M′′

M′
M′′

FIG. 6. The MNC scattering rates W c
αM →αk′ , W c

αM →βk′ , W c
βM →αk′ ,

and W c
βM →βk′ of a magnon state originally at M point.

channels in W c
αK →αk′ and W c

βK →αk′ are mostly contributed from
σ = 11–14.

3. Scattering from M magnons

The scattering rate of a M magnon is plotted in Fig. 6.
Similar to the K magnon case, the intraband scatterings αM →
αk′ and βM → βk′ , to different M ′ or M ′′ points, are forbid-
den. For the optical branch, the intraband scatterings, i.e.,
βM → βk′ , mainly scatter the M magnon to those final states
along K-M-K ′ path as shown in Fig. 6(c), because the energy
transfer from the βM magnon to magnon states in other wave
vector directions is too small to be matched by the energy
of the emitted/absorbed phonon with the correct momentum
transfer according to the conservation law. For the acoustic
branch, the scattering rate of αM → αk′ shows two active
paths (two bright rings) as shown in Fig. 6(a). According
to the phonon-mode-resolved analysis in Fig. 13(c), we find
the two paths are activated by the phonons from σ = 4, 5
and σ = 11–14, respectively. Figure 13(c) also shows that the
interband scattering from the optical branch to the acoustic
one, βM → αk′ , as shown in Fig. 6(d), is dominated by the
phonon emission process with σ = 11–14. In contrast, the
interband scatterings from the acoustic branch to the optical
one, i.e., αM → βk′ , are negligibly weak, as shown in Fig. 6
(b), because the population of the high-energy phonon (larger
than EβK − EαM = 6.04 meV) to be absorbed is rather small.

4. Magnon relaxation rate due to exchange-mediated
magnon-phonon scatterings

By summing over the scattering rates to all possible final
states, we calculate from Eq. (21) the magnon relaxation
rates of the acoustic (α) and optical (β) magnons along the
�-K-M-� path and plot them in Fig. 7(a) separately with
blue and red curves. As one can see, the relaxation rate of β

magnons can reach 10 ns−1 and that of α magnons is about one
order of magnitude smaller around K point and becomes even
much smaller approaching the � point. The dashed curves
stand for the contributions from the optical phonons, i.e., the
band index σ = 4–24. The nice agreement between the red
dashed and solid curves again indicates the dominant role of
the optical-phonon-involved processes for the relaxation of
β magnons, because of their remarkable contribution to the
interband scattering. Differently, the blue dashed curve differs
significantly from the blue solid one, especially near � point
as shown in the inset of Fig. 7(a), reflecting the importance of
the acoustic phonon for the relaxation of α magnons. For the
α magnons in the long wavelength regime (k � 5 × 108 m−1),

214424-6



EXCHANGE-MEDIATED MAGNON-PHONON SCATTERING … PHYSICAL REVIEW B 106, 214424 (2022)

(a) (b)

(c) (d)

FIG. 7. (a) The total MNC scattering rates of the acoustic (blue
solid curve) and optical (red solid curve) magnon states along the
momentum path �-K-M-�. The dashed curves represent the contri-
butions from optical phonons. The inset is a log scale plot for the total
scattering rates of the α branch. (b)–(d) The scattering rates from
the calculation with only the variation of the nearest-, next-nearest-,
or the third-nearest-neighbor exchange interaction parameters taken
into account.

W c
αk

approximately follows k2 dependence and vanishes at �

point as shown in Fig. 14, similar to the three-dimensional
case [49].

