PHYSICAL REVIEW B 106, 214411 (2022)

Easy-plane anisotropic-exchange magnets on a honeycomb lattice:
Quantum effects and dealing with them

P. A. Maksimov®' and A. L. Chernyshev ©?

'Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia

2Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
M (Received 16 August 2022; accepted 28 November 2022; published 9 December 2022)

We provide analytical and numerical insights into the phase diagram and other properties of the extended
Kitaev-Heisenberg model on the honeycomb lattice in the easy-plane limit, in which interactions are only
between spin components that belong to the plane of magnetic ions. This parameter subspace allows for
a much-needed systematic quantitative investigation of spin excitations in the ordered phases and of their
generic features. Specifically, we demonstrate that in this limit one can consistently take into account magnon
interactions in both zero-field zigzag and field-polarized phases. For the nominally polarized phase, we propose a
regularization of the unphysical divergences that occur at the critical field and are plaguing the 1/S approximation
in this class of models. For the explored parameter subspace, all symmetry-allowed terms of the standard
parametrization of the extended Kitaev-Heisenberg model, such as K, J, and I', are significant, making the
offered consideration relevant to a much wider parameter space. The dynamical structure factor near the
paramagnetic critical point illustrates this relevance by showing features that are reminiscent of the ones observed
in a-RuCls, underscoring that they are not unique and should be common to a wide range of parameters of the

model and, by extension, to other materials.

DOLI: 10.1103/PhysRevB.106.214411

I. INTRODUCTION

Recently, strongly correlated materials with a sizable spin-
orbit coupling (SOC) have been the subject of a significant
research interest [1]. An interplay of SOC with the crystal
electric fields yields anisotropic exchange interactions be-
tween low-energy spin degrees of freedom [2], raising the
prospect of realizing a variant of the compass model [3] with
a spin liquid ground state and fractionalized Majorana excita-
tions, known as the Kitaev model [4], in some transition-metal
insulators [5]. A considerable theoretical and experimental
effort has been dedicated to the honeycomb-lattice materials
such as «-RuCl; [6-22], with many other transition-metal
and rare-earth compounds of various lattice geometries also
investigated in this context [23—40].

While it has been well-understood that the aforementioned
interplay of SOC and crystal-field effects generally leads to
the other anisotropic terms beyond the coveted Kitaev inter-
action [41-43], it is only recently that the richness provided
by these terms has become a central focus of the wider stud-
ies. The so-called extended Kitaev-Heisenberg (KH) model
that includes all terms allowed by the lattice symmetries has
shown exceptionally fertile phase diagram [44—52]. Moreover,
many materials that are expected to be closely described
by this model have also demonstrated a remarkable variety
of unusual phases that include uncommon collinear states
originating from competing interactions [53-55] and exotic
noncollinear counter-rotating spirals [56—58], some of which
are poorly understood. Notably, the KH model on a triangular
lattice also offers a wide array of exotic states, such as Z;
vortex crystal and multi-Q spirals [59-61].
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It is impossible for us to express sufficient amazement
at the complexity of the overall problem, as even an ap-
proximate, quasiclassical exploration of these states and their
excitations is often not a trivial issue. To challenge the the-
oretical progress further, the anisotropic-exchange terms can
result in pronounced quantum fluctuations, affecting ground
state and excitation spectra in both zero-field ordered states
[62,63] and in the fluctuating nominally polarized phases
[64-76], making the analysis of them less than straightfor-
ward.

It has been suggested that the excitation spectra in all
ordered phases should demonstrate universal features in the
form of the broad, continuumlike modes, owing to strong
magnon interaction [77] that comes from the strong coupling
of all spin components due to SOC. While fascinating on their
own, these features may also give a potential “false-positive”
signal of a spin liquid if the broad spectrum on itself is naively
taken as a sign of fractionalized excitations instead. Therefore
a constructive discussion of the quantum effects in the ordered
phases is crucial for an understanding of the properties of the
model and of experiments.

Unfortunately, a consistent consideration of excitations in
the extended Kitaev-Heisenberg model is, generally, a cum-
bersome procedure, as even the linear approximation requires
a numerical diagonalization of large matrices due to com-
plexity of the Hamiltonian and the states themselves [78,79].
However, as was first pointed out in Ref. [79], one can search
for a subset of the parameter space that allows for a more
straightforward calculations of the nonlinear effects, but is
still representative of the wider phase diagram.

©2022 American Physical Society
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In this work, we provide further insights into the nature
of quantum effects in the spectra of generalized Kitaev-
Heisenberg model by exploring a different part of the phase
diagram that is complementary to the region discussed pre-
viously [79]. We refer to this parameter subspace as to the
easy-plane, because if written in crystallographic axes related
to the planes of magnetic ions [7], bond-dependent and bond-
independent terms of the model contain interactions only
between the in-plane spin components. As we demonstrate,
diagonalization of the bosonic spin-wave Hamiltonian in this
subspace can be done via a simple combination of the uni-
tary and paraunitary transformations, making the subsequent
calculation of the nonlinear terms rather unburdensome. Our
approach also demonstrates, once again, that a parametriza-
tion of extended Kitaev-Heisenberg model in crystallographic
axes can be extremely beneficial for an exploration and better
understanding of its phase diagram [80].

In the present study, we focus on quantum effects in the
zigzag and field-induced paramagnetic phases for a repre-
sentative set of parameters from the easy-plane subspace.
Remarkably, the region that we study, corresponds to an ex-
tension of the honeycomb 120° compass model, which has
drawn attention in the past in the context of models and
compounds with orbital degeneracy [3]. We point out that our
easy-plane choice of parameters, rewritten using cubic axes
parametrization in which generalized KH model is typically
written, corresponds to all principal symmetry-allowed terms
of the model, K, J, and I, being of the same order. This makes
a convincing case that although we do not attempt to study the
entire phase diagram of an extended KH model, our consid-
eration is relevant to a much wider parameter space, which
should retain all the thought-provoking spectral features that
we demonstrate.

Utilizing the benefits of analytical approach to the spin-
wave theory, we can calculate magnon self-energy explicitly.
We show that quantum effects, such as spontaneous magnon
decays and spectrum renormalization [81], are sizable in
both zero-field zigzag and high-field polarized phases. In the
polarized phase, a strong divergence in the spectrum renor-
malization at the critical field is also observed. Previously, it
has been suggested that this singularity signifies a renormal-
ization of the critical field, see Ref. [82], but the problem with
the unphysical spectrum was left unresolved. In this study, we
present a method to regularize such a divergence that should
be relevant to a large class of anisotropic-exchange models
with complex ground states.

We have also analyzed quantum effects in the phase dia-
gram of the considered model using numerical density matrix
renormalization group (DMRG) method [83,84]. We have
confirmed that the strong spectrum renormalization effects
that we find in the zigzag and polarized phase correspond
to a shift of the phase boundaries. According to the DMRG
results, the area occupied by the zigzag phase contracts in
the regions where the spin-wave theory predicts strong renor-
malization that can yield spectrum instabilities. The numerical
calculations in the polarized phase also confirm the downward
renormalization of the critical fields relative to their classical
values.

Recent spectroscopic experiments in «-RuCls, such
as electron spin resonance (ESR), time-domain terahertz

spectroscopy, and Raman scattering [85-89], have demon-
strated unusual features in the polarized phase. These include
nearly gapless q = 0 excitations and a significant spectral
weight of the continuum above the one-magnon mode at the
critical field, both in contrast with the linear spin-wave theory
prediction. In the present work, by using the nonlinear 1/S
approach, we reproduce these features of the dynamical spin
structure factor in the polarized phase for representative sets of
parameters of our model. Although our model is not directly
applicable to a-RuClj [80], it clearly points to the fact that this
phenomenology is not unique and should be general for the
extended Kitaev-Heisenberg model and related compounds.

Our paper is structured as follows. We introduce the
easy-plane anisotropic-exchange Hamiltonian and map out
its classical phase diagram in Sec. II. The linear and non-
linear spin-wave spectra in the zigzag state are discussed in
Sec. III. Section IV presents results for the spectrum in the
field-polarized phase in the on-shell and off-shell approxima-
tions. The approach to a regularization of the singularity at the
critical field is presented in Sec. IV C. The dynamical structure
factor and its features that are relevant to the experiments are
discussed in Sec. V. We conclude by Sec. VI and additional
details are provided in Appendices.

II. EASY-PLANE ANISOTROPIC-EXCHANGE MODEL
AND CLASSICAL PHASE DIAGRAM

Generally, the anisotropic-exchange models of insulators
with strong SOC do not retain the SU(2) spin symmetry. Due
to crystal-field effects, all anisotropic terms beyond Heisen-
berg interaction are allowed, provided they respect discrete
symmetry of the lattice [2,41,90,91]. Therefore the general
form of a bilinear interaction of the low-energy spin Hamil-
tonian can be written as

fL=> Sl’s; (1)
(ij)n
where SiT = (87,87, 5%), (ij)n denotes nth nearest-neighbor

sites, and J ,(7) is a 3 x 3 exchange matrix. The elements of

J Er-l) matrices are constrained by the symmetry of the lattice
and typically depend on the orientation of the bond.

In this work, we study extended Kitaev-Heisenberg spin-
exchange model on the honeycomb lattice of magnetic ions
with the lattice symmetry given by the edge-sharing oc-
tahedral environment of ligands [90]. In addition to the

. . . Al . .
nearest-neighbor interaction J() we also include third-

ij

. ~(3 .
nearest-neighbor term J l(.j) as a proxy of all further-neighbor
interactions and also because it is often found to be significant
in various transition-metal insulators with the honeycomb-

lattice structure [24,41,92-98].

A. Nearest-neighbor model

In the presence of anisotropy, the form of J l(jn) is not invari-
ant under the rotation of the spin quantization axes. Because
of the perceived prevalence of anisotropic terms, the conven-
tional choice for such axes are the ones associated with the
metal-ligand bonds in the idealized octahedra, referred to as
the cubic axes {x, y, z}, illustrated in Fig. 1(c), not the ones
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FIG. 1. (a) The classical phase diagrams of the model (2) in the Jy-K-I" parameter space for I > 0 and for three representative values of
I in units of \/J3 + K2 + I'2. The legend shows sketches of the single-Q phases, incommensurate phases are shown in gray. The blue, green,
and red points in (a) and (b) are the same and are related via Eq. (7), see the text. (b) The classical phase diagram of the J-J.1-J3 model (9)
for J; > 0. The magenta points in the zigzag phase are representative parameter sets used later in this work. (c) The honeycomb lattice of
magnetic ions with A and B sublattices, the nearest- and third-nearest-neighbor vectors, §, and 6,(13), {X,Y, Z} types of bonds for the KH model
(2), and the cubic, {x,y,z}, and crystallographic, {x, y, z}, axes. (d) Brillouin zone (BZ) of the honeycomb lattice with the ordering vectors of

the single-Q phases.

affiliated with the planes of magnetic ions. In these axes,
the nearest-neighbor part of the model (1), with four terms
that are allowed by the lattice symmetry, is the generalized
Kitaev-Heisenberg model

=3 [Si - S; +KS!'ST + T (S2S? + 5's%)
(ijh
+ TV(SYS% + S7S% + 5287 + SST)). 2)

Here the sum is taken over three types of bonds of the
honeycomb lattice that are denoted as X, Y, and Z, with
corresponding nearest-neighbor vectors §;, 83, and §;, shown
in Fig. 1(c). Thus {«, B8, y} = {x, y, z} for the Z-type bond
and interactions on the other bonds are obtained via a cyclic
permutation of indices.

