
PHYSICAL REVIEW B 106, 214403 (2022)
Editors’ Suggestion

Nutational switching in ferromagnets and antiferromagnets
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It was demonstrated recently that on ultrashort timescales magnetization dynamics not only exhibits precession
but also nutation. Here, we investigate how nutation can contribute to spin switching, leading towards ultrafast
data writing. We use analytic theory and numerical spin simulations to discuss the behavior of ferromagnets
and antiferromagnets in high-frequency magnetic fields. In ferromagnets, linearly polarized fields align the
magnetization perpendicular to the external field, enabling 90◦ switching. For circularly polarized fields in the
xy plane, the magnetization tilts to the z direction. During this tilting it rotates around the z axis, allowing
180◦ switching. In antiferromagnets, external fields with frequencies higher than the nutation frequency align
the order parameter parallel to the field direction, while for lower frequencies it is oriented perpendicular to
the field. The switching frequency increases with the magnetic field strength, and it deviates from the Larmor
frequency, making it possible to outpace precessional switching in high magnetic fields.
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I. INTRODUCTION

Deterministic spin switching plays an important role in
industrial applications, for example, in magnetic memory de-
vices [1–4]. However, as industrial needs exceed currently
available switching speeds, the search for new physical ef-
fects that can accelerate spin switching is ongoing. One such
pathway might be exploiting spin nutation. In spin nutation,
the direction of the magnetic moment and angular momen-
tum become separated on ultrashort timescales [5,6], and the
magnetic moment rotates around the angular momentum [7].
Spin nutation is described by the inertial Landau-Lifshitz-
Gilbert (ILLG) equation [5,6]. The ILLG equation extends
the Landau-Lifshitz-Gilbert (LLG) equation by an additional
inertial term containing a second-order time derivative of the
magnetic moment. The inertial term originates from spin-orbit
coupling, as it can be derived using the Dirac equation [8].

Linear-response theory applied to the ILLG equation pre-
dicts a spin nutation resonance in addition to the precession
resonance in ferromagnets [9–11] and in antiferromagnets
[12]. Recently the nutation resonance has been experimentally
observed in ferromagnetic thin films [13]. Estimates for the
angular momentum relaxation parameter η characterizing the
nutation period range from the order of 1 fs [5,14–16] to
several 100 fs [13,17]. Experiments in epitaxial cobalt films
suggest that this parameter is proportional to the magnetocrys-
talline anisotropy [17], which similarly emerges due to the
spin-orbit coupling.

For writing data in magnetic hard drives, usually a mag-
netic pulse with opposite direction to the magnetization is
applied [18,19]. Subsequently, the damping switches the mag-
netization in approximately 100 ps. In this case, the damping
constant limits the switching time [20]. Several authors have
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proposed faster switching mechanisms by using transverse
magnetic field pulses [21,22]. In this case, the switching time
depends on the energy delivered by the magnetic pulse. Tu-
dosa et al. experimentally demonstrated ultrafast switching
using magnetic field pulses [23]. Moreover, they argued that
switching on a timescale shorter than 2 ps is impossible in
ferromagnets. However, because of practical limitations, this
lower bound has never been confirmed experimentally [23].
By using the intrinsic inertia of antiferromagnetic dynamics,
it is possible to reduce switching times by a factor of 10 com-
pared to ferromagnets [24]. The role of the extrinsic inertia as
described by the ILLG equation for spin switching has hardly
been studied so far, apart from a recent work by Neeraj et al.
[25] which focused on applying a magnetic field pulse without
an oscillating component. They showed that the inertial term
opens an additional energy channel slightly modifying the
switching time. However, it remains to be seen how a resonant
excitation of the nutational motion influences the switching
time. Since the nutation frequency is much higher than the
precession frequency, it stands to reason that nutation could
be advantageous for faster magnetization switching.

Here we investigate how terahertz magnetic fields can be
utilized for spin switching in ferromagnets (FMs) and antifer-
romagnets (AFMs). We show that if the nutation is resonantly
excited by the magnetic field, it exerts a torque on the or-
der parameter, reorienting its direction. We discuss nutational
switching modes analytically by proposing an alternative form
of the ILLG equation based on the angular momentum and
numerically by using spin simulations. It is found that a lin-
early polarized magnetic field enables a 90◦ switching mode
of the order parameter. A circularly polarized field initiates the
tilting of the order parameter from the equilibrium direction
earlier than the linearly polarized field, and it can also be used
for 180◦ spin switching. The switching time is found to be
around 20 ps in FMs and around 5 ps in AFMs. It is demon-
strated that the switching velocity of nutational switching is
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by a factor of 2 higher than that of precessional switching in a
wide parameter range.

The paper is organized as follows. In Sec. II we
treat nutational switching analytically and propose an
alternative representation of the ILLG equation using the an-
gular momentum. In this representation we discuss nutational
switching in FMs in Sec. III both by linearly and by circularly
polarized fields. Using numerical spin simulations, we show
that linearly polarized fields can be used for 90◦ switching and
circularly polarized fields for 180◦ switching. We investigate
nutational switching in AFMs in Sec. IV. We determine the
switching time for a wide range of material parameters and
compare it to the switching time in FMs and to precessional
switching.

II. THEORY OF NUTATIONAL SWITCHING

The dynamics of the magnetic moments will be described
using the ILLG equation as derived in earlier works [5,8,14],
reading

Ṁ i = −γiM i × μ0Heff,i + αi

M0,i
Mi × Ṁ i

+ ηi

M0,i
Mi × M̈i. (1)

The first term in Eq. (1) describes precession with the
gyromagnetic ratio γi and the second term transversal re-
laxation with damping constant αi. The third term induces
inertial dynamics with inertial relaxation time ηi. Here, i enu-
merates the magnetic moments, taking into account possible
deviations in the gyromagnetic ratio and the relaxation time
between different sublattices. In general, αi and ηi are ten-
sors. In this work we consider αi and ηi as scalar quantities
[8], which is allowed in all symmetry groups. M0,i is the
magnitude of the magnetic moment, and Heff,i denotes the
effective field Heff,i = − 1

μ0

∂H
∂Mi

, where H = Hexch + Hani −∑
i μ0Mi[Hext + Hosc(t )] is the Hamiltonian of the system

containing exchange Hexch and anisotropy Hani energy, as well
as static Hext and oscillating Hosc external field terms. The
Hexch and Hani terms will be specified in Secs. III and IV
for FMs and AFMs, respectively. In the simulations, we solve
the ILLG equation numerically using the implementation of
Heun’s method described in Ref. [12]. As Heun’s method
does not preserve the spin length, M i is normalized in every
simulation step.

