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Polarization analysis by means of individual soft x-ray absorption spectra of rare earths
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X-ray magnetic circular dichroism (XMCD), which by virtue of the sum rules provides element-specific spin
and orbital moments, is obtained from the difference between two polarized spectra by reversing the direction
of either the light helicity or the applied magnetic field. Usually, it is tacitly assumed that these two spectra are
obtained using the same absolute degree of light and magnetic polarization. This is, however, not always possible
and depends on circumstances that can be beyond control. First, we recapitulate the conventional XMCD sum
rule method to obtain the values of the moments and emphasize some of the complications in the case of the
rare-earth M4,5 edges, such as the presence of strong core-hole j j overlap, linear dichroism, and magnetic dipole
term 〈Tz〉. Instead, we propose an alternative method. Using the individual polarized x-ray absorption spectra
obtained at the Ho and Dy M5 edges, where each of the �J = −1, 0, and +1 transitions are separated by ∼2 eV
in photon energy, we are able to determine independently the degree of circular dichroism in a single spectrum.
Since light is a transverse wave, we need to include, apart from the circular dichroism, also a linear dichroism
contribution in order to fit the circularly polarized spectra. In the measurements on paramagnetic rare-earth
dopants it was found that reversing the field produces the same degree of circular dichroism, while reversing the
helicity yields a ∼20% difference in the degree of circular dichroism.
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I. INTRODUCTION

It has been known since the eighties that the x-ray ab-
sorption edge structure of a magnetic material can exhibit
a strong polarization dependence [1–3]. The observed x-ray
circular and linear magnetic dichroism (XMCD and XMLD)
are linear and quadratic proportional, respectively, to the mag-
netic moment [4]. Analysis of these measurements has made
considerable headway thanks to the discovery of the sum rules
[5–7], which offer an element- and shell-specific tool for the
determination of the ground-state spin- and orbital moments
of the local electronic structure in magnetic materials.

Today’s undulators in the soft x-ray region are expected to
produce almost pure left and right circular as well as variable
linear polarization. Knowledge of the degree of polarization is
essential to carry out a precise analysis of dichroic and chiral
experiments. The degree of polarization can be calibrated
using x-ray polarimeters that have been developed at various
synchrotron facilities [8,9]. The disadvantage of this kind of
polarization characterization is that it not only requires such a
dedicated polarimeter but also demands complex data analysis
to extract the Stokes parameters. Therefore, these calibrations
are usually not done routinely.
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Here we present the results of a simple method for the
determination of the degree of polarization, which is based
on the energy separation between the three different allowed
dipole transitions �J = 0,±1 in the soft x-ray absorption
spectrum. Whereas this would not be a good property of
the L2,3 edges of the 3d transition metals [10], the M5

edges (3d → 4 f transitions) of the heavy rare earths (1300–
1600 eV) fulfill this requirement to a lesser or greater degree
[11]. In some cases, such as for Yb3+ f 13, not all three transi-
tions are allowed. Most suitable are the M5 spectra of the Dy
f 9 and Ho f 10 configurations, which resemble each other in
spectral appearance, as was already recognized by Thole et al.
[11]. These M5 edges show a well-resolved energy splitting
with ∼2 eV between each of the three polarized peaks (Fig. 1).

In this paper, we compare the measured polarized x-ray ab-
sorption spectra (XAS) of Dy and Ho with theoretical spectra
in order to determine the degree of circular dichroism. There
is a good agreement between experimental and theoretical
spectra, except for a broad, but low-intensity, structure with
distinct polarization at ∼3 eV above the main peak, absent in
the atomic calculation.

II. SUM RULES IN 4 f METALS

While the sum rules have been extensively applied to 3d
transition-metal compounds [4], this has been done less so to
study rare-earth compounds. The theoretical limitations and
experimental restrictions of the sum rules have been summa-
rized in Ref. [12]. Here we revisit more specifically some of
the limitations in the particular case of the rare earths.
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The sum rules for the M4,5 edges of 4 f metals, which relate
the integrated intensities ρ to the ground state expectation
values of the orbital moment 〈Lz〉, spin moment 〈Sz〉, and
magnetic dipole term 〈Tz〉, can be written in compact form
as
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where ρ0 = ρ−1 + ρ0 + ρ1 and ρ1 = ρ−1 − ρ1 are the inte-
grated intensities of the isotropic spectrum and XMCD over
the M5 and M4 edges. The ρq are the integrated intensities of
the spectra for left-circular (q = −1), right-circular (q = +1),
and linear perpendicular polarization (q = 0), respectively.
The origin of the correction factor C, appearing in Eq. (2),
will be addressed further down.