This model (2) has been thoroughly explored in the quan-
tum S = 1/2 and classical limits, with the single-Q ordered
phases that include ferromagnetic (FM), Néel antiferromag-
netic, 120°, stripy, and zigzag phases, as well as various
incommensurate ordered and quantum disordered states iden-
tified in its phase diagram [50,99—105]. The middle panel of
Fig. 1(a) shows the classical phase diagram for I'' = 0 and
I' > 0, with the bottom and top panels showing its evolution
with finite I'". The legend of Fig. 1 sketches the single-Q
ordered states and Fig. 1(d) explicates the ordering Q vectors
associated with them: I" point for the FM and Néel, K or K’ for
the 120°, and M or Y for the stripy and zigzag states. These re-
sults are obtained using Luttinger-Tisza approach [59,80,106—
110] to the model (2), see details in Appendix A. This phase
diagram also agrees with the prior work on the same model
[79,80,91].

We would like to focus on a particular parameter set

I'=0, K=TI=-J, 3)

for Jy < 0, which is marked in the phase diagram in the
middle panel of Fig. 1(a) by the green dot. This point is
tricritical between the ferromagnetic, zigzag, and 120° phases.
As was pointed out in the earlier studies [91], the macroscopic
degeneracy can be easier seen if the model is rewritten as a
single-parameter honeycomb 120° compass model [3]

7:10 =J Z(Sl] : Si)(sij ’ S.f)’ @

(ijh

where J, = —2K and §; ; are the unit vectors of the nearest-
neighbor bond direction of the lattice. This model has
attracted interest in the context of the p-band Mott insulators
[111] and of the e, Kugel-Khomskii model on the honeycomb
lattice [112-114]. Lifting the macroscopic degeneracy in the
model (4) has been considered in both classical and quantum
S =1/2 limits [115-118].

One can lift the degeneracy of this special point by intro-
ducing further terms to the compass model (4). A particularly
straightforward way that retains the coplanar character of the
coupling in (4) is to enrich it by the easy-plane (XY) exchange
interactions

H=H.+) IO (SIS +S)S7). (5)
({ijh
Note that the model (5) is already written in a basis that

is different from the cubic axes in (2) and is naturally tied
instead to the plane of magnetic ions, which we will refer to
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as the crystallographic axes {x, y, z}, see Fig. 1(c) for a specific
choice of them, with y axis being the C,-symmetry axis.

It is particularly enlightening now to rewrite the resultant
model (5) one more time using a more common “icelike”
convention for the parametrization of the nearest-neighbor

exchange matrix J{;’ [38,90,119,120] to make its easy-plane

character explicit

H=2 Ul

(ijn
— (55S] +578)s4) - ©®)

Here the shorthand notations are ¢, = cos §, and s, = sin @,
bond-dependent phases @, = {0, 27 /3, —2m /3} are the an-
gles of the nearest-neighbor vectors §, shown in Fig. 1(c) with
the y axis, and spin components are in the {x,y, z} crystal-
lographic axes. The “icelike” (6) and the “compasslike” (5)
model parameters are related via J. = 2J,4 and J{) =J —
2J.., with the pure compass J.-only model (4) corresponding
to J. +4+ = J / 2.

It is now essential to reflect on the fact that the lattice
symmetry of the honeycomb lattice with an edge-sharing
octahedral environment of ligands allows four indepen-
dent parameters in the nearest-neighbor anisotropic-exchange
model, regardless of the parametrization of the latter. It is
clear that the model (6) is restricted compared to the extended
KH model (2), as it only contains two in-plane terms, J and
Ji41, and is missing the couplings involving the out-of-plane
spin components, the XXZ-term AS;S; and the J;1. term that
couples S° to the in-plane S*®) components, see Appendix A
for the full model in the “icelike” parametrization.

It is important to connect the easy-plane anisotropic-
exchange model (6) back to the cubic-axis parametrization of
the extended KH model (2). A straightforward linear trans-
formation, corresponding to a rotation from the cubic to the
crystallographic axes, see Appendix A, yields a simple trans-
lation table

=2(J +Jip),
F=—lU+4/), T'=

(SiST +87ST) = 2051 ((S7S = 8787 ca

K=-2/i.,
—1(J — 2ss), @)

which implies that, generally, all four interactions of the ex-
tended Kitaev-Heisenberg model are nonzero in the parameter
subspace spanned by the easy-plane model.

Perhaps a more informative result is the relations between
the parameters of the extended KH model that are imposed
by the easy-plane parameter subspace. Such relations can be
easily inferred from Eq. (7)

Jo=—T+T"),

where I" and I'” are chosen as the two independent parameters
of such a restricted KH model. Clearly, I’ = 0 brings us back
to the special tricritical K = I" = —J point of Eq. (3) that has
inspired this consideration.

The one-dimensional (1D) path illustrated in Fig. 1(a)
passes through the tricritical point (3) in the I'" = 0 panel and
is going through different phases for different choices of I'/
according to (8). The relation of this path to the easy-plane
model (6) is demonstrated in Fig. 1(b). The tricritical point
in the ice-like parameters is given by Jrr = J/2 < 0 and is

K=T-T, 8)

shown as a green dot on the outer rim (/3 = 0) of the J-Jy1-J3
phase diagram in Fig. 1(b). The two other representative
points along this rim, which are shown by the red and blue
dots in Fig. 1(b), correspond to the choice of J.. = J and
Ji+ = 0.25J, respectively, and to the red and blue dots in the
upper and lower panels of Fig. 1(a). The choice of the constant
I’ (in units of , /Jg + K2 + I'?) in these panels corresponds to
its value at these representative points that can be deducted
from Eq. (7). Thus each point on the outer rim of the J-J11-J3
phase diagram in Fig. 1(b) corresponds to a single point in a
Jo-K-T slice of the three-dimensional (3D) phase diagram of
the model (2) for a fixed I".

Altogether, the two-parameter easy-plane anisotropic-
exchange model (6) offers a 1D exploratory path through the
3D space of the four-parameter extended KH model (2). This
path explores all of the commensurate ordered phases of the
full model, with all parameters of the extended KH model
present but without imposing a fine-tuning on any of them.
Yet, this model (6) allows for significantly more straight-
forward calculations of the nonlinear effects that we pursue
in this work, remaining representative of the wider phase
diagram. The possibility of such a simplified consideration,
suggested by the model (6), highlights the benefit of using
different parametrizations of the anisotropic-exchange models
[121].

B. Role of J5

As was mentioned above, in the following we will include
the third-nearest-neighbor exchange term in addition to the
nearest-neighbor terms of the model (6). This extension ab-
breviates all further-neighbor interactions into one and takes
into account a significance of the third-neighbor terms in real
materials [24,41,92-98].

To maintain the easy-plane character of the model (6), the
extra J3-terms are taken in the same form as the J )5‘1) extension
of the pure compass model in (5), yielding the three-parameter
J—Jii—J3 model

H=2

— (SIS 4+ 8S%)sa) | + 03 Y (SiST 4 STSY). (9)

(ij)3

J(SISE+818)) — 205 ((S1S% — 8% cq

It is written in the same “icelike” notations as the nearest-
neighbor model (6) and this is the parametrization that will
be used exclusively from now on.

Figure 1(b) demonstrates the role played by the third-
neighbor term in the classical phase diagram of the easy-plane
anisotropic-exchange model (9) for J3 > 0. The phase dia-
gram contains the same commensurate single-Q states as the
Jo-K-I" diagrams in Fig. 1(a) except for the stripy phase,
which is stabilized by J3 < 0. The J3 < 0 hemisphere of the
phase diagram and classical energies of all commensurate
phases are given in Appendix A.

In the rest of the paper, we will be focusing on the zigzag
portion of the phase diagram in Fig. 1(b) because of its relative
simplicity and also motivated by a large number of materials
with strong anisotropic exchange interactions that realize such
a zigzag order in their ground states [53-55,122-124]. As
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one can see in Fig. 1(b), the zigzag state occupies a large
portion of the phase diagram of the model (9). However,
we emphasize that the third-nearest-neighbor interaction is
crucial for its stability, because in the nearest-neighbor model
(6) the zigzag state is stable only at the two tricritical points,
Jiy = £J/2. The scenario that the zigzag order is stabilized
by a J; term has been discussed and significantly substantiated
in a number of studies of closely related models and materials
[24,77,80,92,98]

As is shown in Fig. 1, there are two types of the zigzag
state that differ by the mutual orientation of the zigzag and
spin patterns, which we refer to as to the zigzag-x and zigzag-
y states. In the former, favored by J14 < 0, spins align with
the zigzag direction, while for the latter, Jry > 0, spins are
perpendicular to it.

The main focus of this work is on the quantum corrections
to the spin-wave theory in the zigzag and high-field polarized
phases of the model (9). Generally, for the complex multiple-
sublattice ordered states in the non-Bravais lattices shown in
Fig. 1, even the linear spin-wave theory (LSWT) consideration
requires numerical diagonalization, making the problem of
the nonlinear effects virtually intractable. The fact that such
kinds of calculations can be done analytically for the easy-
plane anisotropic-exchange model (9) is a strong motivation
for its exploration. The next two sections provide a thorough
investigation of the quantum effects in the zero-field zigzag
and the affiliated field-induced polarized states of the model
(9). We argue that the obtained results are general and the
studied model is able to provide insights into experimentally
observed features in real materials.

III. ZERO-FIELD ZIGZAG STATE

Similarly to the same model on the triangular lattice [121],
the structure of the zigzag state in the model (9) depends on
the sign of Jyi. The classical energy of the zigzag state is
given by
ﬁ—]+4] cos2¢ — 3J- (10)
NS2 ~ +4 % 3
where N is the number of atomic unit cells and ¢ is the
angle of spins with the x axis. Minimization yields ¢ = 7 /2
for J1+ > 0 and ¢ =0 for J11 < 0, zigzag-y and zigzag-x
states in Fig. 1, respectively, making e, = J — 4|J14| — 3J3
for both cases.

€l =

A. Two-sublattice approach

The spin-wave theory requires a diagonalization of the
2N; x 2N, matrix after bosonization of the exchange Hamil-
tonian [78], where N; is the number of magnetic sublattices.
Generally, for Ny > 2 this procedure can only be done nu-
merically. However, it is known that there are cases in which
diagonalization can be performed analytically even for the
complex ordered states and lattices [79,125-127]. The proce-
dure that we demonstrate here is based on a combination of the
unitary and paraunitary transformations, which also utilizes
higher symmetry of the zigzag state in model (9).

Within the spin-wave theory, the key transformation is the
rotation of the spin quantization axis from the laboratory
reference frame to the local one, with the local z-direction

on each site given by the spin configuration obtained from
minimization of the classical energy.

In the zigzag-x state, using its sketch in Fig. 1 as a guid-
ance, spin transformation from the laboratory to the local
reference frame for the A(B) sublattices is given by

(S 872 85) = (£ 'Sz, ST, ieiQr[SZ‘v)loc’ an

where we choose Q = (0, 27 /3a) as the ordering vector of
the zigzag structure with the horizontal direction of the zigzag
pattern, a is the interatomic distance, coordinates r, = na; +
may correspond to the A sublattice with the primitive vectors
of the honeycomb lattice a; = §, — &; and a, = §3 — §;, and
r; =r; + p, are the coordinates of the atoms, with p; =
(0,0) and p, = 8; = (0, a). This transformation introduces
axes that follow the staggered pattern of the zigzag state with
the phase factor Qe = (—1)yrtm, retaining the two-sublattice
structure of the honeycomb lattice.