Because of the inertial term, the angular momentum Li is
no longer parallel to the magnetic moment Mi as in the LLG
equation [5], leading to

Li = 1

γi
Mi − �Li. (2)

Here we introduced the nutation vector �Li = ηi

M0,iγi
M i ×

Ṁ i for this deviation. Equation (2) represents an out-of-
equilibrium connection between angular momentum Li and
magnetization Mi [5]. The configuration space containing
the magnetic moment directions M i is extended by the
degrees of freedom of the angular momentum Li in the
phase space. The vectors Li, M i, and �Li are illustrated in
Fig. 1(a). Note that for simplicity we used a sign conven-

FIG. 1. Illustration of nutational switching. (a) First, an oscil-
lating magnetic field Hosc is applied to a magnetic moment M i.
(b)–(d) This excites a finite nutation amplitude �Li. (e) The nutation
vector in conjunction with the external field exerts a torque propor-
tional to 〈�Li × Hosc〉t .

tion where without the inertial term Li is pointing along
M i (γi > 0), although Eq. (1) describes the time evolu-
tion of electronic spins. The nutation amplitude |�Li| is
usually much smaller than the angular momentum am-
plitude, because |�Li| = | ηi

γiM0,i
Mi × Ṁi| ≈ ηi

M0,i
|Mi × (Mi ×

μ0Heff,i )| � γiηiμ0|Heff,i||Li| and γiηiμ0|Heff,i| � 1, even
for relatively large inertial relaxation times of ηi ≈ 100 fs.

For understanding the nutation-induced switching, we de-
compose the magnetic moment using the angular momentum
Li and the nutation �Li according to M i = γ (Li + �Li ).
The ILLG equation becomes a system of coupled first-order
differential equations,

L̇i = − γiLi × μ0Heff,i − γi�Li × μ0Heff,i + αi

ηi
�Li, (3)

�L̇i = γi�Li ×
(

1

M0,iηi
Li + μ0Heff,i

)

+ γiLi × μ0Heff,i − αi

ηi
�Li; (4)

see Appendix A for the derivation.
We will analyze these differential equations in the follow-

ing, starting with a qualitative understanding of nutational
switching. A field Hosc oscillating at the nutation frequency
ω = ωn is applied to the magnetic moment, as shown in
Fig. 1(a). As a consequence, the magnetic moment starts to
nutate with finite nutation amplitude. Linear-response theory
predicts nutation with the same frequency as Hosc and a
finite phase shift. However, according to Eq. (3), �Li will
interact with the oscillating field Hosc and exert a torque
−γ�Li × μ0Hosc on the angular momentum Li. Figure 1(b)
shows the direction of the torque. Because of the constant
phase difference between �Li and Hosc, the torque still points
in the same direction after half a nutation period; see Fig. 1(d).
This means that the torque has a finite time average that drives
the switching, as shown in Fig. 1(e). This torque only arises
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at very short timescales where the directions of Li and M i are
separated, giving rise to a finite nutation amplitude.

Theoretical estimates [5,14–16] supported by recent exper-
imental evidence [13,17] suggest that the nutation frequency
η−1

i is much higher than the precession frequency. This allows
for a separation of timescales between the fast variable �Li

and the slow variable Li. We define a coordinate system where
the angular momentum is oriented along the radial direction
in spherical coordinates Li = L0,i · êr,i. The nutation is then
essentially a two-dimensional motion happening in the plane
perpendicular to the angular momentum as the nutation am-
plitude is usually small. We introduce the complex amplitude
ci(t ) for the nutation vector �Li, with �Li = Re{ci(t )}êϑ,i +
Im{ci(t )}êϕ,i in the coordinate system defined by the angular
momentum. This allows for finding an instantaneous solution
for the nutation amplitude ci(t ) in a linear-response frame-
work; see Appendix B.

For a single macrospin, we can give the closed-form solu-
tion for Heff (t, ϑ, ϕ) = H0(ϑ, ϕ) + Hosc(t, ϑ, ϕ), a sum of a
time-dependent oscillating field Hosc = he−iωt + h∗eiωt with
complex amplitude h, and a time-independent external field
H0(ϑ, ϕ) which contains the external Zeeman field Hext and
anisotropy Hani. The contribution of Hosc to ωn is neglected
in the linear-response regime. From now on we will not ex-
plicitly write the orientation dependence (ϑ, ϕ). With these
notations one obtains

c(t ) = chom(t ) − μ0M0(êϕ − iêϑ ) ·
(

e−iωt

i(ωn − ω) + α/η
h

+ eiωt

i(ωn + ω) + α/η
h∗ + 1

iωn + α/η
H0

)
, (5)

with the homogeneous solution chom = c0e− i
η

t e− α
η

t . For t �
η/α, the homogeneous solution will become negligible. In this
case the nutation is a circular motion with the frequency ω of
the external field and a resonance at ω = ωn. Moreover, the
anisotropy and the constant magnetic field are responsible for
a constant offset of the nutation amplitude. This offset leads to
the relaxation of the magnetic moment towards the direction
of the angular momentum.

Using Eqs. (4) and (5), it is now possible to discuss the time
evolution of the angular momentum L taking place on longer
timescales. We can express the change in angular momentum
(3) using the nutation vector �L as

〈L̇〉t = −〈γ L × μ0Heff〉t +
〈
α

η
�L

〉
t

− 〈γ�L × μ0Heff〉t ,

(6)

where 〈·〉t indicates time averaging over one nutation period.
The first term in Eq. (6) is the precession term, which is
functionally unchanged from the LLG equation. The second
term in Eq. (6) is responsible for the damping. In this rep-
resentation, the damping is closely linked with the nutation
amplitude. For a more detailed explanation see Appendix C.
The third term in Eq. (6), −〈γ�L × μ0Heff〉t , only appears
because of inertial effects. This term is responsible for the
nutational switching.

FIG. 2. Illustration of the nutational switching mode in FMs for
a linearly polarized field. (a) Dependence of the right-hand side of
Eq. (7) on ϑ . The stationary point ϑ = π/2 is stable, ϑ = 0, π

are unstable. (b) Illustration of the solution of the differential equa-
tion (7). The linearly polarized field along the z axis tilts the spin
towards the y direction.

III. NUTATIONAL SWITCHING IN FERROMAGNETS

A. Nutational switching for linearly polarized fields

For an easier interpretation, we will neglect the precession
and damping terms in Eq. (6) in the following. Damping
effects are not completely neglected, as they are still present
in the solution for the nutation amplitude �L in Eq. (5). We
describe the time evolution of L on this longer timescale in
spherical coordinates, where ϑ represents the angle between
L and the z axis, and ϕ represents the angle measured from
the x axis in the xy plane. The closed-form solution for �L
in Eq. (5) can be expressed in spherical coordinates using
�L = Re{c(t )}êϑ + Im{c(t )}êϕ .

For a linearly polarized field Hosc = hêz cos(ωt ), Eq. (6)
can be expressed as

ϑ̇ = 1

2

(
γμ0h

2

)2
α/η

(ωn − ω)2 + α2

η2

sin(2ϑ ). (7)

For an illustration of the right-hand side of Eq. (7), see
Fig. 2(a). There are three stationary points. ϑ = 0 and ϑ = π

are unstable. In these cases the spin is either parallel or an-
tiparallel to the magnetic field, but any small perturbation will
tilt it away from these directions. The point ϑ = π/2 is stable.
In this case the spin is perpendicular to the magnetic field.
If the spin is not in one of these three configurations, it will
align itself perpendicular to the field at ϑ = π/2, as shown
in Fig. 2(b). This type of switching is shown in Supplemental
Video 1 [26].