The number of f holes, nh = (14 − n), is often a known
integer in the case of the rare earths [11]. It cancels out in the
orbital-to-spin moment ratio,
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Sometimes the sum rule analysis is presented in an alterna-
tive notational form by using mL = −〈Lz〉, mSeff = −2〈Sz,eff〉,
p = ρ1

M5
, q = ρ1

M5
+ ρ1

M4
, and r = ρ−1 + ρ+1 ≡ 2

3ρ0/R, where
R is a correction factor for the integrated intensities. For in-
stance, Chen et al. [13] conveniently assume that there is no
linear dichroism, so that ρ0 = 1

2 (ρ−1 + ρ+1), in which case
R = 1. However, for rare earths the large linear dichroism
cannot be neglected and should be included.

This alternative notation rewrites the sum rules as
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or equivalent to the last equation,
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In Eq. (6) the orbital to spin moment ratio is expressed as
a function of the branching ratio p/q of the XMCD. This
emphasizes the fact that only one variable is needed. As an
example, the Hund’s rule ground state f 13 (2F7/2), with one
hole in the J = −7/2 level, has Lz = −3, Sz = −1/2, and
Tz = −1/3, and from Eq. (7) we find p/q = 1. This means
the XMCD for the M4 edge is zero, which chimes with the
fact that the transition 3d3/2 → 4 f7/2 is dipole forbidden.

The spin sum rule requires separate integrations over the
M5 and M4 edge. Therefore, this rule is only strictly valid if the
core-level angular momentum j is a good quantum number,
which is only true when the core spin-orbit splitting is much
larger than the core and valence electrostatic interactions. In
that case the correction factor C, introduced in Eq. (2), is

equal to 1 and can be omitted. This condition holds to a
good degree for the Fe, Co, and Ni L2,3 edges, but a large
correction factor is needed for Mn [14], Cr [15], and lighter
3d elements. The same problem occurs for the rare earths. As
an indication, the values of the correction factor C adopted
from Ref. [16] are given in Table I. C scales approximately
linearly with the scalings factor of the 3d-4 f Coulomb and
exchange interactions [10].

The deviation in the branching ratio p/q from their real
value, ascribed to the spectral overlap of the 3d5/2 and 3d3/2

manifolds, increases from f 1 to f 5 since the multiplet width
of the f n increases, which is reflected in the values of C in
Table I. The multiplet structure is not only the part that can
be reached by the electric dipole transitions but spans a much
wider energy than what is visible as the spectrum [10].

III. METHODS

A. Rare-earth-doped samples

The choice of the sample for our demonstration is not
critical, although it is preferable to use a dilute sample in
order to avoid the strong saturation effects in the soft x-ray
absorption. For the measurements we chose rare-earth-doped
topological insulator (TI) Bi2Te3 samples. TIs have been at
the center of interest for unlocking novel physical effects and
spin-based electronics alike, owing to their unique electronic
properties [17,18]. The gapless topological surface state (TSS)
of three-dimensional (3D) TIs, with its counterpropagating
streams of oppositely spin-polarized electrons, is protected by
time-reversal symmetry (TRS) against backscattering, thereby
resulting in high mobilities.

Previously, we reported XMCD studies on transition-metal
and rare-earth-doped TIs for Mn-doped Bi2Se3 [19] and
Bi2Se3 [20], Cr-doped Bi2Se3 [15,21] and Sb2Te3 [22,23],
Gd-doped Bi2Te3 [24], Ho-doped Bi2Te3 [25,26], and Dy-
doped Bi2Te3 [27,28].

Here we use a (HoxBi1−x )2Te3 thin film with x = 0.14,
denoting the substitutional Ho concentration, grown on c-
plane sapphire using molecular beam epitaxy (MBE). This Ho
sample comes from the same batch as that used in Ref. [26].
Details of the thin-film growth and structural and magnetic
properties can be found in Refs. [25] and [26]. We also mea-
sured a (DyxBi1−x )2Te3 thin film, with x = 0.113, which was
grown by MBE on c-plane sapphire substrate. It comes from
the same batch as in Ref. [27].

B. X-ray magnetic circular dichroism

1. Experimental

XAS at the Dy and Ho M4,5 edges were carried out in 5 T
field at a temperature of 2.5 K on beamline I10 (BLADE)
at the Diamond Light Source, Oxfordshire, using a UHV-
compatible 14 T superconducting magnet with liquid He
variable temperature insert [4]. The 5 T field is sufficient to
fully saturate the magnetization of the Ho- and Dy-doped TIs
at 2.5 K (see superconducting quantum interference device
(SQUID) results for the Ho sample in Fig. 3 of Ref. [25]).
The magnetization of the paramagnetic material vanishes at
remanence.

214423-2



POLARIZATION ANALYSIS BY MEANS OF INDIVIDUAL … PHYSICAL REVIEW B 106, 214423 (2022)

TABLE I. Expectation values 〈Lz〉, 〈Sz〉, 〈Tz〉 and the correction factor [〈Sz〉 + 3〈Tz〉]/〈Sz〉 for the Hund’s rule ground states LSJ (M = −J )
of the configurations f n. Also given are the ratio p/q and correction factor C for each element. The sign of 〈Jz〉 = 〈Lz〉 + 〈Sz〉 has been chosen
negative.

