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Limits of a rechargeable spin battery
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We discuss how the ideal rechargeable energy accumulator can be made and what the limits for solid-state
energy storage are. We show that in theory, spin batteries based on heavy fermions can surpass chemical ones in
terms of energy capacitance. The absence of chemical reactions in spin batteries makes them more stable, and
also they do not need to be heated in cold conditions. We study how carrier statistics and the density of states
affect the energy capacity of the battery. Also, we discuss hypothetical spin batteries based on neutron stars.

DOI: 10.1103/PhysRevB.106.214407

I. INTRODUCTION

Rechargeable electric batteries are one of the most impor-
tant devices of modern civilization. It is obvious that their role
will only increase in the future. Unfortunately, the existing
chemical rechargeable batteries (based on reversible electro-
chemical reactions) are far from ideal. This manifests itself,
for example, in their inevitable irreversible degradation, slow
charging, relatively low energy capacitance per unit mass,
the need for heating when the temperature drops, etc. Of
course, progress does not stop; however, most efforts now
are applied to chemical and physicochemical properties of
batteries (see Refs. [1,2]). The relatively new physical idea of
a quantum battery explores quantum states and entanglement
properties [3–6]. The idea of using the spin degree of free-
dom to store energy has attracted a lot of attention in recent
years [7–10]. Particularly, in a recent article [11] the authors
proposed a spin battery (SB) which is a half-metal spin valve
with suppressed spin flips of conducting electrons. This so-
lution would allow us to store the electric energy reversibly
without any chemical reactions during the charging process
using nonequilibrium states of quasiparticles in a conductor
instead.

Hence the following questions appear: Is it possible for a
SB to surpass a chemical battery? What are the properties of
the ideal SB? In this paper we theoretically “test” possible
limits of the solid state for SBs and the more exotic matter of
neutron stars as well.

II. CHEMICAL POTENTIAL

The energy in a SB is stored in the spin carriers’ density
deviation from its equilibrium value under the condition that
spin relaxation is suppressed in this conductor. In other words,
such a battery is just a certain volume filled with spin particles,
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and energy accumulation appears due to a development of the
nonequilibrium spin state. Such spin particles can be electrons
in a conductor [11], while at the same time being charge
carriers, and their spin direction, ±, can be determined by
the external magnetic field or magnetic contacts. In order to
charge such a battery containing charged spin carriers or to
transfer the accumulated nonequilibrium spin concentration
into charge current, one can use, for instance, antiparallel
magnetized half-metal [12–14] electrodes which pass only +
or − spin correspondingly [11]; see Fig. 1.

In this situation the charging potential difference δϕ in-
duces variations of chemical potentials of ± components
(after the charging time when equilibrium is established):

μ± = μ0,± + η±,

where μ0,± are the equilibrium electrochemical potentials
of the discharged battery determined by the density of the
corresponding ± components. Chemical potentials η± are
induced by the charging process, and their values could
be found from the conditions δϕ = η+/q+ − η−/q− (where
q± are the electric charges of the corresponding carriers),
together with spatial electroneutrality, which follows from
the Poisson equation �ϕ = −4π{q+[ρ+(μ+) − ρ+(μ0)] +
q−[ρ−(μ−) − ρ−(μ0)]} (with the right-hand side equal to
zero):

q+[ρ+(μ+) − ρ+(μ0)] + q−[ρ−(μ−) − ρ−(μ0)] = 0, (1)

where ϕ is the electrical potential, ρ± are the densities, and
q± are charges of the corresponding spin ± carriers. Here, for
simplicity, we assume μ0,+ = μ0,− = μ0, as it is obvious that
the equilibrium value of the electrochemical potential does not
affect the basic principles of energy storage.