From Eq. (7) it follows that the tilting velocity is highest at
the nutation resonance ω = ωn. Materials with high values of
η and low values of α should exhibit the highest tilting speeds.
Moreover, the tilting velocity increases with increasing mag-
netic field, and the magnetic moment will align perpendicular
to a linearly polarized magnetic field. In a system with cubic
anisotropy Hani = −K4(M4

x + M4
y + M4

z )/M4
0 with potential

minima separated by an angle of 90◦, applying the field along
the magnetization direction should enable 90◦ switching. Such
a switching would be possible to detect by measuring the
magnetization direction or through the anisotropic magnetore-
sistance.
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FIG. 3. 90◦ switching using a linearly polarized field along the
z direction. The material parameters are α = 0.1, η = 100 fs, M0 =
2μB and a cubic anisotropy with K4 = 10−23 J. The magnetic field
strength is μ0h = 5 T, the field frequency is ω = ωn = 1 × 1013 s−1,
and the pulse width is σ = 20 ps.

We use numerical spin simulations to validate this predic-
tion and start with a single macrospin aligned close to the z
direction. We then apply a magnetic field pulse along the z
direction at the nutation frequency ω = ωn ≈ 1

η
with a Gaus-

sian pulse shape given by Hosc = h exp(− (t−t0 )2

2σ 2 )êz cos(ωt ),
where σ is the pulse width and t0 is the pulse center. As
shown in Fig. 3, the behavior of the magnetic moment in the
simulations is consistent with the analytic prediction shown
in Fig. 2 but superimposed with a precession caused by the
anisotropy term. Here, the switching was achieved with a
pulse width of σ = 20 ps. The tilting speed itself is high, as it
takes only 23 ps for Lz to decay to 1/e of its initial value. If
the magnetic field is turned off at this point, one can be sure
that the magnetic moment will relax to the switched position,
since it has already crossed the anisotropy energy barrier at
ϑ = π/4. However, it takes a significant amount of time for
the tilting to start, because a magnetic field almost parallel to
the magnetic moment excites the nutation slowly according to
Eq. (7). Applying the linearly polarized field at a small angle
from the initial equilibrium direction could likely decrease
the switching time. Moreover, finite temperature would likely
alleviate this problem, because there the spin would not be
exactly parallel to the external field.

B. Nutational switching for circularly polarized fields

For a circularly polarized field Hosc = h[cos(ωt ) êx +
sin(ωt ) êy], Eq. (6) can be expressed in spherical coordinates
as

ϑ̇ = − (γμ0h)2

4

α/η

(ωn − ω)2 + α2

η2

(
sin(ϑ ) + 1

2
sin(2ϑ )

)
,

(8)

ϕ̇ = − (γμ0h)2

2

ωn − ω

(ωn − ω)2 + α2

η2

(1 + cos(ϑ )). (9)

Equation (8) decouples from Eq. (9). Equation (9) shows
that the angular momentum rotates around the z axis. The
sense of rotation depends on whether the frequency of the
external field is higher or lower than the nutation frequency.

FIG. 4. Illustration of the nutational switching mode in FMs for
a circularly polarized field. (a) Dependence of the right-hand side of
Eq. (8) on ϑ . The stationary point ϑ = 0 is stable, ϑ = π is unstable.
(b) Illustration of the solution to the differential equations (8) and (9).
In the beginning, the magnetic moment points along the x direction.

In resonance, ω = ωn, the rotation around the z axis van-
ishes. The maximal rotation frequency is achieved for ω =
ωn ± α/η.

Figure 4(a) shows the right side of Eq. (8). There are two
stationary points. First, we can see that ϑ = 0 is stable, as
the derivative on the right-hand side is negative. The point
ϑ = π is unstable against perturbations. For all other angles,
the magnetic moment rotates to align itself parallel to the z
direction. As for linearly polarized magnetic fields, the speed
is proportional to h2. In resonance the tilting velocity is max-
imal. This type of switching is illustrated in Fig. 4(b) and
Supplemental Video 2 [26].

The rotation around the z axis can also be used for 180◦
switching along the x or y axis. In this case it is useful to
maximize the rotation frequency ϕ̇ and minimize the tilting
speed. Because ϕ̇/ϑ̇ ∝ η(ωn−ω)

α
, it is beneficial to consider a

system with low damping and an excitation frequency above
the nutation frequency. Circularly polarized fields could also
be used for 90◦ switching, using the tilting mechanism sim-
ilarly to linearly polarized fields. In this case, the ratio ϕ̇/ϑ̇

should be minimized.
We use numerical spin simulations to validate the analyti-

cal results. We apply a circularly polarized field in the xy plane
to a single macrospin. At t = 0 s the spin is aligned with the y
axis, selected by a uniaxial anisotropy term Hani = − Ky

M2
0
M2

y ,
facilitating 180◦ switching. We apply an external field fre-
quency above the nutation frequency and a smaller α value
than in the linearly polarized case to maximize the ratio ϕ̇/ϑ̇ .

As shown in Fig. 5, the behavior of the magnetization in the
simulations is consistent with the analytical prediction shown
in Fig. 4(b). The nutation amplitude is much larger than in
the linearly polarized case because α is smaller. Switching is
possible with a pulse width of σ = 10 ps, significantly shorter
than for linearly polarized fields. For a system with weaker
anisotropy, even shorter pulses could be used. The switching
starts significantly earlier than in the linearly polarized case
because a nutation amplitude is excited much quicker. While
a linearly polarized field parallel to the angular momentum
does not lead to nutation, a circularly polarized field can excite
a nutation in any orientation, according to Eq. (4).
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FIG. 5. 180◦ switching using a circularly polarized field in the
xy plane. The material parameters are α = 0.01, η = 100 fs, M0 =
2μB, and a uniaxial anisotropy with Ky = 10−23 J along the y axis.
The magnetic field strength is μ0h = 5 T, the field frequency is ω =
1.1 × 1013 s−1, and the pulse width is σ = 10 ps.

IV. NUTATIONAL SWITCHING IN ANTIFERROMAGNETS

A. Analytical model

In addition to the extrinsic inertial term ηi of the ILLG
equation, AFMs possess additionally an intrinsic inertia
due to the exchange coupling between the two sublattices.
This can be expected to have an impact on nutational
switching.