R3+ n 〈Lz〉 〈Sz〉 〈Tz〉 〈Sz,eff〉/〈Sz〉 p/q C

Ce f 1 2F5/2 1 −20/7 5/14 4/7 5.8 0.02 1.597
Pr f 2 3H4 2 −24/5 4/5 104/255 2.733 0.236 1.779
Nd f 3 4I9/2 3 −63/11 27/22 21/121 1.424 0.356 2.076
Pm f 4 5I4 4 −28/5 8/5 −28/165 0.682 0.444 2.498
Sm f 5 6H5/2 5 −30/7 25/14 −26/33 −0.324 0.708 3.350
Eu f 6 7F0 6 0 0 0 – – –
Gd f 7 8S7/2 7 0 −7/2 0 1 – 0.949
Tb f 8 7F6 8 −3 −3 1/3 0.667 1.133 0.882
Dy f 9 6H15/2 9 −5 −5/2 1/3 0.6 0.84 0.919
Ho f 10 5I8 10 −6 −2 2/15 0.8 0.813 0.964
Er f 11 4I15/2 11 −6 −3/2 −2/15 1.267 0.853 0.991
Tm f 12 3H6 12 −5 −1 −1/3 2 0.92 1.008
Yb f 13 2F7/2 13 −3 −1/2 −1/3 3 1 1

Beamline I10 is equipped with an APPLE II undulator
capable of providing variable polarization [29]. To compare
the results, two different undulator scanning modes were used
during our experiment. The photon energy distribution of the
undulator can be controlled either by changing the gap or by
a shift of the upper magnet arrays with respect to the lower
magnet arrays. This movement is called the jaw phase. The
gap scan consists of discrete movements of the undulator,
which is permanently tuned to the maximum of its emission
peak.

XAS measurements were carried out in total-electron-yield
(TEY) mode. The magnetic field is always along the x-ray
beam direction. The Ho sample (with the normal ‖ c axis)
was measured at both normal (θ = 0◦) and grazing (θ = 75◦)
incidence.

2. Calculational description

Electric-dipole transitions from the 3d core level in rare
earths are allowed to empty 4 f states, but forbidden to 5d and
6s valence states. For the multielectronic configuration of the
atom in cylindrical symmetry (SO2), the transitions 4 f n →
3d94 f n+1 are calculated using atomic multiplet theory, in
which spin-orbit and electrostatic interactions are treated on
an equal footing [11,30]. The intra-atomic electrostatic inter-
actions include the 3d-4 f and 4 f -4 f Coulomb and exchange
interactions. The wave functions of the initial- and final-state
configurations are calculated in intermediate coupling using
Cowan’s atomic Hartree-Fock code with relativistic correc-
tions [31,32].

To account for interatomic screening, the parameters of the
Slater integrals for the Coulomb and exchange interactions
were reduced to 66%, while the spin-orbit interactions were
kept at 100% [11]. The Ho M5 line spectra were broadened
by a Lorentzian of half-width at half-maximum (HWHM) of
� = 0.3 eV for intrinsic lifetime broadening and a Gaussian of
σ = 0.4 eV for instrumental broadening. The Dy M5 spectra
were broadened by a Lorentzian of � = 0.25 eV and Gaussian
with σ = 0.5 eV.

The 4 f wave function contraction in the heavier rare earths
makes these orbitals atomic-like, with negligible influence of
the local environment. Unlike the 5d and 6sp electrons, the 4 f
electrons do not participate in the chemical bonding. There-
fore, the M4,5 spectrum has essentially the same shape for
metals, alloys, compounds, dopants, and oxides, apart from
small differences in line broadening. Since the additional 4 f
electron is efficiently screening the 3d core hole, the chemical
shift in the M4,5 spectrum is small, so that differences in the
XAS between rare-earth metal and oxide remain disguised.
However, they can be distinguished by the magnitude of the
XMCD signal, which is directly proportional to the 4 f mag-
netic moment aligned along the beam [30].

For the Hund’s rule ground state in LS coupling of the
Ho and Dy ion, the spin, orbital, and total angular moment
(S, L, J) are found in Table I. The effective magnetic 4 f
moment, μeff = gJ

√
J (J + 1), is 10.61 and 10.65 μB/atom

for Ho and Dy, respectively, where the Landé splitting factor
gJ = 3/2 + [S(S + 1) − L(L + 1)]/[2J (J + 1)].

The spectra in Fig. 1 were calculated for the Ho3+ 4 f 10

(5I8) ground state with MJ = −J in intermediate coupling at
a temperature T = 0 K, which gives 〈Lz〉 = −μL = −6.084,
〈Sz〉 = − 1

2μS = −1.916, and 〈Jz〉 = 〈Lz〉 + 〈Sz〉 = −8. Thus,
while the total angular moment stays the same in intermediate
coupling, the spin and orbital moment values differ slightly
from the LS-coupled Hund’s rule values (cf. Table I). With
increasing temperature, higher magnetic sublevels MJ become
populated and the magnetic moment reduces in size [33].