To examine the relative contribution of the different ex-
change variation terms, in Figs. 7(b)–7(d) we plot the results
from the calculation with only one of the three parameters,
J ′

1, J ′
2, or J ′

3, taken into account. We find that the scattering of
β mode is dominated by the nearest exchange parameter J ′

1
in the long wavelength regime, while J ′

2 and J ′
3 contribute to

its nonmonotonic behavior along the �-K and �-M paths. A
similar nonmonotonic feature due to J ′

2 and J ′
3 also happens

to the α mode. More interestingly, the total scattering rate
in the short wavelength regime in Fig. 7(a), for instance at
M point, is much smaller than the summation of the values
from Figs. 7(b)–7(d), caused by the interference between three
terms in Eq. (18). These features all suggest the importance
of including the next-nearest- and the third-nearest-neighbor
exchange interactions in the exchange-mediated magnon-
phonon interaction.

The temperature dependence of the scattering rate from
� and K magnons is shown in Fig. 8. As seen, the scatter-
ings of the high-energy magnons β� and αK (βK ) are only
slightly suppressed with decreasing temperature below 20 K,
and tends to a saturated value at zero-temperature limit. This
can be well understood from the factor 1 + nqσ → 1 in the
phonon emission limit. For α� , W c

α�
vanishes as explained in

Sec. III C 1. We chose k0 = 0.9 × 108 m−1 close to � and
calculate the temperature dependence of W c

αk0
as shown in the

inset of Fig. 8. The factor nqσ of the phonon absorption leads
to a strong dependence on the temperature.

Γ

( )

0

FIG. 8. Temperature dependence of MNC scattering rates for
� and K magnons. Inset shows the scattering rates for k0 = 0.9 ×
108 m−1 close to the � point as W c

α�
= 0.

IV. MNNC SCATTERING DUE TO ANISOTROPIC
EXCHANGE INTERACTION IN CrI3

So far, our calculations are based on the simplified model,
where the spin exchange interaction is assumed to be in the
Heisenberg form. Recent theoretical work shows that the ex-
change interaction in CrI3 could go beyond the Heisenberg
model with a weak anisotropic component between the near-
est magnetic neighbors [90], owing to spin-orbit couplings
[62]. Therefore, in this section we extend our calculation to
analyze the consequence of such an anisotropic exchange
term. As we will see, it introduces additional MNNC scat-
terings. Keep in mind that here we treat the anisotropy in a
perturbative manner with its modification to magnon spectrum
neglected. A nonperturbative treatment of such an anisotropic
term will introduce a small magnon gap at K point [91],
which has only negligible effects on the scattering rates we
are interested in, because of its small magnitude compared to
the isotropic part. The origin of the gap opening at K point in
CrI3 is an interesting but controversial issue, which has been
comprehensively reviewed in Ref. [62].

A. Magnon-phonon interaction Hamiltonian due
to the anisotropic exchange

The anisotropic exchange can be taken into account
through a general exchange tensor [90], with which the spin-
lattice coupling in Eq. (4) is replaced by

Hmp = −1

2

∑
i, j

[(X i − X j ) · d i j]Si · J ′
i j · S j . (22)

After performing the standard quantization techniques and
Fourier transformation, we derived the Hamiltonian of the
magnon-phonon interaction. Since the anisotropy of the ex-
change tensor depends on the orientation of the Cr-Cr bond,
specified to the nearest magnetic neighbors, the different Cr-
Cr bonds can be connected through

J ′
ii+δ2

= C3zJ ′
ii+δ1

C−1
3z , J ′

ii+δ3
= C2

3zJ ′
ii+δ1

C−2
3z , (23)
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k

q

k′(a) k

q

(b) k′

k q(c) (d) kq

k

q
k′

(e) (f)k

q
k′

FIG. 9. Schematic diagrams of scattering processes between
magnons (in green) and phonons (in red) with anisotropic exchange
interaction. (a) and (b) The MNC processes for a magnon with
momentum k scattered to be another magnon with k′ by emitting
or absorbing a phonon with momentum q. (c) and (d) The intercon-
version processes from one magnon to one phonon, and vice versa.
(e) and (f) The MNNC processes for two magnons with momentum k
and k′ merging into a single phonon with momentum q and its inverse
process, respectively.