In AFMs the order parameter is the staggered mag-
netization N = MA − MB. We can decompose this into a
staggered nutation �LN = �LA − �LB and a staggered an-
gular momentum LN = LA − LB with N = γ (LN + �LN ).
As in FMs, the nutation vector of the sublattices can be
represented by scalar complex variables cA and cB with
�LA = Re{cA}êϑ,A + Im{cA}êϕ,A and �LB = Re{cB}êϑ,B +
Im{cB}êϕ,B. The Hamiltonian contains the exchange term
Hexch = J

M2
0
MA · MB, where J > 0 describes the AFM cou-

pling between the sublattices. The nutation amplitude in
linear response to the oscillating field Hosc = he−iωt + h∗eiωt

for weak antiferromagnetic coupling, J � 2 M0
γ η

, is then
given by

cA = −μ0M0(êϕ − iêϑ ) ·
(

he−iωt

i(ωn,A − ω) + α
η

+ h∗eiωt

i(ωn,A + ω) + α
η

+ H0,A

iωn,A + α
η

)
, (10)

cB = μ0M0(êϕ + iêϑ ) ·
(

he−iωt

i(ωn,B − ω) + α
η

+ h∗eiωt

i(ωn,B + ω) + α
η

+ H0,B

iωn,B + α
η

)
, (11)

with ωn,A/B = √
1 + 2Jηγ /M0/η ± γ êr · Hext, where the +

sign is taken for the A sublattice and the − sign for the B
sublattice; see Appendix D for the derivation. In Eqs. (10)
and (11) the influence of the antiferromagnetic coupling only
enters in the form of a renormalized nutation frequency. The
nutation frequency is identical to previous results obtained
using linear-response theory [12].

By using Eq. (3) in conjunction with the solution for the
nutation vectors Eqs. (10) and (11), we can derive a differen-
tial equation describing the order parameter N. The derivation
can be found in Appendix E. The second-order differential
equation for the order parameter is

N × N̈ = −γ [2(N · μ0HM )Ṅ − N × (ḢM × N)]

− γ 2(N · μ0HM )(N × μ0HM ) + γ 2J

4
N × μ0HN

+ d

dt
(N × T N ) − γ J

4
T M + γ (N × T N ) × μ0HM,

(12)

where T M = γ (∂t + α
η

)(�LA + �LB) and T N = γ (∂t +
α
η

)�LN . HM = (HA + HB)/2 contains, for example, the
Zeeman field, whereas HN = (HA − HB)/2 takes the
anisotropy into account. HA and HB are the effective fields
acting on the sublattices excluding the exchange interaction.

The last three terms in Eq. (12) describe the influence of a
finite nutation amplitude �LN on the dynamics. According to
Eqs. (10) and (11), the total torque exerted by the nutation
T N = T N,0 + T N,osc(t ) consists of a time-independent part
T N,0, driven by the Zeeman field and the anisotropy, and
an oscillating time-dependent part T N,osc(t ), driven by the
oscillating external field. For the first two terms we find〈

d

dt
(N × T N ) − γ J

4
T M

〉
t

=
〈

d

dt
(N × T N,0) − γ J

4
T M,0

〉
t

.

(13)

The quickly changing contribution T N,osc(t ) vanishes under
time averaging. Therefore this term describes damping ef-
fects in constant magnetic fields or under the influence of
anisotropy, and it is irrelevant for nutational switching, sim-
ilarly to the term 〈α

η
�L〉t in Eq. (6). Nutational switching is

only described by the last term in Eq. (12), which is analogous
to 〈γ�L × μ0Heff〉t in Eq. (6). For further analyzing the
impact of nutation on the order parameter, we will neglect all
other terms. The second derivative N̈ is then given by

N̈ · êϑ = −M0γμ2
0

(
êϑ ·

ω(ωn − ω)Hosc + α
η

Ḣosc

(ωn − ω)2 + α2

η2

)
êr · Hosc,

(14)

N̈ · êϕ = −M0γμ2
0

(
êϕ ·

ω(ωn − ω)Hosc + α
η

Ḣosc

(ωn − ω)2 + α2

η2

)
êr · Hosc,

(15)

see Appendix F for the derivation. Here we neglected the
influence of the Zeeman field on the nutation frequency, mean-
ing ωn,A = ωn,B = ωn. This is justified, as |êr · Hosc| � ωp �
ωn. In Eqs. (14) and (15), two different kinds of inertia appear.
On the left-hand side, the second time derivative of the order
parameter N indicates inertia due to the antiferromagnetic
exchange coupling. The consequence of this type of inertia is
that the order parameter can keep rotating even if no external
torque is acting on it, since the energy can be transformed
between the exchange and anisotropy terms [27]. Nutational
inertia is found on the right-hand side. Energy can be pumped
into the nutation amplitude by applying a terahertz magnetic
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FIG. 6. Illustration of the nutational switching mode in AFMs
for a linearly polarized field. (a) The right-hand side of Eq. (16) as
a function of ϑ . (b, c) Illustrations of the switching modes when
applying a linearly polarized magnetic field to AFMs for external
field frequencies ω (b) below and (c) above the nutation frequency
ωn.

field. Then the finite nutation amplitude exerts a torque on the
order parameter. Similarly to FMs, Eqs. (14) and (15) show
that if the order parameter is perpendicular to the external
field, the orientation is stable or unstable. We will further
analyze Eqs. (14) and (15) for linearly and circularly polarized
fields.

B. Nutational switching for linearly polarized fields

Next we investigate the behavior of the order parameter N
in a linearly polarized magnetic field along the z axis, Hosc =
h cos(ωt )êz. For this purpose we substitute the magnetic field
in Eqs. (14) and (15). For the êϑ component of N̈ we find

N̈ · êϑ = γ 2μ2
0h2

8

ω(ωn − ω)

(ωn − ω)2 + α2

η2

sin(2ϑ ). (16)

Figure 6(a) shows an illustration of the right-hand side
of Eq. (16). If the external frequency ω is smaller than the
nutation frequency ωn, the order parameter is stable if it is
perpendicular to the external field at ϑ = π/2. N is unstable
if it is aligned with the external field at ϑ = 0 or ϑ = π .
Consequently, the order parameter aligns itself perpendicular
to the external field. The qualitative behavior is the same as
for FMs. Figure 6(b) shows an illustration of this switching
mode. For ω > ωn the parallel orientation ϑ = 0, π is sta-
ble and the perpendicular orientation ϑ = π/2 is unstable.
Therefore the order parameter aligns itself along the external
field. Figure 6(c) shows an illustration of the latter switching
mode. Differently to FMs, there are two different switching
modes depending on the frequency of the external field Hosc.
These switching modes are also shown in Supplemental Video
3 [26].

For a linearly polarized field along the z direction, from
Eq. (15) immediately follows N̈ · êϕ = 0. Therefore, nutation
for linearly polarized fields only leads to tilting but not to a
rotation around the z direction.

Compared to the ferromagnetic case, there is also a dif-
ferent dependence on the material parameters. For α → 0 we
get ωn−ω

(ωn−ω)2+ α2

η2

→ (ωn − ω)−1. This is different from the fer-

romagnetic case, where ϑ̇ = 0 for α → 0. However, in AFMs
the tilting vanishes exactly at the resonance frequency and the
tilting velocity is the highest for ω = ωn ± α/η.