3. Determination of the magnetic moment

While in principle sum-rule analysis [5–7] can be used to
obtain the magnetic moment in rare earths, in contrast to the
3d transition metals the large j j mixing between the 3d5/2

and 3d3/2 core levels and a large 〈Tz〉 make it cumbersome to
extract the spin moment. Instead, we will introduce here two
alternative methods, namely, (i) scaling the peak asymmetry,
A = (μL − μR)/(μL + μR), and (ii) fitting the experimental
spectra with the three polarization components.
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FIG. 1. Calculated XAS at the Ho M5 edge for left-circular
(I−1, black solid line), right-circular (I+1, blue solid line), and per-
pendicular linear polarization (I0, red solid line), together with the
resulting isotropic spectrum (I−1 + I0 + I+1, pink dot-dashed line),
XMCD (I−1 − I+1, green dot-dashed line), and XMLD (I−1 − 2I0 +
I+1, black dashed line).

We will make use of the fact that in the heavy rare earths
the spin and orbital moments are parallel. This follows from
a general rule which deals with the influence of a small per-
turbation on a J level. Using the Wigner-Eckart theorem, the
proportionality rule (given in Eq. (32) of Ref. [34]) states that
different operators of the same rank are all proportional to the
same tensor. For tensors of rank 1 this implies that the orbital
moment 〈L〉, spin moment 〈S〉, and magnetic dipole term 〈T 〉,
are proportional to the total angular momentum 〈J〉. Then,
these vectors are parallel and have a constant ratio, indepen-
dent of a small perturbation, such as crystal-field interaction.
This makes it of course less essential to apply the sum rules
since the orbital over spin ratio is fixed anyway.

In Ho the energy separation between the ground-state level
(J = 8) and the first excited level (J = 7) is ∼673 meV ≈
7800 K. In Dy this energy separation between the lower levels
J = 15/2 and 13/2 is ∼469 meV ≈ 5450 K. These splittings
are at least an order of magnitude larger than the 4 f crystal-
field splitting [35]. When the crystal field becomes of the
order of the spin-orbit coupling, other J levels will mix into
the ground state, and the moments are no longer proportional
to each other. The proportionality rule also applies to inter-
mediate coupling [34], since J is a good quantum number as
long as the crystal field is much smaller than the electrostatic
and spin-orbit interactions. The proportionality rule obviously
does not hold to 3d transition metals, where the crystal field
is much stronger than the spin-orbit interaction.

IV. THEORY

A. XMCD
1. Polarized spectra

Figure 1 shows the spectra Iq calculated in SO2 symme-
try, for left-circular (q = −1), right-circular (q = +1), and
perpendicular linear polarization (q = 0), together with the

linear combinations of those spectra,

I0 = I−1 + I0 + I+1,

I1 = I−1 − I+1,

I2 = I−1 − 2I0 + I+1, (8)

which are the isotropic spectrum, XMCD, and XMLD, respec-
tively, and are often called the fundamental spectra. Reversely,
this can be written as

I±1 = 1
3 I0 ∓ 1

2 I1 + 1
6 I2, (9)

I0 = 1
3 I0 − 1

3 I2. (10)

It is important to note that the perpendicular linear polar-
ization for I0 is taken along the beam direction of the circular
polarization. Since light is transversely polarized, this can
only be achieved by changing the sample orientation with
respect to the incident x-ray beam. Thus, the perpendicular
linear polarized spectrum I0 should not be confused with the
parallel linear polarized spectrum,

I‖ ≡ 1
2 (I−1 + I+1) = 1

3 I0 + 1
6 I2. (11)

The aim is to relate the calculated spectra Iq to the exper-
imental spectra, which for distinction are named μL, μZ , and
μR. The spectra with (anti)parallel alignment are

μ↑↓ ≈ μL,B ≈ μR,−B,

μ↑↑ ≈ μR,B ≈ μL,−B,

μZ,B ≈ μZ,−B, (12)

where the subscripts L and R correspond to negative and
positive photon helicity, respectively, and the subscript ±B
gives the direction of the applied field with respect to the
helicity vector. In Eq. (12) we use an approximate sign (≈)
because the degree of polarization and degree of magnetiza-
tion can be different upon reversal. When these remain the
same this becomes an equal sign. Then, reversal of both field
and helicity results in the same XMCD signal. The μZ is
the perpendicular linear polarized spectrum, which is even in
the magnetization, i.e., it should be the same for parallel and
antiparallel alignment of linear polarization and field.