Note that the Hamiltonian (9) is invariant under simulta-
neous in-plane 7 /2-rotation of spins and change of the sign
of the J.-term. This is identical to the anisotropic model on
the triangular lattice for the stripe-x and stripe-yz states [121].
Due to this symmetry, the Hamiltonians for the zigzag-x and
zigzag-y states reduce to the same form when written in the
local spin axes

Tlioe = Y AW — 212 DSESE — (J + 22 ])SS7)
i,8;

+ Y U+ 22 DSISE + (J — 1122 )S5SY)

0,823
— 2| € (SSE 4 S578T)sa )

I3 (SiST - 8589), (12)

i.8)

where ic A, r; =r; + 6(6(3))a, and we used explicit values
of cos@, = {1,—1/2,—1/2} and sinp; = 0 for the bond-
dependent phases @, in (6), leaving the shorthand notation of
Sq = SiN @, = j:\/g/Z for the 8,(3) bonds.

We note that already at this stage, the simplified nature of
the easy-plane model (9) and of the coplanar ground state
manifest themselves in an explicitly two-sublattice form of
the “diagonal” part of the Hamiltonian (12), which yields the
LSWT below, as they do not contain phase factors associated
with the zigzag ordering vector Q. The terms that do are
“off-diagonal” and contribute only to the higher 1/S order.
This is different in a more general model because extra terms
and the out-of-plane tilt of the zigzag structure generally do
not permit the four-to-two-sublattice reduction, see Ref. [79].

B. Linear spin-wave formalism

Here we present basic steps of the linear spin-wave theory
formalism and outline the key features of our model that allow
for a simplified analytical treatment.

The standard bosonization of spin operators is the
Holstein-Primakoff transformation,

Sg’a =S5 - azaae,a, SZa ~N2S agq, (13)

where z is the local quantization axis, £ and « = 1, 2 numerate
unit cells and bosonic species on the sublattices A and B,
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respectively, and below we use a2y = a(b) interchangeably.
Next is the Fourier transform

1 "
_ ik(re+p,)
a, = — e “q (14)
[ /N Zk: ok

where N is the number of unit cells, r, and p, are defined
after Eq. (11), and k sums over the full Brillouin zone of the
honeycomb lattice, shown in Fig. 1(d).

After the Fourier transform, the linear spin-wave part of the
Hamiltonian (12) is given by

A2 =" {Alapay + biby)
k

+ (Bxajb, + Bxab', +H.c)}, (15)
with A and By given by
A =S(=J +4Jss| +3J5),
By =3S(In — 2lwxlyy + 1) /2, (16)

where the hopping amplitudes are

1 ik, (3) 1 ks
= — e ”’ = = e
CREP P PP

/ 1 ~ il
Yo = 3 Zcos (paek‘s“. a7

We note that in the high-field polarized phase that we study
in Sec. IV, the spin Hamiltonian naturally assumes the two-
sublattice form, so that the linear spin-wave part of it takes
the form identical to (15), but with different A and Bk that are
given in Sec. IV.

A general two-sublattice bosonic model still leads to a
problem of diagonalization of the 4 x 4 matrix. While this
problem is often reducible to an analytically treatable diag-
onalization of (gﬁk)2 [121], where g =[1,1,—1,—1] is a
paraunitary diagonal matrix and H, is the LSWT Hamiltonian
matrix, the resultant formalism is rather cumbersome, espe-
cially for the nonlinear extension of the spin-wave theory that
we pursue, see Ref. [79].

An important distinction of the model (15) in our case is
that it is diagonalizable by much simpler means and results
in a much more manageable nonlinear theory. Not only this
LSWT Hamiltonian has fewer elements in its matrix, but,
crucially, the “normal” (a'h) and “anomalous” (a’b’) ma-
trix elements in its second line are the same. This important
feature allows us to split the diagonalization problem in an
intuitively clear two-step process described next. This form of
the model (15) can be traced all the way back to the easy-plane
nature of the spin Hamiltonian in Eq. (9), and, while it may
look artificial, it should in no way be restrictive of the physical
results that we obtain from it as was discussed earlier.

The first step of the diagonalization of the Hamiltonian (15)
is a unitary transformation from the operators a; ok = ax(bk)
to their symmetric and antisymmetric combinations, with the
phase factor e/# of By absorbed symmetrically in the opera-
tors of both species [127]

D /2

4y = —— 5 ZVW (18)

where the 2 x 2 matrix V is

. 11
V:(_l 1). (19)

After this transformation, the LSWT Hamiltonian is block-
diagonal in the new bosonic index u =1, 2

7 (2) _ i
HY = Z {Aukcukcuk -

K,

B,k
T(Cukcu—k +H.c.);, (20)

with

A=A+ (=DM Byl, Bu= (DB (1)

The second step is the textbook paraunitary Bogolyubov
transformation for the individual bosonic species

Cuk = Uy, + vﬂkdl , (22)

W1th the parameters defined by 2uukvﬂk = Bux/e. and
uk + vuk = A,x/€.x, where the linear spin-wave energies
are given by
— /a2 2
Euk = Ak — By (23)
Thus the spin-wave spectrum consists of two branches, &k
and e, which will be loosely referred to as the acoustic
and the optical modes. Note that the observed spectrum still
consists of four modes due to the four-sublattice structure of
the zigzag state. The additional two modes are obtained from
&,k by the shift with the ordering vector Q, see Sec. III F and
Appendix B.

C. Nonlinear spin-wave formalism

To study quantum effects in the excitation spectra due to
magnon interactions, the higher-order 1/S anharmonic terms
in the bosonic Hamiltonian are needed.

The most qualitatively important effects are induced by the
three-magnon terms, which originate from mixing the $* and
S% spin components in the anisotropic Ji4 coupling in (12)
due to the broken SU(2) symmetry. Skipping the technical
steps of the Holstein-Primakoff, Fourier, unitary (18), and
Bogolyubov (22) transformations in these terms, which are
exposed in Appendix B in some detail, one arrives to the
general form of the cubic Hamiltonian for the magnon normal
modes

HY = 3'\/_ oD (Ehkdldidl, +He)

Zk =Q vp

2l«/— Z Z q)zlil;)dnqdvkdu p+H'C-)v (24)
> ki=Q nvu

where the combinatorial factors are due to symmetrization
in the source and decay vertices, > k;=p+k+q, Q=
(0, 27 /3a) is the ordering vector of the zigzag structure, and
explicit expressions for the vertices ®\" and ’“"k” are also
given in Appendix B. Note that the CllblC coupling in (24) is
umklapplike: momentum in the decay process is conserved
up to the ordering vector Q. This is reminiscent of the case
of the square-lattice antiferromagnet in a field of Ref. [128].

Similarly to the LSWT, the form of the cubic terms in (24)
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FIG. 2. (a) Decay and source diagrams for the 1/S contribution
to the self-energy (26) and (27) from the three-magnon interactions.
(b) The Hartree-Fock diagram from the four-magnon interactions.
(c) The off-diagonal diagrams contributing to the anomalous self-
energy terms, see Sec. IV C.

remains the same for the field-polarized state considered in
Sec. IV, but with the ordering vector Q = 0 and different
expressions for the vertices, see Appendix B.

The two lowest-order diagrams from the three-magnon
interactions that contribute to the spectrum, the “decay” and
the “source” diagrams, are shown in Fig. 2(a), with the self-
energy

2Pk, 0) = ¢k, 0) + =}, (k, 0), (25)
where

2
g

1 k—q+Q:—k
20k, 0) = — A : 26
p.( ) 2N(§a)—£,,q —Svk_q+Q+i0 (26)
o 2
s “q,~k—q+Qk
5 (k, ) = @7

2N oo + &pq T Ev—k—q+Q — i0

The same parts of the spin Hamiltonian (12) that give the
linear spin-wave terms yield the four-boson interactions that
contribute the Hartree-Fock corrections to the spectrum in the
same 1/S-order as the three-magnon interactions. Deferring
technical details to Appendix B, the corresponding correction
to the LSWT Hamiltonian H® in Eq. (20) can be found in a
standard manner and is given by

. 1
4 @) .t [COPR I
SH® = E {8Aﬂkcﬂkcuk — 5(5Bukcukcufk + Hc)}
k,n

(28)

The Hartree-Fock 1/S-correction to the spectrum, shown dia-
grammatically in Fig. 2(b), is given by

4) (4)
38(4) _ Aﬂk(SAuk — Re((SB,uk)BMk

k - 9
I £k

29

with the explicit form of SAEflz and SBE:‘]; given in Appendix B.
Thus the self-energy that contributes to the spectrum in the
1/S§ order is given by

Tk, ) =8 + TPk, w). (30)

D. Quantum effects in the spectrum

As is shown above, calculation of the magnon spectra €,k
and self-energies X, (k, w) for the model (9) is analytically
straightforward in the zigzag state.

The results of the calculations of the spectrum within the
linear and nonlinear approximations are shown in Fig. 3 for
the representative values of Jii and J; in that state. The
selected parameter sets are shown by the two magenta points
in the phase diagram in Fig. 3(a). Their coordinates are J14 =
0.2J and 0.4J, J; = 0.5|J]|, all for J < O (calculations for
J3 = |J| are shown in Appendix B). Rewriting them in the
generalized Kitaev-Heisenberg language using Eq. (7) gives

Jiy =02J - {Jp, K, [, T} ={-1,0.5,0.75,0.25},

Jiw =0.4J — {Jo, K, T, T} = {—1,0.86, 0.93, 0.07},
(31)

with the normalization of Jy = —1. As was argued above,
all terms of the extended KH model that correspond to our
considered subspace of parameters are significant.

Figure 3(c) shows the linear spin-wave spectrum ¢, from
(23) together with the renormalized on-shell spectrum ¢,k and
the magnon decay rate I' i defined as

ngtk = €uk + Re E;L(k7 S/Lk)s Fp,k = _Imzu(kv guk)a (32)

with X, (k, w) from (30), all along the contour in Fig. 3(b).
Note that the dashed part of the contour is omitted in (c) since
the X — I" part of the path is redundant to Y — I'” and the
I'" — M is equivalent to I' — M. Again, because of the two
sublattices, there are two inequivalent magnon modes in these
results that are defined in the full BZ of the honeycomb lattice.

There are several features of the linear spin-wave spec-
trum that should be pointed out. Generally, the spectrum is
gapped due to the presence of the symmetry-breaking bond-
dependent anisotropic Jyy term, with the gap at the ordering
vector Q =Y that increases with both J.4 and J3. However,
this gap vanishes upon approaching the {/.., J3} = {0.5J, 0}
point, which corresponds to the aforementioned honeycomb
120° compass model (4) marked as a green dot in Figs. 1(a),
1(b), and 3(a), see Sec. III F for a discussion of the spectrum
at this tricritical point.

Even though the spectrum is gapped at the ordering vec-
tor, there is another “pseudo-Goldstone” mode with a rather
small gap located at the M point, which is not the ordering
vector. These low-lying modes are present in the spectrum
due to proximity of our model to a simpler J; — J;3 model.
This model possesses a true accidental degeneracy because
the third-neighbor interaction J3 splits the honeycomb lattice
into four sublattices, while nearest-neighbor J; can con-
straint only a linear combination of spins from these four
sublattices, see [129]. The degeneracies of that nature are
common in the spectra of frustrated models such as that on
the triangular lattice [121,130,131]. As we show below, these
quasi-Goldstone modes are crucial for the nonlinear quantum
corrections, providing the low-lying two-magnon continuum
for the single-magnon modes to interact with.