FIG. 7. 90◦ switching of the order parameter N using a lin-
early polarized field along the z axis. The material parameters are
α = 0.01, η = 10 fs, M0 = 2μB, and a cubic anisotropy with K4 =
10−24 J. The magnetic field strength is μ0h = 5 T, the field frequency
is ω = 1 × 1014 s−1, and the pulse width is σ = 20 ps.

Next we use atomistic spin simulations to confirm the an-
alytical prediction that 90◦ switching with linearly polarized
fields is possible. This switching mode is especially important
in AFMs, as it can be detected by, e.g., anisotropic magne-
toresistance, while a 180◦ reorientation of the order parameter
cannot be observed experimentally. We consider a system
consisting of 4 × 4 × 4 antiferromagnetically coupled spins
in a simple cubic arrangement with free boundary condi-
tions. Furthermore, there is cubic anisotropy described by the
Hamiltonian Hani = −K4(M4

Ax + M4
Bx + M4

Ay + M4
By + M4

Az +
M4

Bz )/M4
0 . At t = 0 ps, the order parameter points along the

z direction. We apply a linearly polarized field below the
nutation frequency ωn along the z direction.

Figure 7 shows that 90◦ switching in AFMs is possible
using a linearly polarized field. The pulse width σ = 20 ps
in this simulation is identical to the value 20 ps used in the
FM case. However, the switching time, i.e., the time required
for the z component of the order parameter to reach 1/e of its
initial value, is only 5 ps instead of 23 ps. Similarly to FMs,
it takes a long time until the nutation is excited, as the order
parameter is close to an equilibrium orientation. Applying an
oscillating field slightly tilted from the equilibrium direction
might significantly increase the speed of nutational switching.

Figure 8 shows that the switching time is reduced in
AFMs compared to FMs for all values of inertial parameter
η, external field strength h, and damping α examined. The
differences are especially pronounced for low values of η,
weak magnetic fields h, and small values of α. Figure 8(a)
shows that for low values of η, the switching time diverges at
different rates for AFMs and FMs. For AFMs, 90◦ switching
is possible in around 10 ps for η between 10 and 100 fs.
In contrast, in FMs, 90◦ switching can only be observed in
under 30 ps for η around several hundred femtoseconds. For
large values of η, the switching time in AFMs and FMs is
similar. Figure 8(b) shows that nutational switching within
a few tens of picoseconds requires field strengths of several
tesla in both AFMs and FMs. The lower switching time in
AFMs compared to FMs is more pronounced for small field
strengths, while in strong magnetic fields, the switching time
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FIG. 8. Comparison of the switching times tswitch in FMs and
AFMs. Shown is the time needed for the magnetization Mz or
staggered magnetization Nz to decay to 1/e of its initial value. We
consider a system without anisotropy or constant external field. The
exchange constant is JFM = −JAFM = 1.602 × 10−22 J. For the FM
the field frequency is set to ω = 1/η, while for the AFM it is set to
ω = √

1 + 2γ Jη/M0/η − α

η
.

becomes similar. Low values of α lead to diverging switching
times in FMs but not in AFMs, see Fig. 8(c). For FMs this is
not surprising, because the tilting velocity ϑ̇ is proportional
to α for resonance according to Eq. (7). Since the limit of
low η, h and α is relevant for the experimental realization,
observing nutational switching might be more viable in AFM
materials.

C. Circularly polarized fields

Next we investigate the response of the order parameter
N to a circularly polarized magnetic field applied in the xy
plane. We substitute the magnetic field Hosc = h[cos(ωt ) êx +
sin(ωt ) êy] in Eqs. (14) and (15) and take the time average
over one nutation period. This results in

N̈ · êϑ = − (γμ0h)2

4

(ωn − ω)ω

(ωn − ω)2 + α2

η2

sin (2ϑ ), (17)

N̈ · êϕ = (γμ0h)2
α
η
ω

(ωn − ω)2 + α2

η2

sin(ϑ ). (18)

An illustration of the right-hand side of Eq. (17) is shown
in Fig. 9(a). Again, different from the FM case, the sign of
N̈ · êϑ in Eq. (17) depends on the external field frequency ω.
For a frequency lower than the nutation frequency ω < ωn, the
order parameter is stable if it is perpendicular to the external

FIG. 9. Illustration of the nutational switching mode in AFMs for
a circularly polarized field. (a) The right-hand side of Eq. (17) as a
function of ϑ . (b, c) Illustration of the switching modes when apply-
ing a circularly polarized magnetic field to AFMs for frequencies ω

(b) below and (c) above the nutation frequency ωn.

FIG. 10. 180◦ switching of the order parameter N using a circu-
larly polarized field in the xy plane. The material parameters are α =
0.05, η = 10 fs, M0 = 2μB, J = 1.602 × 10−22 J = 1 meV and a
uniaxial anisotropy along the y axis with Ky = 10−24 J. The magnetic
field strength is μ0h = 5 T, the field frequency is ω = 1.1 × 1014 s−1,
and the pulse width is σ = 2 ps.

field at ϑ = 0 or ϑ = π , and unstable if it is in the plane
of the field at ϑ = π/2. For all other orientations, the order
parameter will align itself perpendicular to the external field,
similarly to the FM case. This switching mode is shown in
Fig. 9(b). For frequencies higher than the nutation frequency
ω > ωn, the order parameter is stable if it is in the plane of
the external field and unstable if it is perpendicular to the
magnetic field. Therefore the order parameter aligns itself in
the plane of the external field, where it rotates according to
Eq. (18). This can be used for 180◦ switching, as illustrated in
Fig. 9(c).

Again, in contrast to FMs, in AFMs we find two possible
switching modes: from the plane of the excitation towards the
perpendicular direction, or the other way around, depending
on the excitation frequency. These switching modes are also
visualized in Supplemental Video 4 [26]. This is a conse-
quence of the AFM coupling. In a FM, a state can only be
stationary if the torque exerted by the external field vanishes.
In AFMs a state can also be stationary if the torques exerted
on the two sublattices cancel each other. This is the case
for ϑ = π/2. Another difference from the FM case is that
ϑ = 0 and π always have the same stability, instead of one
configuration being favored depending on the sense of rotation
of the external field. This can be explained by the sublattice
symmetry of AFMs. Since the sublattices are identical, the
order parameter has to behave the same way if its direction is
inverted. Equation (18) shows that the order parameter rotates
around the z axis, similarly to the angular momentum in the
single-spin case in Eq. (9). The rotation vanishes if the order
parameter is parallel or antiparallel to the external field.

