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Photoinduced prethermal order parameter dynamics in the two-dimensional large-N
Hubbard-Heisenberg model
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We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron
model, which is driven with a pulsed electric field of finite duration. In order to go beyond a mean-field treatment
of the electronic interactions we adopt a large-N generalization of the Hubbard model and combine it with
the semiclassical fermionic truncated Wigner approximation as a time evolution method. This allows us to
calculate dephasing corrections to the mean-field dynamics and to obtain stationary states, which we interpret as
prethermal order. We use this framework to simulate the light-induced transition between two competing phases
(bond density wave and staggered flux) and find that the postpulse stationary state order parameter values are
not determined alone by the amount of absorbed energy but depend explicitly on the driving frequency and field
direction. While the transition between the two prethermal phases takes place at similar total energies in the low-
and high-frequency regimes, we identify an intermediate-frequency regime for which it occurs with minimal
heating.

DOI: 10.1103/PhysRevB.106.214318

I. INTRODUCTION

The interaction of electromagnetic fields with matter is
at the heart of many measurement techniques, like angle-
resolved photoemission [1,2], that have shaped our today’s
understanding of strongly correlated electron materials in
equilibrium. Ultrashort laser pulses [3] allow us to transfer
the setups to nonequilibrium situations where, for instance,
the dynamics of electrons under strong laser driving can be
recorded in real time. The list of reported genuine out-of-
equilibrium phenomena in driven solids includes the transient
manipulation of band structures (“Floquet engineering” [4,5]),
the switching to hidden states in materials [6], and light-
induced superconductivity [7–9]. A central research question
is to identify “nonthermal pathways” [10] to control ordered
phases in materials. Currently, there is a particular interest
in (quasi-) two-dimensional materials like transition metal
dichalcogenides [11] that may allow for important applica-
tions. Correlated electron systems typically host a number of
competing ordering tendencies, which can often be captured
already at mean-field level [12,13]. Selecting and enhancing
particular types of order, e.g., superconductivity [14–18], with
electromagnetic fields presents the prospect of (transiently)
engineering desired physical properties in materials.

On the theory side, such scenarios can often be described
within phenomenological time-dependent Ginzburg-Landau
theories [19–22]. Still, microscopic “bottom-up” modeling
allows for a more systematic inclusion of electronic cor-
relation effects and can be made more material specific.
Despite a lot of ongoing method development in one [23,24]
and high spatial dimensions [25], it is challenging to imple-
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ment such simulations due to the lack of a general purpose
numerical time evolution method, especially in two spatial
dimensions. Nonequilibrium Green’s functions [26] are the
most versatile scheme, but they are, despite recent progress
[27–30], computationally demanding and often rely on ad-
ditional approximations like the generalized Kadanoff-Baym
ansatz [31,32]. Infinite periodic driving can be described by
effective Floquet Hamiltonians [4,33–35] but the effect of
heating [36,37] and possibly finite pulse durations [38,39]
restrict their applicability.

In this work we consider a two-dimensional lattice sys-
tem driven with a pulsed electric field of finite duration as
it is used in time-resolved ARPES experiments [40,41]. In
order to work within a well-controlled theoretical framework,
we make use of the limit of large fermion degeneracy. In
such a so-called large-N model, the two electronic spin states
are generalized to N internal “flavor” degrees of freedom.
N → ∞ is a natural classical limit [42] and one can derive
a systematic 1/N expansion around it [43–45]. We choose the
two-dimensional large-N Hubbard-Heisenberg model [43,46]
as a paradigmatic SU(N) generalization of the Hubbard model
with two competing phases, i.e., bond density wave and
staggered flux order. SU(N)-symmetric models have been
and continue to be a popular topic of theoretical research
[47–50], in particular in one spatial dimension [51–54]. An
additional motivation stems from experiments with ultracold
atoms [55–57].

The main focus of our study is the formation of prether-
mal order subsequent to the pulse. This refers to a regime
before thermalization, when quantum systems can dephase
into quasistationary states with long lifetimes [58–61], which
are characterized by the existence of additional conserved
quantities. This prethermalization dynamics will depend on
the specifics of the drive [61] and offers—if sufficiently
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understood—a way to transiently manipulate ordered phases
in a material or even to induce order which is inaccessible
in equilibrium. In this sense prethermal order is particu-
larly interesting because—unlike thermal states—it is not
only determined by the total amount of absorbed energy.
Methodwise, we combine the fermionic truncated Wigner
approximation (fTWA) [62,63] with the large-N setup allow-
ing us to include dephasing corrections at order 1/N to the
classical N → ∞ dynamics, which are responsible for the
formation of prethermal order [64].

The text is structured as follows: We start by introducing
the model with its mean-field phases and the time evolution
scheme in Sec. II. In particular, we describe how we obtain
stationary initial states at finite N . In Sec. III we discuss the
driven system, the effect of dephasing and how drive param-
eters influence the transition between the competing phases.
Sec. IV contains a summary as well as a discussion of the
results and possible next steps.