The middle panels in Fig. 3(c) shows €k, the magnon
spectrum (32) with the on-shell one-loop quantum correc-
tions. One can see a substantial downward renormalization
of the spectrum compared to the LSWT, which is most
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FIG. 3. (a) Classical phase diagram of the model (9) in Cartesian coordinates with parameter sets (31) marked by magenta dots, cf.
Fig. 1(b). (b) BZ of the honeycomb lattice (hexagon) and the first magnetic BZ of the zigzag state (small rectangle). High-symmetry points
and the representative k-path are indicated. In (c), only the solid parts of this path are used due to the symmetry of the spectrum. (c) Linear
spin-wave spectrum, &, two-magnon continuum, renormalized spectrum, ,x, and magnon decay rates, I, for the representative parameter

sets of Jo. and J3 (31) and § = 1/2 are shown.

prominently pronounced near the Y point. This is due to a
direct coupling to the two-magnon continuum provided by the
three-magnon terms in (24). The two-magnon density of states
is shown as an intensity map in the top panels of Fig. 3(c). The
renormalization becomes more significant with the increase of
the anisotropic Jy4 term. This is obvious from the fact that the
three-magnon interaction originates only from the $*S* terms
in the bond-dependent part of the Hamiltonian (12), which,
in turn, exists only because of the SOC-induced anisotropic
interaction J14. There is also an enhancement of the renor-
malization due to van Hove singularities in the two-magnon
continuum that manifest themselves in the self-energy, which
can lead to an instability in the spectrum, €,k < O at large
|/ |. The magnitude of the third-neighbor interaction J3 also
affects spectrum renormalization, but indirectly through the
larger LSWT gaps that modify the density of states in the
two-magnon continuum, see Appendix B.

We should point out a peculiar feature of the renormalized
spectrum g,. The self-energies of the two modes are not
equal at the band-crossing point k* given by the LSWT, see
Fig. 3(c). This effect can also be observed in the imaginary
part of the self-energies in the bottom panels of Fig. 3(c). One
can also see that the band crossing point of the renormalized
spectra shifts to a different k point due to that difference in
renormalization. However, self-energies appear to be smooth
functions of the momentum at the crossings

ik —q) = X2(k*+q), q—0. (33)
This is an interesting feature that requires further investiga-
tion, and it is related to the phase factor ¢k in the wave
function (18) and the fact that the LSWT band-crossing point
k* for a generic set of parameters of the model (9) is not deter-
mined by the lattice symmetries and is not a high-symmetry
point.

The three-magnon interaction also yields the finite lifetime
of magnons, given by the imaginary part of the self-energy
(32), I' k. As is shown in Fig. 3(c), the low-energy parts of the
lower magnon branch are typically stable in most of the Bril-
louin zone because of the lack of the phase space for decays
for them. An important aspect of the three-magnon coupling
in (24) that stems from the structure of the anisotropic cou-
pling in (12), is that the momentum in the decay process is
conserved up to the ordering vector of the zigzag structure Q.
This means that the single-magnon branch couples to the two-
magnon continuum that is offset by that momentum. Because
of that, the magnons from the lower branch in the vicinity
of the Y point are significantly affected by the renormaliza-
tion and decay processes into the pairs of the low-energy
pseudo-Goldstone magnons modes that are in the proximity of
the Mpoints. The high-energy modes typically acquire finite
lifetime in a larger portion of the Brillouin zone with a sig-
nificant decay rate for large |J/1.|, yielding strongly damped
excitations. Qualitatively similar features have been found
by the inelastic neutron scattering in «-RuCls [77,80,132],
where stable low-lying spin-wave modes have been observed
in coexistence with the higher-energy continuum.

E. Quantum effects in the phase diagram, DMRG

Here we complement our discussion of the quantum effects
in excitation spectra by an analysis of the concomitant effects
in the ground state phase diagram of the model (9). Specif-
ically, we investigate a possibility of the shifts of the phase
boundaries for the considered case of the S = 1/2 model
relative to the classical phase diagram in Fig. 1(b) obtained
by LT calculation. For that we use density matrix renormal-
ization group [83]. We perform calculation on the 6 x 8-site
cluster with open boundaries, see Fig. 4, using ITENSOR pack-
age [84] with 10 sweeps, and keeping up to m = 200 states.
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FIG. 4. DMRG phase diagram for S = 1/2 (colors and solid
lines) and classical Luttinger-Tisza phase diagram (dashed lines)
from Fig. 1(b) of the model (9). DMRG calculations were performed
on a 48-site cluster for the parameters indicated with open symbols
and the solid boundaries are obtained via interpolating between
DMRG points, see the text. The inset shows the cluster used in
DMRG.

Calculations were performed for the parameter sets shown in
Fig. 4 by the open circles. The color coding for the states is the
same as in Fig. 1. Note that since the model (9) is symmetric
under J11 — —J14 (with a simultaneous 7 /2 spin rotation),
we only perform calculations for the lower half of the phase
diagram, J11 < 0. For the relatively small cluster size and for
the robust ordered states, the number of sweeps and that of
the kept states appear to be sufficient. We identify transitions
between different phases by finding the maximal value of
the static spin structure factor and identifying its ordering
vector. The transitions between the phases are also verified
via anomalies in the ordered on-site magnetic moment. The
resultant lines of the phase boundaries are obtained by inter-
polations between the DMRG points and serve as guides to
the eye. In order to check the validity of such interpolations,
we have also performed additional calculations keeping up to
m = 400 states, which are shown n Fig. 4 by the open squares.
The resultant DMRG phase diagram for the S = 1/2 case
of the model (9) is presented in Fig. 4, where the shift of
the boundaries between zigzag and 120° phases compared to
the classical LT results is clearly demonstrated. This trend is
broadly in agreement with the findings of our 1/S analysis of
the excitation spectra provided above, which predicts strong
spectrum renormalization, potentially leading to spectrum in-
stability of the zigzag state in the same region of the parameter
space. The expansion of the fluctuation-prone 120° state at the
expense of the proximate collinear state in the anisotropic-
exchange models in the quantum limit is also in agreement
with the similar results in the triangular-lattice case [121].
For the other phase boundaries in Fig. 4, the classical
model works very well even in the S = 1/2 case. One more
significant change that should be pointed out is the lack of the
narrow region of the incommensurate state at the FM-zigzag

FIG. 5. Upper panel: LSWT magnon bands of the model (4),
which is equivalentto J.. = J/2 < 0and /5 =0in (9),or K =T =
—Jo > 0and TV = 0 in (2); “shifted,” acoustic, and optical modes are
identified. Lower panel: on-shell decay rates I',,x (32) along the full
k cut of Fig. 3(a).

border, showing instead a direct transition between the two
states. We note that the small cluster size used in our cal-
culations may be insufficient to capture narrow regions of
incommensurate states, but they are outside of the scope of
our work.

F. Special case of the 120° compass model

Here we briefly consider excitation spectrum and effects of
magnon decay in them at a special point of the phase diagram
of the model (9), the 120° compass model (4), which corre-
sponds to J11 = J/2 < 0 and J3 = 0 in the model (9), or K =
I'=—Jy > 0 and I'" = 0 in the extended Kitaev-Heisenberg
language (2). This tricritical point is marked by the green dot
in the phase diagrams in Figs. 1(a), 1(b), 3(a), and 4, and it
was inspirational for the easy-plane model considered in this
work as is discussed in Sec. II.

This special point was discussed earlier in Ref. [79], but
without presenting explicit spin-wave calculations for it. That
work has also explored a different extension of the model
around this point and has used a more general but more cum-
bersome analytical procedure that relied on the four-sublattice
diagonalization [79]. Here, we are using the two-sublattice
approach discussed above and present the results for the on-
shell magnon decay rates I' ;i (32) in Fig. 5.

A distinctive feature of this tricritical point is that the lower
magnon mode in its zigzag spectrum is gapless, see the upper
panel of Fig. 5. The two of the four magnon branches are
obtained by the shift of the two original modes of the two-
sublattice approach by Q = (0, 2w /3a), shown by solid and
dashed lines, respectively. The lower panel of Fig. 5 shows the
on-shell decay rates (32) in units of |J| using the same color
and line conventions. Because of the large phase space for
magnon decays due to the presence of the Goldstone modes
and because of the significant anisotropic term J41, magnon
decay rates are large in comparison with the results in Fig. 3,
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reaching values of the magnon bandwidth if averaged over the
BZ.

Somewhat unexpected is a strong divergence in the acous-
tic mode decay rate in the vicinity of the “Dirac-like” points
of the spectra where the nonshifted and “shifted” modes inter-
sect. This divergence can be demonstrated to be of a stronger
character than that of the two-magnon density of states (not
shown). Using an analytical insight into the asymptotics of
the vertex, this behavior can be identified with an emission of
a Goldstone-like acoustic mode with q — 0 and a decay into
a lower Dirac branch with an umklapp of the momentum by
Q due to the structure of the three-magnon coupling in (24),
leading to an enhancement factor o< 1/|q| in the probability.
Since this is not a decay of a Goldstone mode, such a divergent
amplitude is not forbidden, and may have been encountered
before in a different model, see Ref. [127].

G. Summary

Altogether, the two-sublattice approach to the spin-wave
theory of the easy-plane anisotropic-exchange model (9) al-
lows us to consider 1/S quantum effects in magnon spectrum
in a rather uncomplicated manner. The three-magnon interac-
tion leads to the renormalization of the spin-wave dispersions,
decays, and redistribution of the spectral weight. Remarkably,
the strength of this interaction in our model depends only on
one bond-dependent J, 1 term, which highlights the benefit of
using the “icelike” parametrization of the model (9). A strong
downward renormalization of the spectrum points to a shift
of the phase boundary between the 120° and zigzag phases,
supported by the DMRG data.

We argue that the results presented in this section are
generic as the studied model (9) transforms into the ex-
tended Kitaev-Heisenberg model with all key anisotropic
terms present and significant (7), (31). Similar features of a
coexistence of the well-defined low-energy modes with the
broadened higher-energy continuum have also been found
in the generalized KH model for very different parameter
sets [77,79,80] and observed in the Kitaev materials with the
zigzag ground states [32,96,132].

IV. POLARIZED PHASE

It is well established by now that the magnon spectrum of
the collinear ordered states in the models with anisotropic-
exchange terms, which are present due to spin-orbit coupling,
may be strongly affected by the decay and renormalization
processes [77,79,126,133,134]. While in the field-induced po-
larized phases such nonlinear effects are often neglected under
a general assumption that the high magnetic field suppresses
quantum fluctuations, their significant ramifications have been
recently discussed for several systems with spin-orbit cou-
pling [70,73,82,133—135].

In this section, we study quantum corrections to the spec-
trum in the high-field paramagnetic state of the easy-plane
anisotropic-exchange model (9). We show that the magnon
interaction effects can be significant in the presence of the
bond-dependent terms, especially in the vicinity of the critical
field of the transition from the paramagnetic to the long-range
ordered phase. Specifically, within the 1/S approach, such

quantum corrections have been recently shown to produce
unphysical divergences upon approaching this transition [82],
indicating a downward renormalization of the critical field.
Here, we offer an approach to regularize such singularities in
this class of models.

A. High-field spin-polarized state

We consider the model (9) in the in-plane field that induces
a spin-polarized state with spins fully aligned. The classical
energy of this state,

Ecl 2
F=3S (J+J3)—2HS, (34)
is invariant to the field direction because contributions of the
bond-dependent terms to it from different bonds cancel out.
Here N is the number of atomic unit cells as before and the
units of gup are absorbed into the definition of the field H,
with g being the Landé g factor.

There are two principal in-plane field directions for the
honeycomb lattice, along and perpendicular to the nearest-
neighbor bond, see Fig. 1(c). Although the choice of the field
direction lowers the symmetry of the model (9), the model
remains invariant to the simultaneous change of the sign in
the J11-term and switching the field direction from along to
perpendicular to the bond, similarly to the zigzag-x and -y
states, see Sec. [IT A.