We also examine the behavior of the order parameter using
atomistic spin simulations. Analogously to the FM case, we
use circularly polarized pulses for 180◦ switching along the
y axis. We consider a system with uniaxial anisotropy along
the y axis, Hani = − Ky

M2
0
(M2

Ay + M2
By). At t = 0 s, the order

parameter is parallel to the y direction.
Figure 10 shows that 180◦ switching is possible using

circularly polarized fields. Compared to FMs, significantly
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FIG. 11. Comparison between precession frequency
γμ0|Hosc|/(2π ) and nutation-driven 180◦ switching frequency
fϕ . The material parameters are as in Fig. 10 but with zero
anisotropy. A circularly polarized field is continuously applied in the
xy plane with ω = 1.12 × 1014 s−1. fϕ is calculated for a rotation
around the z axis over the first half period.

lower pulse widths are sufficient, σ = 2 ps instead of σ = 10
ps in Fig. 5. Moreover, the switching itself is possible within
5 ps. This is a significant advantage, as the switching process
is faster. Another advantage is that in this case the order
parameter always remains parallel to the plane of the magnetic
field. Therefore the switching mode can fully invert the spin
without relying on relaxation. Nevertheless, the anisotropy
energy is an order of magnitude lower than in the FM example
in Fig. 5. Atomistic spin simulations indicate that nutational
switching in AFMs is only possible for very weak anisotropy.

For a continuously applied ac magnetic field, the order
parameter continuously rotates in the xy plane with frequency
fϕ = ϕ̇/(2π ). To investigate how this frequency varies for
different material parameters, we will neglect the uniaxial
anisotropy, since otherwise the rotation frequency is not a
constant but varies with the angle ϑ . Figure 11(a) shows that
the switching frequency increases with increasing magnetic
field, as Eq. (18) implies. Note that Eq. (18) does not give
the rotation frequency directly. Therefore we can expect only
qualitative agreement and not quantitatively the same rela-
tionship. For field strengths of several tesla, the switching
frequency fϕ significantly exceeds the precession frequency
ωp = γ h at comparable magnetic fields. The reason for this
is that the resonant excitation of the nutation induces a torque
proportional to h2, while the velocity of precessional switch-
ing is proportional to h. A field strength of 5 T switches the
spin in approximately 2.5 ps. Using higher field strengths
than 5 T provides only diminishing returns, since deviations
from the linear-response relation fϕ ∝ h2 may be observed
in this regime. Switching is also possible for lower field
strengths but is significantly slower. The simulations indicate
that for field strengths lower than 1 T, switching becomes
impossible.

Figure 11(b) shows that the switching speed is highest for
α = 0.01. For very low values of α the switching frequency
is diminished but is still significantly higher than for pre-
cessional switching. For a value of α greater than 0.01, the
switching frequency drops significantly as the nutation be-
comes suppressed. Therefore, nutational switching can most
likely be observed in the low-damping regime.

V. CONCLUSION

Using analytic methods and numerical spin simulations of
the ILLG equation, we explored nutation-driven switching
using oscillating magnetic fields. Analytically, we demon-
strated that a sinusoidal magnetic field excites a nutational
motion of the magnetic moment around the angular momen-
tum, with a resonant enhancement at the nutation frequency.
The nutation in conjunction with the oscillating field exerts a
torque on the angular momentum.

This torque can drive either 90◦ or 180◦ nutational switch-
ing, depending on the polarization and the frequency of the
field. A linearly polarized magnetic field applied to a FM
aligns the angular momentum perpendicular to the field. Us-
ing numerical spin simulations, we demonstrated that this
enables 90◦ switching using Gaussian pulses for materials
with cubic anisotropy. A circularly polarized field in the xy
plane aligns the angular momentum along the z direction.
The angular momentum continuously rotates in the xy plane,
enabling 180◦ switching for Gaussian pulses.

Nutational switching in AFMs is overall similar to FMs
for external field frequencies below the nutation frequency,
but it proceeds faster because of the intrinsic inertia caused
by the exchange interaction between the sublattices. How-
ever, for frequencies above the nutation frequency, the order
parameter aligns itself parallel to the external field. For cir-
cularly polarized fields, this means that the order parameter
rotates in the plane of the external field with high fre-
quency. The rotation frequency ϕ̇ ∝ h2 increases faster than
the precession frequency ωp = γ h, enabling faster switching
than using precession-based methods. Nutational switching
in AFMs is favored in materials with low damping and low
anisotropy.

Using realistic parameter values, we found that a suf-
ficiently fast nutational switching can be observed for
oscillating magnetic fields with an amplitude of μ0h = 5 T,
the technology for achieving which is likely not available at
the present moment. However, by choosing the right material
the required field strengths might be significantly lowered.
As nutational switching is tied to the nutation amplitude,
materials with large values of η can reduce the required
magnetic fields. Furthermore, switching is possible at lower
magnetic fields than 5 T, even though it is significantly slower.
An interesting possibility for further studies is generating
a large nutation amplitude with a dc magnetic field pulse.
The nutation energy might then be used for switching using
a significantly weaker terahertz ac magnetic field. Constant
field pulses can be generated using linear accelerators. More
accessible methods for this in the future include magnetic-
field-enhancing metamaterials [28], vector laser beams [29],
or ultrafast electronic switches [30]. In the future, nutation
might be used for faster and more energy-efficient switching
of the magnetic state, as the energy stored in the nutation can
be extracted during the switching.
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APPENDIX A: REPRESENTING THE ILLG EQUATION
USING THE ANGULAR MOMENTUM

In this section we express the ILLG equation (1) using the
angular momentum Li. The angular momentum is given by
[5]

Li = 1

γi
Mi − ηi

M0,iγi
Mi × Ṁi = 1

γi
M i − �Li, (A1)

if an inertial term is considered.
The time derivative of the angular momentum is then de-

scribed as

L̇i = 1

γi
Ṁi − ηi

M0,iγ
M i × M̈i. (A2)

Next we eliminate M̈i from Eq. (A2) using the ILLG equa-
tion (1). This results in

γiL̇i = γi

(
1

γi
Ṁi − ηi

M0,iγi
Mi × M̈ i

)

= −γiMi × μ0Heff,i + αi

M0,i
M i × Ṁi. (A3)

Equation (A3) describes that the time evolution of the angular
momentum is driven by a precessional torque and a damping
term.

By using the fact that M i × Ṁi = γiM0,i

ηi
( 1
γi

Mi − Li ) ac-
cording to Eq. (A1), we obtain

L̇i = −M i × μ0Heff,i + αi

γiηi
Mi − αi

ηi
Li. (A4)

Therefore we found a first-order explicit differential equa-
tion for Li. Next we express Ṁ i from Eq. (A1). This can be
done by multiplying the equation by Mi× and using the triple
vector product

Mi × Li = − ηi

γiM0,i
((Mi · Ṁ i )︸ ︷︷ ︸

=0

Mi

− (Mi · Mi )︸ ︷︷ ︸
=M2

0,i

Ṁ i ) = ηiM0,i

γi
Ṁ i. (A5)

Here we used that the ILLG equation conserves the length of
the magnetic moment, meaning that Mi and Ṁi are perpendic-
ular to each other. The new equations of motion can be written
as

L̇i = −M i × μ0Heff,i + αi

ηi

(
1

γi
Mi − Li

)
, (A6)

Ṁ i = γi

ηiM0,i
Mi × Li. (A7)

According to Eq. (A1), we can write M i as Mi = γi(Li +
�Li ). By substituting this into Eq. (A7) we obtain

L̇i + �L̇i = γi

ηiM0,i
�Li × Li. (A8)

Now we can use Eq. (A6) to eliminate L̇i, resulting in Eqs. (3)
and (4) in the main text.