For a one-band conductor we have q+ = q− = e, where e
is the electron charge. Moreover, we can consider the usage
of two-band conductors, which contain not only the electrons
but also “holes” with opposite charge. What is more, the
carriers are polarized in such a way that spin ± is connected
to charge ±. In this situation the charges q± have the opposite
sign: q+ = −q− = e. This is possible when the interaction

2469-9950/2022/106(21)/214407(6) 214407-1 ©2022 American Physical Society

https://orcid.org/0000-0001-7341-3322
https://orcid.org/0000-0003-0017-8880
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.214407&domain=pdf&date_stamp=2022-12-07
https://doi.org/10.1103/PhysRevB.106.214407


A. V. YANOVSKY AND P. V. PYSHKIN PHYSICAL REVIEW B 106, 214407 (2022)

FIG. 1. Schematic illustration of a spin battery (SB) which is
a conductor between half-metal electrodes (denoted by “H”) with
opposite spin polarization.

between carriers from different bands is weak [15] or by
using electron-hole pairing methods [16–18] for the spin-flip
suppression as described in detail in Ref. [11]. When the
one-band battery is being charged, the number of certain spin
carriers increases, and this necessarily leads to the number of
opposite spin carriers decreasing in order to preserve elec-
troneutrality (1). In a two-band battery we always chose the
polarity of the charging voltage in such a way as to have an
increase in the number of carriers of both spins (η+ > 0).
This means that we connect the positive-guided contact to the
electrode with “+” polarity (corresponding to “holes” with
charge q+) and the negative-guided contact to the electrode
with “−” polarity (corresponding to electrons with charge
q−). Nonequilibrium states caused by deviations of spin den-
sities in one-band and two-band SBs are shown in Fig. 2. Here
we show schematically the filling energy levels ε as func-
tions of the corresponding densities of states (DOSs) D± for
spins ±.

As can be seen, the two-band battery has polarity, and such
a SB is equal to a chemical battery but with the following
difference. In a chemical battery we have the concentrations
changing, and correspondingly the changing of chemical po-
tentials with respect to electrodes, while q± corresponds to the
one ion charge: −q+ = q− = −zF/Na, where z is the positive
valency, F is the Faraday constant, and Na is Avogadro’s
number (for definiteness we chose the sign to be the same

FIG. 2. (a) One-band “purely electronic” spin battery. (b) Two-
band “electron-hole” spin battery. Filled levels are shaded gray. The
number of carriers of one spin decreases when the number of carriers
of another spin increases for the one-band battery, and polarity is not
important. We chose the polarity of the two-band battery in such a
way as to have an increase in the number of both types of carriers
during the charging process.

as that of an elementary charge, and we assume the same
absolute value of valency of all ions). In the absence of a
charging potential difference in the circuit, the presence of
nonequilibrium chemical potentials leads to the appearance
of diffusion forces, which pull in or push out charges into the
circuit. This happens on electrodes of the opposite “affinity”
(such an affinity is related to chemical reactions in a usual
chemical battery, or it is related to the presence of a conduc-
tion band only for certain spin on ± electrodes in the SB). An
asymmetry in the charge moving during relaxation into the
thermodynamic equilibrium state causes an electric current in
the full circuit [11]. Also, we can consider a SB with spin or
charge carriers that are not being usual conductive electrons,
but quasiparticles. Such quasiparticles can even have zero
electric charge; however, in this situation the movement of
such quasiparticles does not cause an electric current, and
thus energy extraction from this battery is difficult. A SB
does not require chemical reactions, and therefore it does not
suffer from chemical degradation. As we show below, a SB
does not require heating when it consists of a degenerate gas
of charge or spin carriers. Obviously, a SB can be a source
not only of charge but also of spin current [19–22]. Finally,
a SB can be charged without electrodes by using polarized
electromagnetic radiation [23].

III. GENERAL FORMULAS FOR THE ENERGY
OF A CHARGED SB

Let us denote E±(μ±) as the total internal energy of carri-
ers of ± components for a given value of the electrochemical
potential μ±. The energy stored in the battery is the difference
between the internal energies of charged and discharged states

δE = E+(μ0 + η+) + E−(μ0 + η−) − E+(μ0) − E−(μ0).

(2)

At the microscopic level the value of E in a SB as well in
a chemical battery is determined by the equilibrium energy
distribution of carriers n±(ε, μ), by the DOS D±(ε), and by
the volume 	:

E±(μ±) = 	

∫ ∞

0
dεεD±(ε)n±(ε, μ±). (3)

Also, we can write the following expression for ρ± in order to
substitute it in (1):

ρ±(μ±) =
∫ ∞

0
dεD±(ε)n±(ε, μ±). (4)

As can be seen from (2) and (3), the energy distribution
determines which parts of the DOS dependencies D±(ε) give
the main contribution. Of course, the energy distribution can
be described by classical (Boltzmann), Bose, Fermi, or, even,
so-called fractional statistics.