with δi representing the three Cr-Cr bonds of the ith magnetic
atom and C3z (C2

3z) corresponding to a 120◦ (240◦) rotation
around z axis. The magnon-phonon interaction thus can be
expressed as

Hmp = Hmp
c + Hmp

coup + Hmp
nc , (24)

where the first term Hmp
c stands for the MNC term [see

Figs. 9(a) and 9(b)] already fully included in Eq. (18) if we
multiply the terms with h∗γ (γ ∗h) and h∗h (γ ∗γ ) thereby
[(J ′

i j )
xx + (J ′

i j )
yy]/(2J ′

i j ) and (J ′
i j )

zz/J ′
i j , respectively. The

second term in Eq. (24) is an interconversion term between
one magnon and one phonon [see Figs. 9(c) and 9(d)] in the
form of

Hmp
coup =

∑
k,σ

(


coup,α

k,σ
αk − 

coup,β

k,σ
βk

)
Xkσ + H.c., (25)

which causes hybridization at the intersection points of the
magnon and phonon dispersion curves and results in an anti-
crossing gap [62]. The coefficient in Eq. (25) is defined as


coup,κ1

k,σ
= S

√
2S

2

∑
〈i, j〉

(J ′
i j )

xz − i(J ′
i j )

yz

μαkνβk − ναkμβk

× (−h1,k + γ1,keik·Ri j )
(
ei j

A,kσ
− ei j

B,kσ
e−ik·Ri j

)
.

(26)

The last term in Eq. (24) is written as

Hmp
nc = 1√

N

∑
q,k,σ

[
nc,αα

k,q−k,σ
α

†
kα

†
q−k − 

nc,αβ

k,q−k,σ
α

†
kβ

†
q−k

+
nc,ββ

k,q−k,σ
β

†
kβ

†
q−k − 

nc,βα

k,q−k,σ
β

†
kα

†
q−k

]
Xqσ + H.c.,

(27)

which leads to the MNNC scattering processes with the
creation (annihilation) of a magnon pair by annihilating (cre-
ating) a phonon [see Figs. 9(e) and 9(f)]. The coefficient in

Eq. (27) is defined as


nc,κ1κ2

k,k′,σ =
∑
〈i, j〉

S[(J ′
i j )

xx −(J ′
i j )

yy+2i(J ′
i j )

xy]/2(
μ∗

αk
ν∗

βk
−ν∗

αk
μ∗

βk

)(
ν∗

βk′ μ
∗
αk′ −ν∗

αk′ μ
∗
βk′

)
×h∗

1,k′γ
∗
2,k

(
ei j

A,k+k′σ e−ik·Ri j − ei j
B,k+k′σ eik′ ·Ri j

)
, (28)

with γi,k and hi,k being the same as those in Eq. (19).

B. MNNC scatterings

Next, we calculate the MNNC scattering rates from the
interaction Hamiltonian (27). Focusing on the relaxation of
an existing magnon, we consider the scattering process in
Fig. 9(e), that is, an initial magnon with momentum k in α (β)
branch gets scattered into a phonon q by absorbing another
compensatory magnon k′. The relaxation rate is given by

W nc
ηk

=
∑

k′

∑
η′=α,β

W nc
ηk+η′

k′→ph, (29)

where the rate of each scattering channel reads

W nc
ηk+η′

k′→ph = S0

4πmCr

∑
σ

∫
1

ω
ph
qσ

Nη′
k′ (nqσ + 1)δk+k′,q

× ∣∣nc,ηη′

k,k′,σ

∣∣2
δ
(
ωph

qσ − ωη′
k′ − ωηk

)
dq. (30)