The convention adopted by the XMCD community is to
plot the circular dichroism of the transition-metal L3 peak
and rare-earth M5 peak as having negative integrated intensity
[4]. This corresponds to an XMCD signal, �μ, defined as
the difference between antiparallel and parallel orientations
of photon helicity and sample magnetization,

�μ ≡ μ↑↓ − μ↑↑

≈ (μL,B − μR,B) ≈ (μR,−B − μL,−B)

≈ (μL,B − μL,−B) ≈ (μR,−B − μR,B). (13)

To recapitulate the sign convention, a magnetic atom
aligned along Bz has a positive magnetic moment Mz, neg-
ative 〈Jz〉 = 〈M〉 = ∑

M nMM, and by definition a negative
dichroism �μ = μL,B − μR,B.

In the following, we do not take for granted that the degree
of polarization in the experimental spectra μ stays the same
upon reversal of the helicity or magnetization but instead that
it can be different.
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2. Method of using the peak asymmetry

Under the condition that the 4 f crystalline electrostatic
field is small compared to the 4 f spin-orbit interaction, the
spin and orbital moments remain parallel, so that their ratio
is fixed. Then, as a function of magnetization the isotropic
spectrum remains constant and the XMCD and XMLD scale
with factors cQ as

c0I0 = μ0,

c1I1 = μ1,

c2I2 = μ2, (14)

where μ0, μ1, and μ2 are the experimental isotropic spec-
trum, XMCD, and XMLD, respectively. There is an arbitrary
scaling factor between the set of theoretical and experimental
spectra in Eq. (14). Therefore, the μ0 spectrum can be nor-
malized to I0 by taking c0 = 1. We will use this normalization
from here on, but often still explicitly write c0 in order to keep
track of this coefficient.

The scaling factor for the measured dichroism can be di-
rectly obtained from the normalized asymmetry, i.e., the ratio
XMCD/XAS,

c1

c0
= μ1

μ0

I0

I1
. (15)

Thus, the actual circular dichroism is c1/c0 times that of
the calculated XMCD spectrum I1. Instead, one could also
compare the asymmetry against that of a reference sample
with known magnetic moment. This has the advantage that
no spectral calculations are required, just as in the case of
the sum rules. This method of analyzing the peak asymmetry
has been applied in Refs. [19], [24], and [36], therefore we
will not further elaborate on it. The problem with this method
remains that for practical reasons one usually takes the peak
asymmetry, A = (μL − μR)/(μL + μR), instead of μ1/μ0, so
the contribution of μZ in the denominator is omitted, which
amounts to neglecting the linear dichroism. To remediate this
shortcoming, we will describe in the next subsection an alter-
native method which explicitly takes into account the linear
dichroism.

3. Method of using the fitted spectra

Similar to the calculated spectra in Eq. (9), we can express
the experimental spectrum μ with arbitrary polarization as a
linear combination of fundamental spectra,

μ = 1
3μ0 + 1

2μ1 + 1
6μ2 = 1

3 c0I0 + 1
2 c1I1 + 1

6 c2I2. (16)

The value of c1 is taken positive for antiparallel alignment
(μL,B and μR,−B) and negative for parallel alignment (μR,B

and μL,−B).
It is important to note that Eq. (14) means that c1 and

c2 correspond to the degree of circular and linear dichroism,
respectively, in the measured spectra, with respect to the cal-
culated spectra.

The spectrum μ can also be written as a linear combination
of the three calculated polarized spectra

μ =
∑

q

aqIq = a−1I−1 + a0I0 + a+1I+1, (17)

where aq � 0 and
∑

q aq = 1.
Substituting Eqs. (9) and (10) into Eq. (17) and comparing

the result to Eq. (16) gives the dichroism coefficients cQ in
terms of polarization coefficients aq as

c0 = a−1 + a0 + a+1 = 1,

c1 = a−1 − a+1,

c2 = a−1 − 2a0 + a+1 = 1 − 3a0. (18)

Reversely, we can write

a±1 = 1
3 c0 ∓ 1

2 c1 + 1
6 c2,

a0 = 1
3 c0 − 1

3 c2. (19)

Substitution of Eq. (19) into (17) gives the relation

μ = (
1
3 c0 + 1

2 c1 + 1
6 c2

)
I−1 + (

1
3 c0 − 1

3 c2
)
I0

+ (
1
3 c0 − 1

2 c1 + 1
6 c2

)
I+1. (20)

It can be immediately verified that with c0 = 1, c1 = ±1, and
c2 = 1 we obtain μ = I∓1.

Since the weights aq of the polarized spectra have to be
positive, Eq. (19) gives the conditions

− 1
2 c0 � c2 � c0 and |c1| � 2

3 c0 + 1
3 c2. (21)

The latter shows that if c2 = 0 (no linear dichroism) then
|c1| � 2

3 , which means the circular dichroism cannot reach its
full strength. The explanation behind this restriction comes
from the fact that light is a transverse wave, so that I±1 also
contains I2 [cf. Eq. (9)]. This shows that we explicitly have to
include the linear dichroism in the circularly polarized spectra.
This is especially important for the rare earths where the linear
dichroism is usually quite large. It is less important for 3d
transition metals with a small linear dichroism.