Note that usually, εD(ε) increases with ε and, on the other
hand, Bose distributions collect particles in states with lower
energies where the DOS has its minimal values. Of course,
the DOS of Bose distributions can have certain singularities
(see Ref. [24]); thus some low-dimensional systems require
special investigation. However, in the general case, if we do
not consider nonphysical DOSs which diverge at zero faster
than ε−1, then in order to have maximal capacitance of the
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SB, particles should occupy more states with larger DOSs.
In this regard, fermions are the best choice for SBs. As two
fermions cannot occupy the same state, they have to fill levels
with higher energy with the number of particles on the rise.
Below we discuss the influence of quantum statistics in detail.
Intuitively, we understand that a battery is more sensitive to
the temperature in the case of classical statistics. In the general
case, when μ0 and q± are given, the search for a battery with
maximal energy capacitance is reduced to a variational prob-
lem: the search for the conditional maximum of the functional
δE [D±, n±]. This functional is linear on D± and n±, while
the restrictive condition is Eq. (1). In reality, distributions and
densities of states are limited by the physical states mentioned
above.

IV. BRIEF DISCUSSION OF CLASSICAL STATISTICS

Boltzmann statistics corresponds to sufficiently low densi-
ties ρ±, when exp{−μ/T } � 1, where T is the temperature in
energy units. Note that in the case q+ = q− the electroneutral-
ity condition (1) is broken when |eδϕ| ∼ T . In this situation,
an increase in the ± component (depending on the sign of δϕ)
cannot be compensated via a decrease in the ∓ component
due to the insufficient amount of it, and thus Eq. (1) does not
have a solution. Since the temperature 300 K approximately
corresponds to a potential difference of only 0.03 V, the case
q+ = q− is not of interest in the classical limit. Particularly,
this is why there is no sense in using chemical accumulators
with different types of cations or anions in such a way that
the opposite electrodes make an imbalance in the number of
different ions of the same sign during the charging, because
electroneutrality is broken at relatively low voltages. Gen-
erally, electroneutrality is not broken when q+ = −q− with
an increase in δϕ. In such a case only the average value of
the DOS matters. Really, the classical distribution n±(ε, μ) ≈
exp{μ/kT } exp{−ε/kT }, where the constant in μ is chosen to
satisfy the normalization condition for the density of particles.
From (1)–(4) we have the following:

δE ≈ 	
[
exp

{η+
T

}
− 1

]
(E+(μ0) + E−(μ0)). (5)

Accordingly, the value of δE in the leading approximation
with respect to T |qδϕ|−1 � 1 is

δE ∼ 	T

[
ρ0

(
T, μ0 + qδϕ

2

)
− ρ0(T, μ0)

]
,

where ρ0(T, μ0) is the equilibrium concentration for a given
temperature. As we can see, singularities of D(ε) do not play
a role in the case of classical statistics, and only the average of
the DOS appears in (5). Also, one can see that δE strongly de-
pends on T , and on concentrations as well, which reduces the
application of such accumulators at low temperatures without
additional heating. Let us show that Fermi statistics changes
the situation dramatically.

V. “FERMI” BATTERIES

Quantum Fermi statistics can be realized in SBs made from
degenerate conductors such as metals where the equilibrium
electrochemical potential is approximately equal to the Fermi

energy μ0 � εF . Usually, in metals the Fermi energy is of the
order of 10 eV ∼ 105 K. Therefore we can consider energies
|q±δϕ| ∼ |η±| < μ0 and neglect thermal blurring. The energy
of the nonequilibrium state with splitting of spin components
and the corresponding Lagrange function for this approxima-
tion can be found in Ref. [25]. Here we write it using our
notation:

δE ≈ 	

[∫ μ0+η+

μ0

dεεD+(ε) +
∫ μ0+η−

μ0

dεεD−(ε)

]
, (6)

q+[ρ+(μ+) − ρ+(μ0)] + q−[ρ−(μ−) − ρ−(μ0)]

∼= q+
∫ μ0+η+

μ0

dεD+(ε) + q−
∫ μ0+η−

μ0

dεD−(ε) = 0. (7)

As can be seen from (6) and (7) the Fermi level shift deter-
mines the limits of integration, and as we show below, the
DOS singularities can play an important role in the properties
of a “Fermi” battery. Note that in a one-band battery (q+ =
q−) the integrand in (6) coincides up to multiplier ε with the
integrand on the right-hand side of (7), which is set to zero.
Thus, in this case, we have a certain compensation when we
make a small parameter expansion for η±/μ0. The physical
meaning of this is the following: For a one-band battery we
lose in energy when the number of quasiparticles of a certain
kind decrease during charging, and for a two-band battery the
number of quasiparticles of both kinds only increases during
charging (when polarity is correctly chosen).