In order to calculate these MNNC scattering rates, one needs
the values of the matrix elements, (J ′

i j )
xx, (J ′

i j )
yy, and (J ′

i j )
xy,

according to Eq. (28). Those are in principle accessible from
the first-principles calculations. The precise determination of
these parameters, on one hand, is quite challenging, and there
is no reported data in the literature. On the other hand, the
explicit values of these parameters apparently only introduce
a modification upon all scattering rates by an overall prefactor
without any change in the detailed behavior. Therefore, in this
part, we do not perform explicit calculation for these param-
eters but estimate them with a naive assumption (J ′

i j )
mn ∝

J mn
1 . In Ref. [90] the exchange parameters between the

nearest neighbors are reported as J xx
ii+δ1

= 2.29 meV, J yy
ii+δ1

=
1.93 meV, J zz

ii+δ1
= 2.23 meV, and J xy

ii+δ1
= −0.3 meV,

which suggest that the anisotropic elements J xx
ii+δ1

− J yy
ii+δ1

and J xy
ii+δ1

are around one order of magnitude smaller than the
isotropic part J̄1 ∼ (J xx

ii+δ1
+ J yy

ii+δ1
+ J zz

ii+δ1
)/3. In addition,

one may think about the magnetic dipole-dipole interaction,
which also varies with the distance between magnetic atoms,
and hence gives a similar MNNC magnon-phonon scattering
due to its anisotropic exchange-type form

HDDI = μ0(gμB)2

2

∑
i �= j

(Si · S j ) − 3(d i j · Si )(d i j · S j )

r3
i j

. (31)

For example, from its derivative with respect to the distance,
one can estimate its contribution to the effective parameter
between the nearest neighbors

(J ′
DDI)

xy = 3
√

3

4
J̄ ′

DDI ≈ −0.04 meV/Å, (32)

which is also around one order of magnitude smaller than J ′
1.

With this consideration, in the following calculation we adopt
(J ′

ii+δ1
)xx − (J ′

ii+δ1
)yy ≈ (J ′

ii+δ1
)xy ≈ 0.1J ′

1 ≈ 0.15 meV/Å.
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1

2 4

5

3

(a)

1 5

(b)

(c)

2 4

(d)

3

FIG. 10. (a) The total MNNC scattering rates W nc
αk

(black solid
curve) and the contributions from the selected phonon modes σ =
4–6 (green-dashed curve), σ = 11–14 (pink-dashed curve), and
σ = 19–21 (yellow-dashed curve) along the closed path �-K-M-�.
(b)–(d) Replot the dashed curves in (a) together with the phonon
spectrum and the threshold of the phonon energy for two-magnon
annihilation process (blue curve) h̄ωth = h̄ωαk + h̄ωα�

, which shows
a nice agreement between the peaks of the dashed curves and the
intersections between the selected phonon bands (shadowed window)
and threshold energy.

The relaxation rates of the αk and βk magnon are plotted
in Figs. 10(a) and 11(a), respectively, both of which show rich
momentum dependence. The scattering rates due to specific
phonon modes (mainly those active phonon modes shown in
Fig. 3) are plotted with dashed curves in the same figures,
which reveal that the behavior of the relaxation rate originates
from the interplay of different scattering channels. The reso-
nancelike shape of each channel can be well understood from
the magnon and phonon spectra, as discussed below. Before
that, we would like to point out that when an initial magnon
is scattered to become a phonon with a compensatory magnon
at αk′ or βk′ state, the scattering rate satisfies W nc

ηk+βk′→ph �
W nc

ηk+αk′→ph because Nβk′ � Nαk′ is determined by their energy.
So the contribution of W nc

ηk+βk′→ph to W nc
ηk

is neglected in the
following analysis.