Thus, without loss of generality, we consider the in-plane
magnetic field directed along the x axis in Fig. 1(c), perpen-
dicular to the AB bond. The critical field H,. of the transition
from the spin-polarized to zigzag state for H || x, as obtained
from vanishing of the magnon gap at the M point [80], is given
by!

28(J +3J3 —Jix), Jix <O,

(35)
28(J +3J3 +2J11),

Jii > 0.

The spin-wave formalism in the polarized phase is simpli-
fied, as the latter naturally offers the two-sublattice description
of spins in the honeycomb lattice, analogous to the zero-field
zigzag state in the previous section, with the spin-axes trans-
formation from the global to local reference frame given by a
simple cyclic permutation

(S5 875 S = (57575 e (36)
for both A and B sublattices.

The spin Hamiltonian (9), rotated to the local axes of the
polarized state (36), is given by

Flioe = D {( +2J54€4)S; S} + (J — 2J12¢4)S;S°
(ij)h
+ 2 (SESE 4 SiSY)sa} + T3 ) (SEST + S;S5)
(i)

—HY s (37)

'Note that for smaller values of Js, Eq. (35) gives negative values
of H,, indicating that the transition in this case is first order.
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This local-axis form of the Hamiltonian is the last stage
of a transformation before the spin-wave expansion, cf.
Eq. (12) for the zigzag state. The technical aspects of the
1/S spin-wave expansion for the spin-polarized state replicate
identically the steps that are described in Secs. III B and III C
with the choice of Q = 0 and

A=H-35(+J),
B = 3S (I + 2ssyi + 1) /2. (38)

Thus the expressions for the LSWT spectrum in Eq. (23) and
self-energies in Eq. (30) retain the same form in the present
case with the parameters given above. Below, we proceed
with the results for the dynamical structure factor in the spin-
polarized state.

B. Dynamical structure factor

An important difference of the magnon spectrum in the
polarized phase compared with the zigzag one is that the
number of magnon species is equal to the number of magnetic
ions in the unit cell and, thus, there are only two branches of
excitations that should be observable.

Here we present results for the magnon spectrum in the
form of the dynamical spin structure factor

Sko)=Y (aaﬁ - %)saﬂ<k, o). (39)
af

where the spin-spin dynamical correlation function is
af 1 oo iot - o B
Sk, w) = —Im dr & (TSRS (0)).  (40)
s —00

For the ordered magnetic states, the structure factor is nat-
urally split into the transverse and longitudinal components,
related to the directional and amplitude modulations of the
magnetic order parameter, that have different ranking in
1/S sense, see Ref. [136]. In the leading 1/S-order, only
transverse structure factor component is present and the dy-
namical correlation function is straightforwardly related to
the noninteracting LSWT single-magnon spectral functions,
AE?)(k, a)) = 8((1) - S/Lk)’

Sk, w) =Y Fr A (). (41)
0

dressed by the “kinematic form factors” F7 that are respon-
sible for the intensity-modulation of the §-functional peaks of
the spectral functions throughout the Brillouin zone. These
form factors depend on the order and lattice structure, with
their explicit forms for the considered case given in Ap-
pendix C.

The modification of this picture within the nonlinear spin-
wave theory (NLSWT) is twofold. First is a straightforward
extension for the transverse structure factor component that
consists of taking into account one-loop 1/S self-energy
X, (k, w) (30), see Sec. Il C, in the diagonal magnon Green’s
function

B 1
Gk, w) = —ild 4 d}) =

, (42
w—¢ex — 2k, )

replacing bare spectral function A{(k, ) in (41) with
A, (k, 0) = —1ImG, (k, ).

Second, we also include the leading 1/S term from the lon-
gitudinal component of S(Kk, w), neglected within the LSWT,
which accounts for the direct contributions of the two-magnon
continuum, see Appendix C.

Both NLSWT extensions are expected to provide insights
into the effects of the spectral weight redistribution, spectrum
renormalization, and magnon spectral line broadening due
to decays. We note that the presented NLSWT results do
not constitute a strict 1/S correction to the LSWT. This is
because some of the 1/S corrections, such as the off-diagonal
contributions to S(k, w) [136], are still neglected and the
off-shell w dependence in the self-energy (42) is retained. The
latter allows to observe more complicated spectral features
and corresponds to the off-shell spectrum renormalization.

Figure 6 demonstrates our results for S(k, w) along the
high-symmetry in-plane k-path in the Brillouin zone, see
Fig. 3(b), for various H/H.. We chose a moderate value
of anisotropic interaction Jii = 0.2J and J3 = 0.5|J]|, see
also Fig. 3 and Sec. IIID, and selected three values of the
magnetic field: near the transition, H = 1.1H,, intermediate,
H = 1.5H,, and deep in the polarized phase, H = 2.0H,,
Figs. 6(a)-6(c), respectively. The formfactor ]—';fl‘: can be seen
as strongly suppressing spectral intensities for some regions
of BZ, and the jump in intensity at the I point is due to
its angular dependence. Calculations for other parameters for
H = 1.1H, are presented in Appendix C.

One can see in Fig. 6(c) that the effect of magnon inter-
actions is negligible in strong field and LSWT provides a
close description of the entire spectrum in this case. However,
as the field is lowered toward H,., the effects of interaction
become more pronounced. While deviations from the LSWT
in the form of energy renormalization, line broadening, inten-
sity redistribution, and appearance of the more complicated
spectral features such as spectral line splitting can already
be noticed for the fields as high as 1.5H., see Fig. 6(b),
they become unmistakable in Fig. 6(a) for the field near the
critical field, 1.1H,.. For this field and for that modest value
of the anisotropic J4i-term, both higher- and lower-energy
modes acquire finite lifetime via magnon decay processes in
extended regions of the k-space where they overlap with the
two-magnon continuum, the bottom of which is shown by the
dashed lines in the right panels of Fig. 6. Same regions also
demonstrate pronounced spectral weight redistribution to the
continuum and a strong renormalization of the spectrum.

Two regions of the reciprocal space in Fig. 6(a) are of
interest. First is the proximity of the I and I’ points, where
decays and downward renormalization are a result of the
strong interaction with the two-magnon continuum, which
originates from the low-lying nearly-Goldstone modes at the
M point. For J14 < 0 and field directed perpendicular to the
bond, the M point and its equivalent M’ point become truly
gapless at H.. Below H,, one of the zigzag domains with the
ordering vector M or M’ is selected. The observed softening
of the magnon mode and the dominance of the two-magnon
continuum at " point are beyond the LSWT, but should be a
generic feature of the transition from an ordered to nominally
polarized phase in the presence of magnon interactions that
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FIG. 6. Intensity plots of the dynamical structure factor S(k, @) (39) in the polarized phase along the representative in-plane k path, see
Fig. 3(b), for H || x, J <0, Joy = 0.2J, J3 = 0.5|J], S = 1/2, and three different H/H,. Left and right panels are the LSWT and NLSWT
results, see text. The dashed lines in the right panels show the bottom of the two-magnon continuum. Units of J~! and artificial broadening

6 = 0.1|J] are used.

are induced by anisotropic terms in this class of models. We
discuss this effect and its relevance to real materials in more
detail in Sec. V.

The second region of interest concerns the proximity of
the M point and the behavior of the lower mode near it.
This mode experiences a significant upward renormalization,
which can be shown to diverge at H — H,. This divergence is
unrelated to interaction with the two-magnon continuum and
is unphysical. The same phenomenon has been discussed in
Ref. [82] in the analysis of the 1/S-corrections to the spectrum
in a simpler K — J model, and was interpreted as a sign of
the downward renormalization of H,, leaving the problem of
the divergence unresolved. We discuss this problem and our
approach to the regularization of such singularities in this
class of models next.

C. Divergence regularization

In addition to the results in Fig. 6, we explicate the prob-
lem of the anomalous hardening of the one-magnon mode

R ~

2.5 N

at the M point in Fig. 7(a) and its divergence at H — H, in
Fig. 8. Figure 7(a) shows the LSWT magnon energies, &,x
from Eq. (23) (dashed line), together with the renormalized
on-shell spectrum, €, from Eq. (32) (solid blue line), for one
of the representative parameter sets, Jr+ = 0.2/, J3 = 0.5/,
J <0,8 =1/2,field H = 0.75]J], and along the same k path
as in Fig. 6. According to Eq. (35), H. = 0.7]J] for this choice
of parameters. Figure 8 shows the energies of the lowest
magnon mode, £y and g1k, at K = M versus field for H > H,
using the same line and color conventions.

Compared with Fig. 6, the effect of one-loop diagrams
from Figs. 2(a) and 2(b) in the renormalized on-shell spec-
trum g, in Fig. 7 is strictly 1/S, see Egs. (30) and (32),
with two contributions, Hartree-Fock (29) and three-magnon
self-energy (25). The various spike-like features in the 1/S
spectrum in Fig. 7(a) are all clearly identifiable with the Van
Hove singularities in the two-magnon continuum, which get
imprinted on the single-magnon branches by the coupling via
the decay part of the three-magnon self-energy (26). These
and other nonanalytic features of that nature are well-known

b) 3 - LSWT __
T |— LSWT+IS ]
2.5 |— LSWT+I/S+DE -

FIG. 7. Magnon spectrum in the polarized phase for J.. = 0.2/, J5 = 0.5J|, and S = 1/2, for H = 0.75|J| (H. = 0.7]J]). (a) LSWT
results (23) (dashed lines) and 1/S-renormalized on-shell results (32) (blue lines). Magnon decay rates for the lower and upper modes are
shown with the blue dashed and dotted lines, respectively. (b) LSWT results (dashed line) and regularized spectrum as given by Eq. (54) (green

lines) and Eq. (55) (red lines), see the text.
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FIG. 8. Magnon energy at the M point vs field for H > H, for the
same parameters as in Fig. 7. LSWT ¢y (23) (dashed line), on-shell
1/S-renormalized €, (32) (blue line), and regularized energy (55)
(red line) are shown.

and thoroughly documented, see Ref. [81]. It is also well-
understood that their regularization requires a self-consistent
approach that goes beyond the strict 1/S approximation, such
as the self-consistent Born approximation [137], which is
useful when the products of magnon decay are also unsta-
ble, or the technically more advantageous imaginary Dyson
equation (iDE) approach [77,79,126,138], which solves for
the magnon energy in the complex plane and corresponds to a
physical assumption of a finite lifetime in the initial state.

While we are going to employ the iDE approach to regular-
ize Van Hove singularities in Eﬂk, the nature of the observed
anomaly at the M point is unrelated to the interaction with the
two-magnon continuum. One can verify that all contributions
to the self-energy, Hartree-Fock, decay, and source, exhibit
singular behavior at the M point as H — H,, demonstrated
in Fig. 8. It can be shown to correspond to o< (H — H,)~'/?,
in agreement with Ref. [82]. In that work, the choice of the
simplified K — J model and that of the high-symmetry field
direction completely eliminate three-magnon terms from the
1/S expansion [82], leaving the Hartree-Fock terms a sole
source of the divergent behavior.