Firstly, we consider the case when the DOS does not
have any singularities, i.e., D±(ε) are analytical functions
which can be expanded in Taylor series near the initial Fermi
level μ0:

D±(ε) ≈ D±(μ0) + (ε − μ0)D′
±(μ0)

+ (ε − μ0)2

2
D′′

±(μ0) + · · · ,

where the prime means differentiation according to the only
argument.

In the case of a smooth DOS, a SB based on a one-band
normal metal and a SB based on a two-band normal metal
have quite different energy storage properties. In a one-band
metal we have D+(μ0) = D−(μ0) = D(μ0), and the same re-
lations for derivatives D′, D′′. The electroneutrality condition
for the case q+ = q− with second-order accuracy with respect
to η±/μ0 gives the following equation:

η+ + η− + D′(μ0)

2D(μ0)
(η2

+ + η2
−) = 0, (8)

which leads to

η− ≈ −η+ − D′(μ0)

D(μ0)
η2

+ + · · · . (9)

Thus, from (6), (7), and (8), the energy of a one-band SB is

δE ≈ 	D(μ0)η2
+ + · · · . (10)

Here, the dots mean high-order terms with respect to η±/μ0.
As can be seen from (10), the linear terms (with respect to η±)
are canceled, and the energy has only a quadratic dependence
on the potential difference. This fact leads to the appearance
of a small multiplier, ∼eδϕ/μ0, compared with a two-band
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FIG. 3. Model DOS cusp at the Fermi level with a high value of
the DOS derivative at the right.

SB. Indeed, in a two-band SB the linear approximation with
respect to η±/μ0 is enough, which gives η+ = η−, and we
have

δE = 2	D(μ0)μ0η+,
δEone-band

δEtwo-band
∼ η+

μ0
. (11)

As can be seen from (11) the energy is linear and greater than
in the one-band case. In both cases the higher the Fermi energy
(i.e., the density of carriers), the higher the energy of the SB.
In the one-band SB the energy is proportional to the DOS at
μ0, while in the two-band SB the energy is proportional to the
product of the DOS at μ0 and μ0 itself. As can be seen, in both
case (10) and case (11) we have the DOS at the Fermi level
without averaging over the energy as opposed to the classical
case.

Let us discuss how DOS singularities can increase the
power capacity of a one-band Fermi SB based on the high-
value parameter discussed above which contains the DOS
derivative. Really, it is not unusual to have cusps in D(ε),
for instance, when Van Hove singularities are present [26,27],
etc. For the sake of simplicity we consider the model case of
linear dependence to the right and left of the cusp, and also we
assume that the cusp of D(ε) is exactly aligned at μ0.

D(ε) = D(μ0) + D′(μ0 + 0)(ε − μ0)θ (ε − μ0)

+ D′(μ0 − 0)(ε − μ0)θ (μ0 − ε). (12)

Note that expression (12) is not an expansion with respect
to the small parameter, but the model DOS. Let us denote
D = D(μ0), D′

> = D′(μ0 + 0), and D′
< = D′(μ0 − 0); see

Fig. 3. After taking integrals in Eqs. (7) and (6) we obtain

Dη+ + D′
>

η2
+
2

+ Dη− + D′
<

η2
−
2

= 0, (13)

δE =
[

D
η2

+
2

+ D′
>

η3
+
3

+ D
η2

−
2

+ D′
<

η3
−
3

]
	. (14)

Assume that the value of D′
> is big enough to have

D′
>η+/D � 1, while the derivative D′

< is small (for sim-
plicity we can take it to be zero). In such a case, η− ≈
−2−1D−1D′

>η2
+, and the energy δE ∼ 	D′

>η3
+. Using the

condition eδϕ = η+ − η−, we can estimate the derivative
value of D′

> which corresponds to the situation when the
energy of a Fermi battery with a cusp exceeds estimation (10)
for the same value of carrier density and the same DOS at the

FIG. 4. Schematic illustration of the DOS in intermetallic alloys
with f electrons. The dashed curve corresponds to D(ε) in the ab-
sence of s- f interaction. “Heavy fermions” form states near the peak.
ε f is the electron bound energy in the f shell.