On the other hand, if c1 = 0 (no circular dichroism) then
there is no restriction on c2, because the linear spectra as given
in Eqs. (10) and (11) do not contain I1.

Finally, we describe how this method is implemented in
Sec. V. The theoretical spectra Iq were calculated under full
light polarization and magnetization conditions. To determine
the circular dichroism of the individual experimental spectra
μ they were fitted with a linear combination of the theoretical
spectra I−1, I0, and I+1, as expressed by Eq. (17). Prior to fit-
ting the experimental spectra, the theoretical spectra were first
corrected for saturation effects (as described in Sec. IV B).
The coefficients aq were then obtained from the original
unsaturated Iq spectra. Using Eq. (18), these polarization coef-
ficients aq give the dichroism coefficients c1 and c2, which are
the scaling factors of the measured spectra compared to the
calculated circular and linear dichroism, cf. Eq. (14). Com-
paring the results for the different individual spectra measured
with left- and right-circular polarization or with positive and
negative field allows us to determine the consistency of the
results for opposite geometries.

B. Saturation effects

Since the 3d → 4 f cross section is large and also very
different for each polarization, we need to account for the
saturation effects in the TEY spectrum that arise because the
x-ray attenuation length, � = 1/μ, is comparable in length
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TABLE II. Optical constants for Ho and Dy.

E cRE �Henke
TI �Henke

RE �Thole
RE,M5max L

(eV) (nm) (nm) (nm) (nm)

Ho M5 1348.1 0.055 261 742 10.7 6
Dy M5 1292.9 0.1125 245 731 12.7 6

to the electron escape depth L [4]. The reduction factor of
the TEY spectrum due to saturation is photon energy (E )
dependent and given by [11,37]

μsat

μunsat
= cos θ

cos θ + Lμtot (E )
, (22)

where θ is the incidence angle from the surface normal. The
total x-ray absorption is

μtot (E ) = (1 − cRE) μTI + cRE μRE(E ), (23)

μTI = 1

�Henke
TI

, (24)

μRE(E ) = 1

�Henke
RE

+ μcalc(E )

μcalc
RE,M5max

1

�Thole
RE,M5max

, (25)

where cRE is the concentration of the RE. The nonresonant
attenuation lengths �Henke can be taken from Henke’s data
tables [38], available at the Center for X-Ray Optics (CXRO)
website [39]. The second term in Eq. (23) contains the cal-
culated unsaturated absorption spectrum μcalc(E ), which is
normalized to the maximum of the M5 peak μcalc

RE,M5max and
scaled to the resonant absorption length �Thole

Ho,M5max as given
by Thole et al. [11], from which we also adopt the value of
the electron escape depth L. The values required for the Dy
and Ho M5 are given in Table II.

Saturation effects become stronger for higher doping con-
centration, although even the pure rare-earth metals can be
fully corrected [11]. For the Ho (x = 0.14) sample, Eq. (22)
gives an intensity reduction to 83% and 95% at the M5 peak
maximum for grazing incidence (θ = 75◦) and normal inci-
dence (θ = 0◦), respectively.

V. APPLICATION

A. Holmium results

Figure 1 shows the polarization components of the Ho M5

edge which are well separated in energy. The main peak at
1347.5 eV is almost purely I+1 with only a few percent of I0.
The M4 signal is much smaller and less suitable, so it is not
considered here, although its measured XAS and XMCD are
in good agreement with multiplet calculations [11].

The experimental Ho M5 spectra with positive (μR,B) and
negative helicity (μL,B) were fitted using the calculated I−1,
I0, and I+1 spectra from Fig. 1. For normal incidence, the
results are shown in Fig. 2, where fitting gives the coefficients
aq [defined in Eq. (17)] listed in Table III together with the
resulting c1 and c2 values [using Eq. (18)]. This shows that
the experimental spectra are far from being fully polarized.
Despite this, the spectra are very similar to other polarized Ho
spectra from the literature [40].

1340 1345 1350 1355
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te
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ity

Photon energy (eV)

Ho M5 Pos. field

Pos. helicity

Neg. helicity

Sum

XMCD

FIG. 2. Experimental Ho M5 spectra (drawn red lines) for pos-
itive and negative helicity and their sum and difference spectra
compared with the calculated spectra (dash-dotted black lines). The
experimental spectra were measured at 2.5 K and 7 T at normal
incidence in TEY mode. They were fitted with the I−1, I0, and I+1

spectra from Fig. 1, which were corrected for saturation effects using
Eq. (22), yielding the intensity ratios analyzed by Eq. (20), which
amounts to an XMCD effect of 45%. The fit results are listed in
Table III. The I−1, I0, and I+1 components are peaking around 1343,
1345.5, and 1347.5 eV, respectively.

Also listed in Table III are the results from fitting the
experimental spectra at grazing incidence (spectra not shown)
and their corresponding c1 and c2 values.