In this work, we are dealing with a more generic case
with all types of anharmonicities present, but the origin of the
divergence and the type of regularization it requires can be
made particularly clear from the simplified case of Ref. [82].
Let us assume that only the w-independent Hartree-Fock con-
tributions are present in the 1/S expansion. Because of the
lower symmetry of the spin models of the studied type, the
gapless LSWT mode at the M point at H, is necessarily
relativistic. This renders all binary averages of the Holstein-
Primakoff bosonic operators, which enter the Hartree-Fock
decoupling of the four-boson term in the SWT Hamiltonian,
finite at H — H,, see Appendix B for their explicit form.
Consider now the LSWT Hamiltonian (20) together with the
Hartree-Fock correction to it (28) before the final Bogolyubov
transformation (22), as they take the same form

N N 1
A + 7Y =) {Aukclkcuk - E(Bﬂkc;kcsz + H.c.)},
K,

(43)

but with the functions A i and B,
A=A+ A%, B =B+ 8By, (44)

that combine terms of different orders in 1/S [139-141].
It is clear that the eigenvalues of the Hamiltonian (43)

€uk = \/ A;2;_k - |B,,_k|2» (45)

are perfectly regular at H — H,, and the problem of the di-
vergence occurs solely due to its expansion in 1/S

AudAY — Re (BB ik
Euk%t’?uk‘i‘agl(jlz’ 58}32: S uk - ( uk) w ’ (46)
nk

where we have replicated the explicit form of 38(412 from (29).
Because of the lower symmetry of the model, the numerator
in 38;412 stays finite for H — H, and k — M, while the LSWT
magnon energy in denominator vanishes, leading to a singu-
larity in the 1/S expansion.

Thus both the nature of the divergence and the regular-
ization procedure for it are clear. For the latter, one should
retain the form of the magnon energies in (45) that keeps
the higher-order 1/S contributions, an approach also used in
various contexts in the past [139—-141].

In the more general case encountered here, in the same
order of the 1/S-expansion there are also three-magnon
w-dependent contributions to the self-energy that require reg-
ularization. While somewhat more involved, the approach
to them will follow similar logic. Our consideration pro-
vided above for the Hartree-Fock terms also sheds light
onto the nature of the divergence in the three-magnon self-
energies. It is now obvious that it comes from the LSWT
magnon energy €,k in the denominators of the Bogolyubov
parameters u, and v,k that enter three-magnon vertices,
see Appendix B, having nothing to do with the two-magnon
anomalies.

Since the divergence in question does not originate from
the w-dependent part of the self-energy, it suggests breaking
the three-magnon self-energy in (25) into the singular and
regular parts,

EOK, g0 = 3, (K, £ + T

(47)

where EI(fk) =3k, 0) is the self-energy taken at w = 0.

While E/(fk) is w-independent and is free from the Van Hove
singularities of the two-magnon continuum, it retains the di-
vergence at H — H, at the M point. On the other hand, the
w-dependent part of the self-energy, §Z,,(k, w), is no longer
divergent at the M point at w = gk, because, by construction,
the divergence in the three-magnon vertices is canceled by the
extra factor g,.

The idea is to regularize singular E/ﬁz part by convert-
ing it to the Hartree-Fock-like corrections to the LSWT
Hamiltonian as in (43). However, for that one also needs to
recall the off-diagonal three-magnon self-energies, shown in
Fig. 2(c), that are of the same 1/S order, but are typically
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neglected as not contributing to the energy up to a higher
order

=NV DIV

Sq.k—q.—k * q,—k—qk
Ezd(k’ 6()) I q q q q -
2N @t Enq t Eukq — i0
1 Bk Pk gk
q,—k—q.k ~q.k—q;—
+ — E —. (48)
2N ® — &pq — Evk—q 1+ 10

q.nv

This is because we need to infer contributions to the model for

Cuk (ch) bosons, not for the final dx (d ;k) quasiparticles. For

the Hartree-Fock corrections, if we wanted to infer (SASI and

83;4]2 from szﬁz, we would also need off-diagonal V;ﬁ terms
that are neglected as not contributing to the magnon energy in
the same 1/S order, see Appendix B. The transformation from
the ¢ to d language for the Hartree-Fock corrections is

4 o 4 4)
as,gg v 3A§d§ —8Bftk
od @]~ (@ @ Y- (49)
Vol sel) ~8BY 5A%Y)

with the direct and inverse Bogolyubov transformations

u v _ u —v
U= nk nk , U 1 — nk nk , (50)
Uuk  Upuk —VUpuk Uk
and the u — v parameters defined by 2u,,xv,x = B/, and
Uy + Vi = Auk/€uk, as before. . .
Since we now seek the Hartree-Fock-like corrections from
the three-magnon terms to the Hamiltonian in the ¢ language,

SAEX and SBSIE, the corresponding transformation from the
o = 0 self-energies is given by

(3) (3) 3 d
SAMk _8Buk —y-! Euk El(ik U-! (51)
—83(3)* SA(S) - EOd* 2(3) ’
uk uk uk nk

where Eﬁ‘l‘( = Egd (k, 0) in (48), which can be simplified to
3) 2 2 3) d
SAL = (o + vy ) T — 2uuvRe(T0y),
SBU) = 2,0, D) — 1 S — Vi Tk (52)

While not obviously regular, one can verify that the obtained
expressions are finite at H — H, and k — M, as opposed to
the constituent =) and X5

Altogether, the regularized spectrum is

_ = =
Euk = VA — Bl + 8 (k, &), (53)

with 6%, (k, @) given by (47) and

A = Ay + AT + 5AY)

nk?
Bk = By + 8B + 8B, (54)

The regularized spectrum from Eq. (54) is shown in
Fig. 7(b) by the green lines. The anomalous hardening of the
spectrum of the on-shell 1/S approximation at the M point
is no longer present and the divergence at H — H, at the
M point is removed, see Fig. 8. The discussed regularization
can also be successfully combined with the self-consistent
iDE regularization of the Van Hove singularities due to two-
magnon continuum [77,79,138]. The modified spectrum is

simply

_ — = .
Euk = VA — Byl + 85k, ex + i), (55

where the magnon decay rates I', are determined self-
consistently from I,k = —Im(El(f)(k, euk +iT,k)). The
spectrum is shown by the red lines in Figs. 7(b) and 8. One can
see that the results of the combined regularization schemes at
the M point are indistinguishable from that of Eq. (54), while
removing the unphysical Van Hove singularities elsewhere in
the spectrum.

As one can see in our Figure 8, the regularized gap
at the ordering wavevector remains finite at the nominal
critical field H, (35) obtained by LSWT, supporting the
hypothesis of Ref. [82] that the divergence of the LSWT
gap signals the downward renormalization of H, due to
quantum fluctuations. However, the obtained slow field de-
pendence of the gap for the chosen set of parameters does
not yield a reliable extrapolation to determine such a renor-
malized critical field, which may point to a potential first-
order transition between the zigzag and partially polarized
state.

We complement these results by DMRG, which is used to
evaluate the critical field between the zigzag and polarized FM
states for the considered case of the § = 1/2 model (9) for H ||
x. The calculations were performed on an open boundary 16 x
8-site cluster using ITensor package [84] with 4 sweeps, rel-
ative error <107°, and keeping up to m = 200 states. For the
relatively small cluster size and for the robust ordered states,
the number of sweeps and that of the kept states appear to be
sufficient. The value of the critical field was extracted from
the singularity in the magnetic susceptibility x = dM/dH.
Our results are shown in Fig. 9(a) for a fixed J; = 0.5|J] as
a function of Jy /|J|, scanning through 20 points along each
axis, together with the LSWT results (35). Remarkably, the
transition from the zigzag-x state (J1+ < 0) to the polarized
state is first-order, while transition from the zigzag-y state is
second-order, which is indicated by the DMRG magnetization
plots in Fig. 9(b). We should note there are additional transi-
tions below the critical field for J11+ < O but they are beyond
the scope of this work. Overall, the DMRG data shows that
for S = 1/2 the critical field is suppressed compared to the
quasiclassical values (35), supporting the discussion provided
above and also in agreement with the prior work on a related
model [82].

V. CONNECTION TO KITAEV MATERIALS

In this section, we provide a detailed look at the char-
acteristic features of the structure factor S(k,w) at the
k =T point in the field-polarized phase in the proximity
to a transition to the ordered zigzag phase. This anal-
ysis is important as it highlights a generic behavior of
S(0,w) in a wide class of anisotropic-exchange models,
which is not adequately described by the LSWT approxima-
tion and is crucially dependent on the magnon interactions
that are induced by anisotropic terms in these models.
This k point is also special as it is often accessible by a
large variety of experimental probes, such as ESR, terahertz
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FIG. 9. (a) Phase diagram of the model (9) in a field as a function
of Joy/|J| for J3 = 0.5|J| and H || x. Critical field H, for the transi-
tion from the zigzag to FM state from LSWT (35) (dashed line) and
DMRG on a 128-site cluster (solid line) are shown. (b) Magnetiza-
tion from DMRG as a function of magnetic field for J.. = —0.2|J|
and Jj:j: = 02|J|

spectroscopy, and Raman and inelastic neutron scattering
[69,85-89].

Figure 10 shows the intensity plots of S(0, w) in the po-
larized phase in the NLSWT approximation, which includes
magnon interaction effects within in the transverse compo-
nent of the structure factor and a direct contribution of the
two-magnon continuum from the longitudinal part of S(k, w),
see Sec. IV B. Results for J < 0, J3 = 0.5|J], and three dif-
ferent Joy/J are presented as a function of magnetic field
for H > H, and H | x together with the LSWT results for
the lowest magnon energy (dashed lines) and the bottom
of the two-magnon continuum (dotted lines) at the I point
(calculations for J3 = |J| are presented in Appendix C). The
LSWT energy of the lowest magnon mode at k = I" for the
easy-plane exchanges J and J3 obeys [80,142]

e1k=0 = vVH(H — 35 + J3)), (56)

which remains gapped at the critical field H,, while the bottom
of the two-magnon continuum is determined by the vanishing
gap at the M point and is given by 2ex_y,.

At high enough field, quantum effects in the spectrum are
negligible and LSWT gives a close description of the structure
factor, see also Fig. 6 and Sec. IV B. Although for the smaller
values of anisotropic-exchange term most of the weight re-
mains in the single-magnon branch and its deviations from the

1 1.1 12 13 14 15 16 1.7 1.8 19 2
HIH,

FIG. 10. Intensity plots of the dynamical structure factor S(k, w)
at k = I' as a function of magnetic field in the polarized phase H >
H. for H || x,J <0, J; = 0.5]J|, and three representative values of
Jii. The LSWT results for the lowest magnon mode ex_r (dashed
lines) and for the bottom of the magnon continuum, 2ex_y;, (dotted
lines), are shown. Units of J~! and artificial broadening § = 0.1]J]
are used.

LSWT energy are minimal, one can already see a substantial
contribution of the two-magnon continuum at low energies in
the vicinity of the critical field and a noticeable broadening
of the single-magnon branch upon entering this continuum,
see the upper panel of Fig. 10. For the progressively larger
values of J. ., the effects of broadening and spectral weight
redistribution become substantially more pronounced. As one
can see in the middle panel of Fig. 10, it becomes difficult
to make out the broadened single-magnon branch within the
dominant two-magnon continuum intensity.

Upon the further increase of anisotropic term, the one-
magnon mode is strongly renormalized and is repelled from
the continuum, shifting lower in energy and losing a substan-
tial spectral weight near H,, see Fig. 6 and the bottom panel of
Fig. 10. Moreover, there is a significant transfer of the spectral
weight to the continuum for the fields approaching H,., with
some remnants of the broad single-magnon mode still vaguely
detectable.

Thus we demonstrate that in anisotropic-exchange models,
the behavior of S(0, w) near H, is dominated by the effects
of strong coupling of the single-magnon mode to the two-
magnon continuum, induced by anisotropic terms. We believe
that our observations capture essential spectral behavior rele-
vant to such models, and while the model (9) is not applicable
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to a-RuClj [80], the provided analysis can be relevant to the
features that were observed in it experimentally.