Fermi level. Let us take ϕ ∼ 1 V, μ0 ∼ εF ∼ 10 eV, and then

D′
>η3

+ > Dη2
+ ⇒ D′

>η+
D

> 1 ⇒ D

D′
>

< 1 eV,

which looks experimentally feasible. The possibility of such a
power capacity increasing follows from the fact that the DOS
derivative gives the main contribution to the energy instead of
being a correction.

VI. HEAVY FERMIONS

The density of states of conduction electrons in metals is
high as a result of high density ρ. Obviously, the DOS in
normal metals is greater than the DOS in liquid electrolytes,
despite the small effective electron mass in metals. In fact, the
smallness of the effective electron mass is compensated by the
high Fermi velocity, which is several orders greater than, for
example, thermal ion velocities in dilutions.

One can imagine even more effective conductors for SBs,
which contain so-called “heavy fermions” [28–33], such as
some intermetallic antiferromagnetic alloys with f electrons.
Indeed, in such correlated conductors the effective masses
m∗

heavy of carriers are 100–1000 times greater than effective
masses in normal metals m∗

normal ∼ (1–10)m, where m is the
free-electron mass.

The DOS of heavy fermions has irregularity; see Fig. 4.
If we substitute the heavy-fermion DOS in expressions (10)
and (11) taking into account that η± ∼ eV , μ0 ∼ εF , and
Dheavy ∼ (m∗

heavy/m∗
normal )

3/2
heavyDnormal ∼ 104Dnormal, we get the

following rough estimation:

δEheavy ∼ 104 · 	

λ3
F

eV

εF

{
eV, one-band battery

εF , two-band battery.
(15)

Given that in metals we have λF ∼ 10−10 m and the Fermi
energy is in the range 1–10 eV, then for V ∼ 1 V/cm3

we estimate the maximal power capacity of such a SB:
Wmax = 3600−1δEmax/V ∼ 104 A h. For comparison, the bat-
tery power capacity of an Apple iPhone 12 Max Pro indicated
in the specifications is 3.7 A h, i.e., three orders of magnitude
less than the 1 cm3 power capacity of a hypothetical heavy-
fermion SB. Given that the metal density is approximately
104 kg/m3, we obtain that the energy density of a heavy-
fermion metallic SB is about 100–1000 MJ/kg. This value can
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be one order of magnitude greater than the normalized energy
density of gasoline as a fuel for an internal combustion engine
(which, in its turn, is about 46 MJ/kg [34,35]). At the same
time, the energy density of chemical batteries is two orders
of magnitude worse than that of gasoline, and this fact is an
important problem of modern electric transport.

VII. THE NEUTRON STAR AS A RECORD SB

Since neutrons in neutron stars are compressed by gravi-
tational force to huge density, and due to the fact that they
are fermions, they gain huge DOS values. A neutron has spin
but does not have a charge, and starting from this fact, we
can imagine a supercivilization which could store energy by
“charging” neutron stars via polarized radiation, i.e., produc-
ing the difference in concentrations of spins referred to a
certain direction in space. Here we do not discuss the problem
of extraction of this energy. It is impossible to transform this
energy into electric current due to the electrical neutrality of
neutrons. Also, it is obvious that it is impossible to make some
contacts with a neutron star. Thus the supercivilization has
to investigate a noncontact method. Nevertheless, let us here
estimate the colossal energy which can be stored in a neutron
star in this fantastic scenario.