Specifically, the contribution to the αk magnon scattering
via the selected channels (with the small phonon energy win-
dow covering the 4–6 phonon modes highlighted with gray) is
plotted as a green dashed curve in Fig. 10(b). The blue curve
stands for the energy threshold of the emitted phonon from
the αk magnon state, i.e., h̄ωth = h̄ωαk + h̄ωα�

. The positions
of the peaks (labeled as x1 and x5) in the scattering rates show
good agreement with intersection points between the thresh-
old curve and the phonon dispersion curves of the selected
modes. In the region where the energy of the selected phonon
is far below the threshold, i.e., h̄ω

ph
qσ � h̄ωth, the MNNC

process is forbidden, reflected by the rather negligible rate in
the figure. This also indicates that the acoustic phonons are all
irrelevant to the MNNC scatterings. In the opposite limit with
h̄ω

ph
qσ  h̄ωth, the energy of the compensatory magnon is too

high to give a notable Nαk′ appearing in Eq. (30). As a result,

2
3 4

3

1

(a)

(b)

(c)

5

5

1 6

6
2

4

FIG. 11. (a) The MNNC scattering rates W nc
βk

(black solid curve)
with the dashed curves representing the contribution from selected
phonon branches σ = 20 and 21 [shadowed window in (b)] and σ =
22–24 [shadowed window in (c)]. The blue curve in (b) and (c) stands
for the threshold of the phonon energy h̄ωth = h̄ωβk + h̄ωα�

for the
corresponding annihilation of the βk magnon.

a resonancelike peak shows up at h̄ω
ph
qσ ∼ h̄ωth. Similarly,

as shown in Fig. 10(c), the intersection points between the
threshold curve and the phonon energy window covering the
11–14 modes fit well with the peaks indicated as x2 and x4.
On the other hand, for the high-energy optical phonons overall
above the threshold curve, as shown in Fig. 10(d), the maximal
scattering rate is achieved at the K point with the minimum
energy of the compensatory magnon αk′ and hence maximal
Nαk′ leading to the peak x3.

For the initial magnon at βk state, all scattering processes
associated with another βk′ are forbidden because any com-
bination energy h̄ωβk + h̄ωβk′ is above all phonon energies.
The threshold for this MNNC process is then given by h̄ωβk +
h̄ωα�

, as indicated by the blue curves in Figs. 11(b) and
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11(c), only the high-frequency branches (σ = 20–24) above
the phonon band gap are relevant. Similar to the previous
αk case, the interaction between the threshold curve and the
active phonon modes results in maximums (y1 − y6) in the
scattering rates. The interplay between the contributions from
different scattering channels again leads to the nonmonotonic
momentum dependence in the total relaxation rates.

V. CONCLUSION AND DISCUSSION

In summary, we derived the magnon-phonon interaction
due to the variation of the exchange strengths, up to the
third-nearest-neighbor interaction, introduced by the lattice
vibration. We applied the formalism, combined with first-
principles calculations, to monolayer CrI3 and computed the
magnon-phonon scattering rates therein. Beyond the widely
used long-wavelength approximation, we employed the pre-
cise magnon and phonon spectra, as well as the corresponding
wave functions, from first-principles calculation, and achieved
quantitative evaluation of the scattering rates in the entire
Brillouin zone. We further analyzed the relative contribution
from different phonon modes, not only the acoustic branches
but also optical ones. Specifically, we presented the detailed
analysis of the scattering channels for an initial �-, K-, or
M-magnon, where the scattering by a phonon associated with
a relatively large in-plane atomic vibration is mostly relevant.
The total scattering rate to all possible final states was found
to be able to reach 10 ns−1, where the second- and third-
nearest-neighbor contributions remain relevant. The scattering
rate of the acoustic magnon in the long wavelength regime
shows quadratic dependence on the wave vector and van-
ishes at � point, which can also be well understood from
our analytical expression of the magnon-phonon interaction
strength. The extension to the anisotropic exchange term acti-
vates the magnon-number-nonconserving scattering channels.
The detailed calculation of the processes with two magnons
merging into a phonon shows rich nonmonotonic behaviors
in the momentum dependence of the scattering rates, which
can be well explained by the large in-plane atomic vibration
of the associated phonon. Our results reveal the important
role of the optical phonons in magnon relaxation, and our
first-principles-based approach provides a good solution to
quantitatively evaluate the magnon relaxation due to magnon-
phonon interaction and perhaps other magnetic interactions,
such as the dynamical Dzyaloshinskii-Moriya interaction due
to the out-of-plane vibration [92].
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APPENDIX A: EXCHANGE PARAMETERS FROM
FIRST-PRINCIPLES CALCULATION