For the latter, ESR, terahertz, Raman, and neutron-
scattering experiments in «-RuCl; have discussed their
observations of the strongly field-dependent k = 0 mode in
the polarized phase near H, using variable gyromagnetic ratio
and have also reported the incoherent higher-energy signal in
the vicinity of the critical field [69,85—-89]. In agreement with
the qualitative analysis of the prior work [77], we propose
that the redistribution of the spectral weight and the curva-
ture of the k = 0 mode can be understood as the result of
interaction between the single-magnon mode and the contin-
uum that is made of quasi-Goldstone modes at the M point,
whose gap closure marks a transition to the ordered zigzag
state.

Our results for the model (9) are also potentially relevant
to the recently proposed new class of the 3d Co-based hon-
eycomb compounds with Kitaev interactions and strong easy-
plane anisotropy [31,143-146] and also to the experimental
studies of a variety of real materials with zigzag ground
states, such as Na,Co,TeOg, Na3Co,SbOg [32,55,96,147—
155], CoPS3 [33], and Ag;Co,SbOg [156]. Our study can also
be relevant to the other zigzag antiferromagnets with strong
Kitaev interactions, such as sodium iridate Na,IrO5 [157] and
S = 1 Kitaev magnet Li3NiSbOg [34].

VI. CONCLUSIONS

In the present study, we have provided a series of an-
alytical and numerical insights into the phase diagram and
spectral properties of the extended Kitaev-Heisenberg model
on the honeycomb lattice in the parameter subspace that cor-
responds to the easy-plane limit, in which interactions are
restricted to the spin projections onto the crystallographic
plane of magnetic ions. As we have emphasized, the stud-
ied easy-plane anisotropic-exchange model can be also be
seen as an extension of the highly-degenerate honeycomb
120° compass model, with the original compass point be-
ing a tricritical point in its phase diagram. If translated
to the standard parametrization in the cubic axes, the ex-
plored parameter subspace also corresponds to a general
choice of variables, with all symmetry-allowed K, J, T,
and I terms present and significant, suggesting that the of-
fered considerations are relevant to a much wider parameter
space.

The key purpose of the present work is to offer an effi-
cient analytical path for a consistent account of the nonlinear
effects of magnon interactions in the anisotropic-exchange
models, which may allow to draw convincing quantita-
tive conclusions on the generic features of spin excitations
in their ordered phases. As we have demonstrated, one
can significantly simplify the diagonalization of the har-
monic spin-wave Hamiltonian by a judicious choice of the
parameter subspace leading to the studied model, which
allows to convert the calculation of the nonlinear terms
in both zero-field zigzag and field-polarized phases into a
fairly systematic procedure without losing generality of the
consideration.

We have employed this approach to calculate the quan-
tum self-energy corrections to the spin-wave spectrum in the

zigzag state and demonstrated that they are strongly enhanced
due to the three-magnon terms, induced by the anisotropic
interaction in the model. We have found them leading to
decays and renormalization in the magnon spectrum at higher
energies, extending results of the prior works. Strong renor-
malization of the spectrum for larger anisotropic term has
been taken as indicative of the instability of the zigzag state,
supported by our exploratory DMRG study of the phase dia-
gram of the § = 1/2 model, which has suggested shifting of
the phase boundaries and shrinking of the zigzag phase.

Due to anisotropic interactions, field-polarized phase is not
free from quantum fluctuations, especially in the proximity
to the critical point separating ordered and nominally polar-
ized states. Unfortunately, strong unphysical divergences in
the 1/S spectrum at the critical field, previously interpreted
as a sign of the downward renormalization of the transition,
have been observed. As a significant technical development,
our study has offered a regularization scheme of such di-
vergences based on the renormalization of the Bogolyubov
transformation, which should be applicable to a large class
of anisotropic-exchange models with complex ground states.
The downward shift of the critical field due to quantum effects
has been also supported by our investigative DMRG calcula-
tion of the model.

Lastly, we have provided a consideration of the characteris-
tic features of the structure factor S(k, w) at the k = I' point
in the field-polarized phase in the proximity to a transition
to the ordered zigzag phase. This analysis has highlighted
a generic behavior of S(0, w) near the critical field in a
wide class of anisotropic-exchange models, which is shown
to be dominated by the effects of strong coupling of the
single-magnon mode to the two-magnon continuum that are
not adequately described by the LSWT approximation. We
believe that our analysis captures essential spectral behavior in
many materials including «-RuCl; and should also be relevant
to the other Kitaev honeycomb magnets with strong easy-
plane anisotropy.
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APPENDIX A: THE MODEL AND ITS CLASSICAL STATES

The model (A1) is written in the crystallographic axes that
are related to the honeycomb plane of magnetic ions with
x and y axes perpendicular and parallel to the AB bond,
respectively, and z axis normal to the plane. However, the
nearest-neighbor Hamiltonian can also be written in the quan-
tization axes that are related to the ligand octahedra [44,91],
which were originally used to introduce Kitaev model in the
transition metal oxides [5].
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FIG. 11. The classical phase diagram of the J-J,.-J3 model (9)
for J3 < 0.

The general nearest-neighbor anisotropic-exchange Hamil-
tonian in the crystallographic axes is given by

H=> {J(SIS}+ 5SS+ AS;S)
(ijh

— 2 (515 - 5))cu — (18] +515])5)

— T ((S7S5 4 S787)ca + (8755 + 578))sa) . (A1)
where we included all the nearest-neighbor exchange inter-
actions allowed by the symmetry of the edge-sharing ligand

octahedra [7,44]. The transformation Erom the cubic to crys-
tallographic reference frame, Scryst = RcScubic, 1S given by

1L _2
NIV

P 1 1

R=|-5 5 0| (A2)
1 1 1
BOBB

The exchange parameters of models (2) and (A1) are related
through the linear transformation

Jo=2QJ + AT +2Jps — V211),
K=-2J4s +2Jx,
[= (= +AJ =4y —V21,0),
[ = L(=2J +2A7 +4Jss + V214, (A3)
and the inverse transformation is given by
J=Jo+ YK -T —2r",
AJ =Jo+ H(K 42T +4I"),
2J1s = (=K —2I' +2I'),
V2J. = @K —2r +21). (A4)

The phase diagrams in Figs. 1 and 11 are obtained using
the Luttiger-Tisza method [106]. Here we briefly outline its

basics. Generally, the energy of the interacting classical spins
S; on a lattice is given by

Eq=Y Y (SIS, (A5)
(ij)n aB

where S“ is a three-dimensional vector and o and 8 are sub-
lattice indices. The energy minimization is also a subject of
the constraint on the spin length

IS¢ = 52, (A6)

The most common version of the LT method uses an approx-
imation of the “strong” spin-length constraint by an average,
or “weak’” constraint

N
SN Ise = NNs?, (A7)
=1 «a

where N is the number of unit cells and N; number of sublat-
tices. The Fourier transform

1 .
S¥=— ) Spen (A8)
WS
yields the classical energy
Ea=)Y Y si” s, (A9)
k op

with J «f (k) being the Fourier transform of the spin interaction
matrix

~af 1 naf
I 00 =5 > T e, (A10)
d=r;—r;
and the weak constraint is given by
(A1)

> Sys%, = NS
k

The minimization of the classical energy with the weak con-
straint (A11) yields the eigenvalue equation

TP )sP, =28P,. (A12)

The energy of the classical state corresponds to the minimal
eigenvalue A, achieved at the ordering vector Ky, with the
latter determining the type of the spin arrangement. If the
corresponding state also satisfies the strong constraint (A6),
then LT method gives the correct classical ground state. In our
case, the strong constraint is satisfied for the FM, zigzag, Néel,
and stripy phases in Figs. 1 and 11. Otherwise, it breaks down,
suggesting a more complicated incommensurate or multi-Q
phases, which is the case of the grey regions in Fig. 1.

Here we also present the classical energies of the single-
Q ordered states, which are shown in the phase diagrams in
Figs. 1 and 11:

Exm = 3J 4 3J3, Eapm = —3J — 3J3,
Egipy = —J +3J3 — 4|J14],
Ezigzag =J —4|Jiz| — 33,

(A13)
Ejpe = —6]J14].

Similarly to the zigzag-x and zigzag-y, there are two types
of stripy states, as shown in the classical phase diagram in
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Fig. 11: stripy-x with magnetic moments in the x-y plane ori-
ented along the x axis for J,1 > 0, and stripy y with magnetic
moments along the y axis for Jyy < 0.

APPENDIX B: NONLINEAR SPIN-WAVE THEORY
FORMALISM

In this section, we present details of calculations of three-
magnon and four-magnon self-energies in Fig. 2 and Egs. (25)
and (29). We should note that the steps presented here are
applicable for both zigzag and polarized states.

1. Three-magnon interaction

The anisotropic terms of the Hamiltonian (9) induce three-
magnon interaction due to the broken SU(2) symmetry. For
the collinear zigzag and polarized states, shown in Fig. 1, the
formalism of the three-magnon interaction can be structured
in a general manner presented below. The second member of
the Jo4 term in (9) is solely responsible for the anharmonic
(cubic) coupling of magnons. After rotation to the local refer-
ence frames (11) and (36), as can be seen from Eqs. (12) and
(37), it is given by

HO =200 Y | €5E ) ST sin g,

icA S8
85 QRIS in g, |, (B1)
80{

where, i € A, j € B, rj =r1; 4+ §, see Fig. 1. Note that since
@1 = 0, cubic terms are generated only due to couplings along
the 8, and 83 bonds. With a little bit of algebra, the phase
factor in the second term of (B1) simplifies to the same Qi
as in the first term. The ordering vector Q characterizes the
ground state, thus, Q = (0, 2w /3) for the zigzag state and
Q =0 in the uniformly polarized state. This expression is
valid for zigzag-x state and polarized state for H || x, while
the results for zigzag-y and H || y polarized state are obtained
with Jyy+ — —Jiy due to the symmetry of the Hamiltonian
).

After Holstein-Primakoff and Fourier transforms (14) and
using sin @3y = ++/3/2 the three-magnon terms are given by

j(3) " X "
HO = T S i qtyphbon Bl + e,
> ki=Q
(B2)

where J® = -3281.4, Y ki=p+k+q, and Y k; =
—Q in the H.c. terms. The amplitude y, is

Vo = 5 D8l = (e — ) = [y, (B3)
o

24/3

Note that the three-magnon vertex strength J©® is only de-
pendent on the bond-anisotropic interaction Jy. The unitary
transformation (18) transforms (B2) to

J& et
Y= VN, > 2 (FligelaCicup T Heg), (BY)
> k=Q 1vi

where Fq'{;{’;’i is the dimensionless vertex
rgle®
FH Yq Z yenyBvy Br ei(_l)ﬁaq.kp (BS)

e o

where the “total” phase factor

Vo

~ Yk +¢p — @
¢q,kp:7+1pq+#

, B6
> (B6)
is introduced.

Using the symmetry of the vertex in (B5) to permutations
of k and p momenta (together with the v and  boson indices)

F/\y = F,ry, antisymmetry of the phase §_q —k—p = —@qkp
that gives (F_"(';"_k D= Fq"ﬁ;, and explicit expression for

F/\p in (B5), one can considerably simplify individual terms
0

the tensor to

R S
1|yq|e 281N Qg kp

Ul _ pl22 _ 221 202
Fq,kp - Fq,kp - Fq-kp - Fq,kp - \/5 ’
ixI/Q
4 —_ ~
2
F22 _ g2 _ _pi2 __pion Vg le cos @qxp
q.kp = “qkp T

q.kp — q.kp — ﬁ
B7)

In anticipation of the decay rates, it is already clear that
different decay channels, say 2 — {1, 1}, do not mix terms
of the tensor of different symmetries (cos ¢ with sin @).