If a neutron star has a Sun mass M� ≈ 2 × 1030 kg, its ra-
dius should be R ≈ 10 km = 104 m, and correspondingly the
density ρ = 3M�/4πR3 ≈ 1.4 × 1018 kg/m3. These numbers
are taken just for understanding the scale of such a fantastic
“device”; the mass of a real neutron star should be greater than
the Tolman-Oppenheimer-Volkoff limit of 2.17M� [36,37].
In order to estimate the DOS and Fermi energy, one can
use simple Thomas-Fermi formulas with relativistic correc-
tions [38,39] because the Fermi velocity is close to the speed
of light c for such huge densities and, moreover, the mo-
mentum p � mnc, where mn is the mass of a neutron. Thus
we have

ε = c
√

p2 + m2
nc2 − mnc2 ≈ cp, p � mnc, (16)

D(ε) = ε2

π2c3h̄3 , (17)

εF ≈ πch̄

(
3ρ

πmn

) 1
3

. (18)

The electroneutrality condition is automatically satisfied in
neutron stars. Spin concentrations just change accordingly:
When some spin flips, it increases the concentration of one
type and decreases the concentration of the opposite type.
Therefore the energy of a “one-band” SB (10) based on a
neutron star’s matter, which is stored in chemical potential
spin splitting 2η, is

δEn ≈ 	D(εF )η2 ≈ 3
2
3 	

ch̄

(
ρ

πmn

) 2
3

η2. (19)

The maximal energy which can be reversibly stored in a “spin
battery” based on such a neutron star corresponds to 100%
polarization of its neutrons, i.e., η = εF . This allows us to
estimate the maximal energy capacitance of 1 mm3 of neutron
star matter δEn,max(	 = 10−9 m3) ∼ 1042 J, which is 25 or-
ders of magnitude more than the energy of the most powerful
thermonuclear bomb [40] tested by mankind, 2.4 × 1017 J.
The colossal energy reversibly stored for the whole neutron
star with the above parameters is ∼1063 J. Note that due to
neutrons having zero electric charge, spin-orbit coupling is
absent, and full spin polarization of the star does not lead to
rotation of the star.

VIII. CONCLUSION

We have theoretically shown that spin batteries can surpass
modern chemical accumulators by orders of magnitude of
energy capacitance due to the high density of states of elec-
trons in metals, especially in the case of metals with “heavy
fermions.” The fantastic scenario of using a neutron star’s
matter would allow reversible storage of a colossal amount
of energy. We did not find such estimations for neutron stars
in the literature.

ACKNOWLEDGMENTS

We thank L. A. Pastur for helpful discussions. P.V.P.
acknowledges support from Grant No. PGC2018-101355-B-
I00 funded by MCIN/AEI/10.13039/501100011033 and by
“ERDF A way of making Europe.”

[1] R. Chen, Q. Li, X. Yu, L. Chen, and H. Li, Chem. Rev. 120,
6820 (2020).

[2] T. Suga, S. Sugita, H. Ohshiro, K. Oyaizu, and H. Nishide, Adv.
Mater. 23, 751 (2011).

[3] R. Alicki and M. Fannes, Phys. Rev. E 87, 042123 (2013).
[4] F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, New J.

Phys. 17, 075015 (2015).
[5] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M.

Polini, Phys. Rev. Lett. 120, 117702 (2018).
[6] F. Barra, Phys. Rev. Lett. 122, 210601 (2019).
[7] J. Tian, S. Hong, I. Miotkowski, S. Datta, and Y. P. Chen, Sci.

Adv. 3, e1602531 (2017).
[8] Y. Xie, M. Chen, Z. Wu, Y. Hu, Y. Wang, J. Wang, and H. Guo,

Phys. Rev. Appl. 10, 034005 (2018).

[9] A. M. Bozkurt, B. Pekerten, and Ï. Adagideli, Phys. Rev. B 97,
245414 (2018).

[10] H. Nguyen and R. J. Clément, ACS Energy Lett. 5, 3848 (2020).
[11] L. A. Pastur, V. V. Slavin, and A. V. Yanovsky, Low Temp. Phys.

46, 724 (2020).
[12] W. E. Pickett and J. S. Moodera, Phys. Today 54(5), 39 (2001).
[13] I. I. Mazin, Appl. Phys. Lett. 77, 3000 (2000).
[14] C. Chen, Z.-M. Yu, S. Li, Z. Chen, X.-L. Sheng, and S. A. Yang,

Phys. Rev. B 99, 075131 (2019).
[15] V. Zayets, J. Magn. Magn. Mater. 445, 53 (2018).
[16] S. I. Shevchenko, Sov. J. Low Temp. Phys. 2, 251 (1976).
[17] R. D. Wiersma, J. G. S. Lok, S. Kraus, W. Dietsche, K.

von Klitzing, D. Schuh, M. Bichler, H.-P. Tranitz, and W.
Wegscheider, Phys. Rev. Lett. 93, 266805 (2004).