The three Heisenberg exchange parameters from the first-
principles approach addressed in Sec. III A are plotted as filled
dots in Fig. 12 as a function of lattice constant a. For each a
value, the lattice is fully relaxed until the residual interatomic

FIG. 12. The values of the nearest- (J1), next-nearest- (J2), and
third-nearest-neighbor (J3) exchange parameters as a function of
the lattice constant a. Symbols are calculated results with error
bars smaller than symbol size. Solid curves are a numerical fit.
The vertical dashed line indicates the equilibrium lattice constant
a0 = 7.005 Å.

forces are below 0.01 eV/Å. We fit the exchange parameters
as

J1 = 9.448a3 − 208a2 + 1524.0955a − 3714.35,

J2 = −0.3945a3 + 8.798a2 − 65.645a + 164.35,

J3 = 0.4512a3 − 10.09a2 + 75.406a − 188.35,

shown by the solid curves in Fig. 12. From the derivative with
respect to lattice constant a, we obtain the magnon-phonon
coupling parameters as

J ′
1(2,3) = ∂aJ1(2,3)|a=a0

∂ad1(2,3)
, (A1)

where a0 is the equilibrium lattice constant. The distances of
the three types of exchange pairs read d1 = d2/

√
3 = d3/2 =

a/
√

3.

Γ→ ′

σ=4, 5
Γ → ′

σ=11-14

→ ′

σ=11-14
→ ′

σ=11-14
→ ′

σ=4, 5
→ ′

σ=4, 5

→ ′

σ=4, 5
→ ′

σ=11-14
→ ′

σ=11-14

(a)

(b)

(c)

FIG. 13. The MNC scattering rates associated with the selected
phonons modes for an initial magnon at (a) �, (b) K , and (c) M
points, respectively.
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∝ 2

FIG. 14. The relaxation rate of α magnon due to MNC scattering
W c

αk
and the fitted result with ∼k2 (red line) in the long-wavelength

region (k � 5 × 108 m−1).

APPENDIX B: MNC SCATTERING RATES DUE
TO DIFFERENT OPTICAL PHONONS

According to the analysis in the main text, the MNC scat-
terings mainly result from the optical phonons with atomic

relative vibrations in x-y plane, i.e., the phonon modes σ = 4,
5, and 11–14 shown in Figs. 3(b) and 3(c). The contribu-
tions of selected phonon modes to the intraband or interband
scatterings from an initial magnon state at �, K , or M point
are plotted in Fig. 13, whose detailed description is given in
Sec. III C.

APPENDIX C: SCATTERING RATE OF ACOUSTIC
MAGNONS IN THE LONG-WAVELENGTH REGION

The total scattering rate of acoustic magnons, W c
αk

, cal-
culated from Eq. (21), is plotted as the pink solid curve in
Fig. 14, where the red dashed one indicates the fitting with
k2. To understand this relation we expand 

c,ακ2

k,k′,σ in Eq. (18),
with respect to k. As explained in Sec. III C 1, 

c,ακ2

k,k′,σ = 0 for
k = 0, indicating the vanishing of the zero order. Therefore,
the lowest nonzero term could be linear in k, which can be
easily seen, for example, from the last term in Eq. (18)

sin[(k′ − k) · Ri j] + sin(k · Ri j ) − sin(k′ · Ri j )

≈ (k · Ri j )[1 − cos(k′ · Ri j )].

The quadratic dependence then manifests itself from Eq. (20).
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