Finally, the Bogolyubov transformation (22) yields the
cubic Hamiltonian for the magnon normal modes in the fol-
lowing form:

N 1
3) _ omvu gt gt gt
H()_m > > (Ehkdl didi, +He)  (BS)
’ Y ki=Q nvp

Z Z (cpzr(l;:)d;qd:kdu—p + H'C‘)’
> k=Q nvp

1
+ 21N
(B9)

where the combinatorial factors are due to symmetrization in
the source (B8) and decay (B9) vertices

mwu _ §3) GNvK
¢ J (Dqk;p

v _ §3) mnvu
= JE qk;p

akp B qkp* (B10)

with the corresponding dimensionless vertices given by

=NV v
Sakp = Fq,kp (g + Vng) (v Vpp + Voklyup)

+Fkv,zg(”vk + Vo) (yqVup + VnqUup)

+Fp,f(;’l‘()(uﬂp + U;Lp)(unqvvk + Unquvk)y (Bll)

~

(DZE;; = Fq?il;(“ﬂq + Upg) (UykUyup + VokVpip)

+ Fkv’gg(uvk + ka)(unquup + Unqvltp)

+ Fplfg]t(uup + Uup)(”nqvuk + Unquvk)- (B12)

The decay rate in the lowest Born approximation due to
the cubic term (B12) of the k magnon from a branch p in the
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u — {n, v} channel is given by
pu—mwy _ T o 2
Tk “oN Z |q)q,k*q+Q;7k
q

X 8(Euk — €3 — Evk_qr@):  (BI3)

where integration is over the Brillouin zone of the honeycomb
lattice, see Fig. 1(d).

2. Hartree-Fock corrections

In this section, we show the details of calculations of the
four-magnon corrections from Fig. 2(b). The four-magnon
correction terms originate from “even” parts of the spin-wave
Hamiltonian, which in the case of zigzag state is given by

e =3 (= 2152 DSISY — (J + 212 )SES7)
i,
+ 3 {0+ VaxDSIS) + (= s SES?)

i,823

+ ) (SiST— 8389,

0,60

(B14)

and in the case of the polarized phase, respectively,
ot =3 {(J + 2J5£€a)SIS} + (J — 2 s1ca)S;S
(i

+ T3y (SIS + 858%) (B15)
(i)

as can be inferred from Eqgs. (12) and (37). Keeping higher-
order terms in the Holstein-Primakoff expansion (13), such as

. S . daa+ada'a
S~ -la+a — —— ),
2 48

yields the four-magnon terms in the spin-wave Hamiltonian:

SiSy — —4(a;bib;b, + a;bibib; + (@ — b) + H.e),

(B16)

SiS% — ala;blb,.

B17)

Decoupling of the four-magnon terms is given by

1 _
Si8; — — E[(”i +n)(AY +ml)

+ n+é (@b, +bla, +a,b,+ab")
5 (@it T b T a;b; T a;0;

1
4
i85 —>n(ni +nj) +m{(alb; + bla,)

+ (A +m")bb; + alal + H.c.)], (B18)

+ AP (a;b; + albh), (B19)

J

J _ J _ _
BAk =3 [2n - ;(Aa + m@} - 33[611 + Z (AD + mg”)} — [Tl [4n - ;cama + ma)],

where the Hartree-Fock averages are defined as

1
n=(ala;) = Wib)) = 753 (Vi +v3).
k

1
m) = (afb;) = ol Zcos Pro (Vi — V1)
k

1
m® = (ajb;) = o Zcos b (V3 — V1)
k
1
8 =(a;a;) = (b;b;) = N Z(”lkvlk + Uk VoK),
k
_ 1
AD = (g, b;) = N Zcos¢k,a(u2kv2k — UK V1K),
k

_ 1
AY = (a;b;) = N > cos ¢ (uava — uncvik),
K

(B20)
where
Pro = 0k — k8o b = g — k8D,

andie A,r; =r1; + 5(8®)),. We should note that all of these
averages are purely real.

After the Fourier transform (14) four-magnon corrections
are given by

SHW =" {sAx(afay + bib,) + (8Bxajb, + H.c.)
k

+ (8Ckajb", +H.c.)

(B21)

+ 8Dy (aya_y + bb_, +H.c)}. (B22)
The unitary transform (18) yields Eq. (28), where
SAS) = 8Ak + (—1)"Re(8Bxe™),
8B = (=1)""'Re(8Cye™) — 26Dy (B23)

Finally, Bogolyubov transformation (22) gives the four-
magnon corrections to the magnons as

: 1
SHY =) {5s<4)d’ dy+ s (Vadid'_ + H.c.)},

uk¥uk™u 2 uk™pu—
k,n
(B24)
where 88/(:: is defined in Eq. (29), and VMOI‘(i is given by
B,k8AY) — A,y 3B
= I = (B25)

Euk

The procedure above is applicable for both zigzag and polar-

ized states. The only difference is in the Ak, §Bx, 6Ck, 8Dk
terms in Eq. (B22). In the case of the zigzag phase, they are
given by

(B26)
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) ) . 3 L 3
SBy =J |:m2(3’k‘s2 + mye™® — my e — Z(Zn + 8)yki| —J; |:Z m‘(f)e’k‘;f(;) + Z(Zn + 8)yé3):|

. , ; 3
— sl |:2mlezk51 + mye®® 4 maeS _ Z(zn + 5);/];], B27)
4 4 ‘ 3 o 3
5Cx =J|:Azezk32 + A3ezk33 _ A]@lka] — Z(zn =+ 3))/k:| —J; |:Z Ag)elksgﬁ) + Z(Zn + 8)yé3):|
. . . 3
— Ja] [2Alelk51 + A2ezk62 + A3etk53 _ Z(2}1 + 5))/1{| s (B28)
1 - _ _
5Dk = —g |:J Z(Aa + ma) + J3 Z (Ag?) + m‘(f)) — 2|J:t:l:| an(Aa + ma):| . (B29)
o o o
In the polarized phase, the terms in Eq. (B22) are given by
J _ s S i
SAx = 3 |:6n — Za:(Aa + ma):| + > |:6n — za: (Afx) + mé )):| —Jis 20(: co(Ay +my), (B30)
kS, 3 (3) iks® 3 3)
8Bk =J Xa:mae = @+ |+ s Xa:ma M — 2n+8)3y
~ iké, 3 /
— 24 Xa:cos Famae™ ™ + 220+ 83y |, (B31)
A ,iké, 3 A (3) ks 3 3)
8Ce =J Xa:Aae = @+ On |+ s XQ:A“ oM — 2 an+ 8y
~ x _iKkd, 3 ’
— 2y Xa: COS P A g™ + Z(zn + 8 |, (B32)
1 - - _
oD = ¢ |:J D Ba+me)+ 1Y (AD +mD) +205s Y cal(By + ma):|. (B33)
o o o

Figure 12 shows the results of the calculations of the spec-
trum within the linear and nonlinear approximations for the
representative values of Jry and J3 = |J| in the zero-field
zigzag state. The selected parameter sets are shown by the
two magenta points in the phase diagram in Fig. 12(a). Their
coordinates are J++ = 0.2J and 0.4/, J3 = |/J|, all for J < 0.

APPENDIX C: DYNAMICAL STRUCTURE FACTOR

The dynamical structure factor in the local magnetization
axes for zigzag-x and H || x polarized state is given by

2 2
q X
8@m=ﬁﬂ@w+%W@m+m@m,

where q is defined in the crystallographic {x, y, z} axes, while
components of the structure factor S* in the local spin axes,
see Fig. 1. Here we omit higher order off-diagonal terms and
set g, = 0.

1. Transverse fluctuations

The one-magnon terms of the dynamical structure factor
(C1) are given by Eq. (41), which intensity factors are given
by

. 2 Yk
v = sin’ ?(ulk + i),

Pk
x=m¥TWme% (C1)

: ?x.Q
Fix = cos’ u (U1k+Q — Vik+Q)%

. 2 Pk,
Fayp = sin® %(”2](4’() — vak+Q)’, (C2)

where

ok.Q = ¢krQ — Qdy, (C3)

and the ordering vector Q is chosen appropriately for the
zigzag and polarized states.
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HTe/T=04, T =1.0
37
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._J
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-
-
<

FIG. 12. Same as in Fig. 3 for J5/|J| = 1.0.

2. Longitudinal fluctuations

The two-magnon (longitudinal) component is given by

SEk, ) = Y Fil8(w — £uq — Evk—q)-

q.1uv

(C4)

The sum is over two magnon bands u, v =1, 2.

The expression for the intensity of two-magnon contribu-
tion to the dynamical structure factor (C4) can be seen as a
sum over two-magnon density of states with each component
having different intensities. The expression for these intensi-

ties is generally given by

uy JTA VN Vk Mok vk vk
]:kq - z :(uqauqa’vq—ka’ Uq—ka + uqav—qa/ Uq—kau—q+ka’)'

oo’

(C5)

The sum is over o, o’ = A, B. The elements of transformation

matrix are given by
1 1 Uik Hip/2—iQ81 Mk ,—igx/2
W= (Ma U ) _ V2 ¢ ) n¢
ke = | 2 u2 T\ ki /2-iQ8) uk —igx/2 )
kA Mks 2 /2
(Co)

1.0 1.5

NLSWT

BN\~ -

NLSWT

Jex/T= 0.4, /7 =1.0
- LSWT

A O/

M-\ /\/VJ

FIG. 13. Same as in Fig. 6 for various J.., J; and H = 1.1H,.
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same for vj, . The plus sign and Q = 0 are for the polar-
ized state, minus sign and Q = (0, é—’;) are for the zigzag
state. Using the explicit form of the transformation one
obtains

~

. o Pak,

-7:&(1, = sin’ q2 Q [(t1qV1q—x)* + UiqUiqt1q—kVig—k], (CT)
Pa.

-7:11; = cos? q2 Q [(t1qV2q—x)* + UiqUIqlaq—kV2g—k], (C8)
Pa.

]'—1%31 = cos? T2 [(quvlq—k)2 + UrqUaqlt1q-kVig-k], (C9)

~

. o Pgk,
fﬁé = sin’ q2 Q [(t2qV2q—k)* + U2qUaqlaq—kV2q—k], (C10)

where

Pqk.Q = ¢¥q + ¥x—q — Q1. (C11)

Figure 13 shows our results for S(k, w) along the high-
symmetry in-plane k path in the Brillouin zone in the
polarized state for H = 1.1H, and various Jyy and J; in
comparison to the linear spin-wave theory. Magnon inter-
actions effects are stronger for larger Jii due to stronger
three-magnon interactions, see Sec. IIIC and Appendix B.
The third-neighbor exchange, while not directly related to the
three-magnon interactions, affects the magnon spectrum and
four-magnon interactions. One can see that quantum effects
are generally stronger for smaller J3 due to smaller gap in the
spin-wave spectrum.

Our results for the dynamical structure factor S(k = 0, w),
which includes both transversal and longitudinal compo-
nents of the spin-spin correlator, as a function of magnetic

J41=0.2J

1 1.2 1.4 1.6 1.8 2
HIH,

FIG. 14. Same as in Fig. 10 for J5 = |J|.

field in the polarized phase are shown in Fig. 14 for
J3 = |J|. Similarly to the results in Fig. 10, larger values
Ji4 yield stronger renormalization of the spectrum near
the critical point of transition to the long-range-ordered
state.
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