214407-5

https://doi.org/10.1021/acs.chemrev.9b00268
https://doi.org/10.1002/adma.201003525
https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1088/1367-2630/17/7/075015
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevLett.122.210601
https://doi.org/10.1126/sciadv.1602531
https://doi.org/10.1103/PhysRevApplied.10.034005
https://doi.org/10.1103/PhysRevB.97.245414
https://doi.org/10.1021/acsenergylett.0c02074
https://doi.org/10.1063/10.0001370
https://doi.org/10.1063/1.1381101
https://doi.org/10.1063/1.1324720
https://doi.org/10.1103/PhysRevB.99.075131
https://doi.org/10.1016/j.jmmm.2017.08.072
https://doi.org/10.1103/PhysRevLett.93.266805


A. V. YANOVSKY AND P. V. PYSHKIN PHYSICAL REVIEW B 106, 214407 (2022)

[18] D. Nandi, A. Finck, J. Eisenstein, L. Pfeiffer, and K. West,
Nature (London) 488, 481 (2012).

[19] I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom,
Nature (London) 411, 770 (2001).

[20] A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and B. I. Halperin,
Phys. Rev. B 66, 060404(R) (2002).

[21] W. Long, Q.-F. Sun, H. Guo, and J. Wang, Appl. Phys. Lett. 83,
1397 (2003).

[22] Attaching a usual conductor to a conductor with nonequilibrium
spin distribution will cause diffusive spin current which equal-
izes spin concentrations.

[23] S. D. Ganichev, E. L. Ivchenko, V. V. Bel’kov, S. A. Tarasenko,
M. Sollinger, D. Weiss, W. Wegscheider, and W. Prettl, Nature
(London) 417, 153 (2002).

[24] I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduc-
tion to the Theory of Disordered Systems (Wiley, New York,
1988).

[25] P. V. Pyshkin, A. I. Kopeliovich, and A. V. Yanovsky, Condens.
Matter Phys. 17, 43801 (2014).

[26] L. V. Hove, Phys. Rev. 89, 1189 (1953).
[27] F. Bassani and G. P. Parravicini, Electron States and Optical

Transitions in Solids, Science of Solid State Monographs (Perg-
amon, London, 1975).

[28] N. E. Alekseevskiî and D. I. Khomskiî, Sov. Phys.-Usp. 28,
1136 (1985).

[29] V. V. Moshchalkov and N. B. Brandt, Sov. Phys.-Usp. 29, 725
(1986).

[30] G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
[31] H. Ott, in Progress in Low Temperature Physics (Elsevier, New

York, 1987), pp. 215–289.
[32] X.-Y. Feng, H. Cai, and J. Dai, Phys. Rev. B 104, 245136

(2021).
[33] S. Chatterjee, Electron. Struct. 3, 043001 (2021).
[34] A. Shaha, Combustion Engineering and Fuel Technology: Op-

timum Utilization of Fuels (Oxford and IBH, New York, 1974).
[35] P. Linstrom, NIST Chemistry WebBook, NIST Standard Ref-

erence Database No. 69 (National Institute of Standards and
Technology, Gaithersburg, MD, 1997).

[36] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374
(1939).

[37] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[38] S. Chandrasekhar, London Edinburgh Dublin Philos. Mag. J.

Sci. 11, 592 (1931).
[39] S. Chandrasekhar, Observatory 57, 373 (1934).
[40] The Guinness Book of Records 1993, 39th ed. (Guinness World

Records, London, 1992).

214407-6

https://doi.org/10.1038/nature11302
https://doi.org/10.1038/35081014
https://doi.org/10.1103/PhysRevB.66.060404
https://doi.org/10.1063/1.1603331
https://doi.org/10.1038/417153a
https://doi.org/10.5488/CMP.17.43801
https://doi.org/10.1103/PhysRev.89.1189
https://doi.org/10.1070/PU1985v028n12ABEH003988
https://doi.org/10.1070/PU1986v029n08ABEH003480
https://doi.org/10.1103/RevModPhys.56.755
https://doi.org/10.1103/PhysRevB.104.245136
https://doi.org/10.1088/2516-1075/ac2d7a
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1080/14786443109461710