For both normal and grazing incidence geometry of Ho
(Table III) there is a large difference in |c1| between μL and
μR. On the other hand, these two different incidence geome-
tries give similar c1 values for μL as well as similar c1 values
for μR.

TABLE III. Coefficients aq of the fitted Iq spectra and resulting
values of c1 and c2 for Ho M5 XAS spectra with left- and right-
circular polarization at normal and grazing incidence in positive
magnetic field and undulator jaw scans.

a−1 a0 a+1 c1 c2

μL,B (norm. inc.) 0.6385 0.2743 0.0872 0.5513 0.1771
μR,B (norm. inc.) 0.1606 0.3212 0.5181 −0.3575 0.0364
μL,B (graz. inc.) 0.6623 0.2529 0.0848 0.5775 0.2413
μR,B (graz. inc.) 0.1780 0.3089 0.5131 −0.2413 0.0733

214423-6



POLARIZATION ANALYSIS BY MEANS OF INDIVIDUAL … PHYSICAL REVIEW B 106, 214423 (2022)

1286 1288 1290 1292 1294 1296 1298

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

I 1 = I-1 - I+1

I 0 = I-1+I 0+I+1
I+1

I 0

In
te
ns
ity
(a
rb
.u
ni
ts
)

Photon Energy (eV)

DyM5

I-1

I 2 = I-1-2I 0+I+1

FIG. 3. Calculated XAS at the Dy M5 edge for left-circular (I−1,
black solid line), right-circular (I+1, blue solid line) and perpendicu-
lar linear polarization (I0, red solid line), together with the resulting
isotropic spectrum (I−1 + I0 + I+1, pink dot-dashed line), XMCD
(I−1 − I+1, green dot-dashed line) and XMLD (I−1 − 2I0 + I+1, black
dashed line).

Furthermore, we found no noticeable difference between
XAS spectra measured with linear polarization in normal
and grazing incidence. This suggests there is no significant
crystal-field interaction such as reported for Dy overlayers in
the absence of any magnetic field [41–43]. Calculations taking
into account 4 f crystal-field interaction show only a small
reduction in the dichroism signal, so that crystal field is not
expected to be the culprit.

As mentioned, c1 gives the degree of circular dichroism in
the measured spectrum, where c1 = 1 is reached under full
polarization and magnetization as in the calculated spectra for
the Hund’s rule ground state. Using the average value over
μL and μR from Table III for normal incidence and grazing
incidence, |c1| is equal to 0.45 and 0.41, respectively, which
would correspond to an effective magnetic moment μeff ≈
4.8 μB if the beam was fully polarized, which as we show in
Sec. V B is likely not the case. The reduced magnetic moment
can be ascribed to nonmagnetic or antiferromagnetic Ho sites.
This could be due to oxidation, since the TEY detection is
rather surface sensitive with an electron escape depth of 6 nm.
Simultaneously with the TEY, we also measured in fluores-
cence yield detection. However, the latter spectra show very
strong saturation effects, hampering the extraction of quanti-
tative information. Hence, it seems that not all Ho moments
are aligned to the field. This agrees with EXAFS results that
show distinct amounts of oxidation of the rare-earth dopants
[44].

B. Dysprosium results

The calculated Dy M5 spectra are displayed in Fig. 3. For
normal incidence, the fit results are shown in Fig. 4. We
compared both undulator jaw and gap scans as well as positive
and negative magnetic field (±5 T). The results for aq are
collected in Table IV together with the corresponding c1 and
c2 values.
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Sum = µ-+µ+

FIG. 4. Experimental Dy M5 spectra (drawn red lines) for pos-
itive and negative helicity and their sum and difference spectra
compared with the calculated spectra (dash-dotted black lines). The
experimental spectra were measured at 2.5 K and 7 T at normal
incidence in TEY mode. The calculated spectra are fits using the I−1,
I0, and I+1 spectra from Fig. 3, which were corrected for saturation
effects using Eq. (22). The fit results are listed in Table IV. The I−1,
I0, and I+1 components are peaking around 1289, 1291, and 1293 eV,
respectively.

Reversing the field gives consistent results showing a rever-
sal of the sign of c1 [e.g., c1(μL,B) = −c1(μL,−B) in Table IV].
However, this cannot be said for reversing the helicity [e.g.,
c1(μL,B) �= −c1(μR,B) in Tables III and IV]. Thus, reversing
the field gives more consistent results than reversing the light
polarization. Interestingly, jaw and gap scans of the undulator
give very similar results. The values for Dy averaged over all
μ are |c1| = 0.4170 and c2 = −0.0248.