APPENDIX B: DIFFERENTIAL EQUATION
FOR THE NUTATION VECTOR

We will assume that the system is originally in equilibrium,
where Li and Mi are parallel. The nutation is excited by
the oscillating external field, which is assumed to be small
in order to remain in the linear-response regime. While the
length of Mi is conserved in Eq. (1), in the limit of low
nutation amplitude it can also be assumed that the magni-
tude of Li is conserved on the timescale of the order of the
nutation period. We set Li = L0,iêr,i, and we assume �Li =
ai(t )êϑ,i + bi(t )êϕ,i. The assumption that the nutation is in the
plane perpendicular to Li is justified for a small nutation am-
plitude, because Li · �Li = −|�Li|2 ≈ 0. We substitute the
approximation for �Li into Eq. (4). Furthermore, we assume
that the time derivatives of the basis vectors êr,i, êϕ,i, and êϑ,i

can be neglected on the fast timescale on which the nutation
takes place. This results in

ȧiêϑ,i + ḃiêϕ,i = M0,i

ηi
(−aiêϕ,i + biêϑ,i )

+ M0,iêr,i × μ0Heff,i + γi(aiêϑ,i × μ0Heff,i

+ biêϕ,i × μ0Heff,i ) − αi

ηi
(aiêϑ,i + biêϕ,i ).

(B1)

By projecting on the êϑ,i and êϕ,i directions we obtain

ȧi = −αi

ηi
ai + L0,iγi

M0,iηi
bi + γibiμ0Heff,i · êr,i

− M0,iêϕ,i · μ0Heff,i, (B2)

ḃi = −αi

ηi
bi − L0,iγi

M0,iηi
ai − γiaiμ0Heff,i · êr,i

+ M0,iêϑ,i · μ0Heff,i. (B3)

To express L0,i, we use the approximation

L2
0,i =

∣∣∣∣ 1

γi
M i − ηi

M0,iγi
M i × Ṁi

∣∣∣∣
2

= 1

γ 2
i

|Mi|2 + η2
i

γ 2
i

|Ṁi|2

≈ 1

γ 2
i

|Mi|2 = M2
0,i

γ 2
i

. (B4)

Here we used the fact that Mi · (Mi × Ṁi ) = 0 and Mi ⊥
Ṁ i. This approximation becomes exact for vanishing nutation
amplitude. Using this we obtain L0,iγi

M0,iηi
≈ 1

ηi
. Next we combine

Eqs. (B2) and (B3) into

∂t (ai + ibi ) = − αi

ηi
(ai + ibi ) − L0,iγi

M0,iηi
(iai − bi )

− γi(iai − bi )μ0Heff,i · êr,i

− M0,i(êϕ,i − iêϑ,i ) · μ0Heff,i. (B5)

By defining ci(t ) = ai(t ) + ibi(t ), this simplifies to

ċi = −iωn,ici(t ) − αi

ηi
ci(t )

− M0,i(êϕ,i − iêϑ,i ) · μ0Heff,i, (B6)

with ωn,i = 1
ηi

+ γiμ0Heff,i · êr the nutation frequency.
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Next we will solve Eq. (B6) for a single macrospin describ-
ing a ferromagnetic particle. As there is only one sublattice,
we drop the index i. Assuming that Heff does not depend
on the nutation amplitude c(t ), a closed-form solution can be
calculated. The solution to the homogeneous part is given by

chom(t ) =c0e− α
η

t e−i
∫ t

0 ωn (t ′ )dt ′
. (B7)

The nutation is a circular motion with exponentially decaying
amplitude.

In the presence of an effective field Heff , the solution to the
inhomogeneous equation is given by

c(t ) = chom(t )

(
1 − M0

∫ t

0
dt ′c−1

hom(t ′) (êϕ − iêϑ ) · μ0Heff (t ′)
)

.

(B8)

In the main text we rewrote Eq. (B8) in the form of Eq. (5)
for analyzing the nutation amplitude in the presence of
anisotropy, a static field, and an oscillating field.

APPENDIX C: CONNECTION BETWEEN DAMPING
AND NUTATION

For a system with an oscillating field, uniaxial anisotropy,
and a static field, we can explicitly evaluate the damping term
〈 α

η
�L〉t in Eq. (6). For this purpose we use the closed-form

solution for the nutation, Eq. (B8). By using ωn ≈ 1
η

and
〈Heff〉t = 〈Hosc(t ) + H0〉t = H0, we arrive at

〈
α

η
�L

〉
t

= M0μ0
α

1 + α2
[(êϑ · H0)êϑ + (êϕ · H0)êϕ

+ α[(êϑ · H0)êϕ − (êϕ · H0)êϑ ]]. (C1)

The first two terms describe the same damping process as
in the LLG equation. The angular momentum will align itself
parallel to the magnetic field H0. The speed of the relaxation
is controlled by the parameter α. Note that Eq. (C1) does not
explicitly depend on η, demonstrating that there are no inertial
effects in this case. The third and fourth terms on the right-
hand side of Eq. (C1) describe a damping-related modification
to the precession frequency.

APPENDIX D: NUTATION IN ANTIFERROMAGNETS

We express the angular momenta of the sublattices in
spherical coordinates LA = L0êr,A and LB = L0êr,B. In AFMs,
the total magnetization is minimized by the AFM coupling,
M = MA + MB ≈ 0. Therefore the angular momenta of the
two sublattices must be approximately antiparallel, LA ≈
−LB. This enables us to express the orientation of the sub-
lattices in terms of two global angles ϑ = ϑA and ϕ = ϕA.
These angles define the orientation of the order parame-
ter N = MA − MB. For the basis vectors this means êr,A =
−êr,B, êϑ,A = êϑ,B, and êϕ,A = −êϕ,B. Here the perpendicu-
lar component of the effective field (êϕ,i − iêϑ,i ) · μ0Heff,i in
Eq. (B6) contains terms which are linear in cA and cB because
of the AFM exchange interaction. This leads to the following

system of differential equations:

ċA = −iωAcA − α

η
cA − iγ 2L0Jc∗

B + fA(t ), (D1)

ċ∗
B = −iωBc∗

B − α

η
c∗

B + iγ 2L0JcA + f ∗
B (t ), (D2)

with ωA/B=γμ0Hext · êr ± ( 1
η
−γμ0Hani,A/B · êr + γ 2L0

J
M2

0
)

and fA/B = M0μ0(êϕ ∓ iêϑ ) · (Hext + Hani,A/B).
The homogeneous solution to this system of differential

equations can be obtained by diagonalizing the corresponding
dynamical matrix, yielding

(
cA

c∗
B

)
=

(
σA

1

)
e−iωn,At e− α

η
t +

(
σB

1

)
eiωn,Bt e− α

η
t
, (D3)

with A = [M0 − 2K (u · êr )2ηγ ] · [M0 + 2Jηγ − 2K (u · êr )2

ηγ ], ωn,A/B = (
√

A
M0η

± γ êr · μ0H0), σB =
M0+J η γ−2 K η γ (êr ·u)2−√

A
J η γ

, and σA = σB + 2
√

A
Jηγ

:

cA = μ0M0
(êϕ − iêϑ )