Collecting all results for Dy from Table IV, averaged over
undulator modes and field directions but distinguished by light
helicity, gives

all μL: |c1| = 0.4652 ± 0.0094; c2 = −0.0287 ± 0.0115,

all μR: |c1| = 0.3687 ± 0.0156; c2 = −0.0209 ± 0.0227,

(26)

TABLE IV. Coefficients aq of the fitted Iq spectra and resulting
values of c1 and c2 for Dy M5 XAS spectra with left- and right-
circular polarization at normal incidence in positive and negative
magnetic field and undulator jaw and gap scans, as indicated.

a−1 a0 a+1 c1 c2

μL,B (jaw) 0.5584 0.3469 0.0948 0.4636 −0.0407
μL,−B (jaw) 0.0957 0.3397 0.5646 −0.4689 −0.0191
μL,B (gap) 0.5567 0.3448 0.0985 0.4582 −0.0344
μL,−B (gap) 0.0950 0.3400 0.5650 −0.4700 −0.0200

μR,−B (jaw) 0.5137 0.3495 0.1368 0.3769 −0.0485
μR,B (jaw) 0.1397 0.3445 0.5158 −0.3761 −0.0335
μR,−B gap) 0.5114 0.3379 0.1507 0.3607 −0.0137
μR,B (gap) 0.1548 0.3293 0.5159 −0.3611 0.0121

214423-7



VAN DER LAAN, HESJEDAL, AND BENCOK PHYSICAL REVIEW B 106, 214423 (2022)

which means that there is a difference of ∼20% in the rel-
ative degree of circular dichroism between the left and right
polarized beam.

For the spectra averaged over the light polarization but
distinguished by field direction we obtain

all μB: |c1| = 0.4148 ± 0.0930; c2 = −0.0241 ± 0.0422,

all μ−B: |c1| = 0.4191 ± 0.1013; c2 = −0.0253 ± 0.0272,

(27)

which amounts to a difference of only 1% in magnetic dichro-
ism between the two opposite magnetizations.

Whether or not reversing the field gives the same degree of
dichroism is specific to the nature of the sample. For instance,
in the case of magnetic domain structure the magnetization
reversal might be incomplete at low fields. For our samples the
consistency of the magnetization reversal is supported by the
SQUID measurements, which show a paramagnetic behavior
with full magnetic saturation at 5 T [25].

Some years earlier the degree of the circular polarized light
of the beamline was measured using an x-ray polarimeter and
reported to be close to 100% [45]. However, its performance
can have deteriorated over the years. Furthermore, switching
the helicity of the exciting radiation can cause slight shifts
of the beam spot on the sample surface, illuminating other
areas on the surface, which could possibly lead to a difference.
However, the samples were rather homogeneous across the
surface. Hence, the reduced values of |c1| compared to the
theoretical results should not only be ascribed to a reduced
magnetization but can also partly originate from an incom-
plete circular polarization of the x-ray beam.

C. Influence of the XMLD on the XMCD

To finish off, we discuss the effect of the XMLD on the
experimental XMCD, which is the difference spectrum μ1.
From Eqs. (17) and (16) we obtain sequentially

μ1 = μL − μR

= (
aL

−1 − aR
−1

)
I−1 + (

aL
0 − aR

0

)
I0 + (

aL
+1 − aR

+1

)
I+1

=
(

cL
0 − cR

0

3

)
I0 +

(
cL

1 − cR
1

2

)
I1 +

(
cL

2 − cR
2

6

)
I2, (28)

where the spectra measured with left (L) and right (R) circu-
lar polarization are characterized by polarization components

aL,R
q and dichroism components cL,R

Q . The μ and I spectra are
photon energy dependent, whereas the coefficients aq and cQ

have fixed values. Looking at the bottom line in Eq. (28), the
first term expresses the requirement for proper normalization
of the isotropic spectra. The second term is the usual one,
showing that the XMCD is proportional to the averaged ab-
solute degree of circular dichroism. Note that cL

1 and cR
1 are

positive and negative, respectively. The third term gives the
contribution of the linear dichroism I2, which is proportional
to the mismatch in the degree of linear dichroism between
both spectra.

A further contribution from the linear dichroism arises in
the application of the sum rules, which formally requires the
normalization of the XMCD by the isotropic spectrum that
contains the perpendicular linear polarized spectrum.

The integrated linear dichroism is proportional to the or-
bital charge anisotropy [46]. This can be very large for
localized 4 f states [47] but is often smaller for metallic 3d
transition metal states, especially in cubic symmetry [32].

VI. CONCLUSIONS

One of the shortcomings in obtaining the magnetic circular
dichroism as a difference spectrum is that it does not take into
account that the individual spectra can have been measured
with different degrees of polarization and magnetization. By
analyzing the individual polarized XAS spectra measured at
the Ho and Dy M5 edges without taking the difference spec-
trum, we are able to determine the differences in the degree
of circular dichroism of these spectra. In the experiments on
our paramagnetic samples we found that reversing the field
gives more consistent results than reversing the circular polar-
ization.

We show that since light is a transverse wave, the circu-
larly polarized spectra cannot be fitted just by the isotropic
spectrum and the circular dichroism, but also requires the
linear dichroism to be included. Only a fit of the experimental
spectra by three polarization components can give accurate
results in the case of the rare earths.
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