σA − σB
·
[

σBhe−iωt

i(ωn,B − ω) + α
η

+ σAσBh∗eiωt

i(ωn,B + ω) + α
η

− σAhe−iωt

−i(ωn,A + ω) + α
η

− σAσBh∗eiωt

−i(ωn,A − ω) + α
η

]
, (D4)

cB = M0μ0
(êϕ + iêϑ )

σA − σB
·
[

h∗eiωt

−i(ωn,B − ω) + α
η

+ σAhe−iωt

−i(ωn,B + ω) + α
η

− h∗eiωt

i(ωn,A + ω) + α
η

− σB he−iωt

i(ωn,A − ω) + α
η

]
. (D5)

Discussing nutational switching based on the above equa-
tion is rather convoluted. Therefore we will only consider the
case where ωn,A ≈ ωn,B ≈

√
A

M0η
, which is usually the case, as

the nutation frequency
√

A
M0η

is much greater than the precession
frequency γ |H0|. Moreover, for σA → 0 the nutation modes
of the sublattices Eq. (D3) decouple. Following a Taylor ex-
pansion of

√
A in Jηγ up to the second order, we find σA =

Jηγ

2[M0−2Kηγ (êr ·u)2] . If the anisotropy is weak, the sublattices de-

couple under the condition J � 2 M0
ηγ

. In the simulations we
considered, η = 10 fs and M0 = 2μB, requiring J � 1.055 ×
10−20 J. For the value of J = 1.602 × 10−22 J = 1 meV, this
approximation is well justified. In this case, Eqs. (D4) and
(D5) have the same form as the single-spin nutation solution
Eq. (5).

APPENDIX E: ORDER PARAMETER IN AFMS

In this section we derive the differential equation (12) for
the order parameter N in AFMs. The derivation is similar to
a previous work by Gomonaı̆ et al. [31] without the inertial
term. We add �L̇A/B to Eq. (3) and multiply by γA/B = γ .
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This results in the following differential equations for the
magnetizations MA/B of the different sublattices:

ṀA = −γ MA × μ0HA + γ J

M2
0

MA × MB +
(

∂t + α

η

)
γ�LA,

(E1)

ṀB = −γ MB × μ0HB + γ J

M2
0

MB × MA +
(

∂t + α

η

)
γ�LB,

(E2)

with HA/B = Hext + Hani,A/B. Next we define the magnetiza-
tion M = MA + MB and the staggered magnetization N =
MA − MB. The effective fields for the magnetization and
staggered magnetization are given by HM = (HA + HB)/2
and HN = (HA − HB)/2. By summing up and subtracting
Eqs. (E1) and (E2), we find a system of differential equa-
tions for M and N:

Ṁ = −γ (M × HM + N × μ0HN ) + T M, (E3)

Ṅ = −γ (N × μ0HM + M × μ0HN ) + γ J

M2
0

N × M + T N ,

(E4)

with T M = (∂t + α
η

)(�LA + �LB) and T N = (∂t +
α
η

)(�LA − �LB).
By multiplying Eq. (E4) with N× and applying the triple

vector product, we can find an explicit expression for M.
Using the fact that for antiferromagnets M · N = 0, and the
approximation that the anisotropy is much smaller than the
exchange interaction, we find the expression

M ≈ − 4

γ J
(N × Ṅ + γ N × (N × μ0HM ) − N × T N ).

(E5)

We can now substitute this into Eq. (E3). This reveals

N × N̈ + γ ∂t (N × (N × μ0HM ) − N × T N )

− γ 2J

4
N × μ0HN

= −γ (N × Ṅ + γ N × (N × μ0HM )

− N × T N ) × μ0HM − γ J

4
T M . (E6)

We can now simplify N × (N × μ0HM ) = (N ·
μ0HM )N − 4M2

0μ0HM . Therefore we obtain [N × (N ×
μ0HM )] × μ0HM = (N · μ0HM )(N × μ0HM ). Moreover,
using the assumption that the nutation �LN occurs in
the plane perpendicular to N, we obtain N · T N ≈ 0
and N · Ṅ ≈ 0 from Eq. (E4), i.e., the length of the
staggered magnetization is conserved. This implies

N × (Ṅ × μ0HM ) ≈ (Nμ0HM )Ṅ. This simplifies Eq. (E6)
to (12) in the main text.

APPENDIX F: NUTATION TERM IN
ANTIFERROMAGNETS IN SPHERICAL COORDINATES

In antiferromagnets, the term γ (N × T N ) × μ0HM ≈
γ (N × ∂t�LN ) × μ0HM in Eq. (E6) is responsible
for nutational switching. Here we evaluate this term
using the closed-form solution for the nutation vector
in Eqs. (D4) and (D5). We assume ωn,A ≈ ωn,B ≈ ωn,
which is valid since the precession frequency is much
smaller than the nutation frequency. First we know that
�LN = Re{cA}êϑ + Im{cA}êϕ − (Re{cB}êϑ − Im{cB}êϕ ) =
Re{cA − c∗

B}êϑ + Im{cA − c∗
B}êϕ . According to Eqs. (10) and

(11),

cA − c∗
B = M0μ0

{ −êϕ + iêϑ

(ωn − ω)2 + α2

η2

·
[

i(ωn − ω)(−he−iωt

+ h∗eiωt ) + α

η
(he−iωt + h∗eiωt )

]}

= M0μ0

[ −êϕ + iêϑ

(ωn − ω)2 + α2

η2

·
(

ωn − ω

ω
Ḣosc + α

η
Hosc

)]
. (F1)

T N can be approximated in the following way:

T N ≈ ∂t�LN = −M0μ0

[
êϕ ·

(ωn − ω)ωHosc + α
η

Ḣosc

(ωn − ω)2 + α2

η2

]
êϑ

(F2)

+ M0μ0

[
êϑ ·

(ωn − ω)ωHosc + α
η

Ḣosc

(ωn − ω)2 + α2

η2

]
êϕ.

(F3)

Here we used the fact that Ḧosc = −ω2Hosc, where Hosc =
he−iωt + h∗eiωt is the time-dependent oscillating field. Using
Eq. (F1) and N = 2M0 · êr , we can write Eq. (12) in the limit
where only the nutation term is kept on the right-hand side as

N × N̈ ≈ − 2γ (M0μ0)2

[
êϕ ·

ω(ωn − ω)Hosc + α
η

Ḣosc

(ωn − ω)2 + α2

η2

]

× (êϕ × Hosc)

− 2γ (M0μ0)2

[
êϑ ·

ω(ωn − ω)Hosc + α
η

Ḣosc

(ωn − ω)2 + α2

η2

]

× (êϑ × Hosc). (F4)

The projections of N̈ on the êϑ and êϕ directions are then
given by Eqs. (14) and (15), respectively.
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