II. MODEL AND METHODS

A. The large-N Hubbard-Heisenberg model and its
classical limit

We consider fermionic annihilation and creation operators
c(†)

iα with lattice site i and α = 1, . . . , N internal flavor states.
N = 2 corresponds to the standard spin-full fermions. The
Hamiltonian of the SU(N)-symmetric Hubbard-Heisenberg
model reads as follows:

Ĥ = th
∑
〈i, j〉

(
N∑

α=1

c†
iαc jα + H.c.

)
− J

N

∑
〈i, j〉

∣∣∣∣
N∑

α=1

c†
iαc jα

∣∣∣∣
2

+ U

N

∑
i

(
N∑

α=1

c†
iαciα − N

2

)2

, (1)

where th(op), J , and U are free parameters. Here we have kept
Marston’s and Affleck’s original sign convention without a
minus sign in front of the hopping term. The U term describes
a Hubbard-type interaction and the J term derives from a
Heisenberg interaction. Both interaction types are included
explicitly in the model to allow for a smooth interpolation
between the limits N → ∞ and U → ∞ [43].

One can straightforwardly reformulate the model in terms
of the operators

ρ̂iα, jβ = c†
iαc jβ − 1

2δi jδαβ, (2)

similar to the one-particle reduced density matrix. Going one
step further, we introduce flavor-averaged operators

ρ̂i j = 1

N

∑
α

ρ̂iα, jα, (3)

which obey the commutation relations

[ρ̂i j, ρ̂mn] = 1

N
(δ jmρ̂in − δinρ̂m j ). (4)

We can readily see that 1
N plays the role of an effective h̄

and thus of the semiclassical expansion parameter. Hence, the
classical limit corresponds to N → ∞ and the operators ρ̂i j

become commuting classical variables ρi j .

At finite N , the ordering of products of the operators ρ̂i j

matters in principle and can lead to different classical lim-
its. The most common ordering convention for two quantum
operators Â, B̂ is symmetrization 1

2 (ÂB̂ + B̂Â) leading to the
Wigner-Weyl framework. In fact, the Hamiltonian (1) is not
modified by the symmetrization since 1

2 (ρ̂i j ρ̂ ji + ρ̂ jiρ̂i j ) =
ρ̂i j ρ̂ ji + 1

2N (ρ̂ii − ρ̂ j j ). Here the sum over nearest-neighbor
pairs yields a cancellation of the order 1/N terms and so the
classical limit of our model reads

H = N

{ ∑
〈i j〉

[th(ρi j + ρ ji ) − J|ρi j |2] + U
∑

i

ρ2
ii

}
. (5)

One can also view this classical Hamiltonian as obtained from
a mean-field decoupling of the original interaction terms. The
global prefactor N in front gives rise to a large deviation form
e−Nβĥ of the density operator that leads to a suppression of
fluctuations as N → ∞.

B. Equations of motion and fTWA

For the time evolution we adopt a variant of the semiclassi-
cal truncated Wigner approximation (TWA) scheme [65], the
fTWA [63,64,66,67]. The method was independently devel-
oped earlier under the name “stochastic mean-field approach”
[62,68–70]. It is based on the mean-field/classical equa-
tions of motion for the operators ρ̂i j . These can be obtained,
for instance, by calculating the Heisenberg equations of mo-
tion of the quantum Hamiltonian and then sending N → ∞.
Equivalently, one can start from the classical Hamiltonian and
derive its Hamiltonian equations of motion which, dressed
by an additional factor of i, coincide with the Heisenberg
equations of motion. They read:

i∂tρi j =
∑
a( j)

[th − Jρa( j), j]ρi,a( j) −
∑
a(i)

[th − Jρi,a(i)]ρa(i), j

+ 2U (ρ j j − ρii )ρi j, (6)

where a(i) denotes the set of all nearest-neighbor sites of
site i. In all TWA methods quantum mechanical expectation
values of operators are calculated from averages over classi-
cal Hamiltonian trajectories whose initial values are sampled
from a (quasi-)probability distribution, the Wigner function
W . Within fTWA the operators ρ̂iα, jβ act as the dynamical
variables. Here we apply the scheme directly to the SU(N)
variables ρi j [64]. The expectation value of a quantum oper-
ator Ô[ρ̂i j] that can be expressed in terms of some ρi j reads

〈Ô(t )〉 =
∫

dρi j (0)W (ρi j (0))OW (ρi j (t )), (7)

where OW (ρi j ) is the so-called Weyl symbol of Ô. It can
be different for different ways of writing Ô in terms of the
ρ̂i j [67]. In the following we would like to calculate phase
angles and absolute values of ρ̂i j , i.e., operations whose Weyl
symbols are not obvious. However, in the classical theory
N → ∞ it is clear that one can calculate these observables
straightforwardly from the values of the ρi j . Analogously to
(x̂ p̂)W = xp + O(h̄) in single-particle TWA, corrections to
Weyl symbols will be of order 1

N , e.g., | • |W = | • | + O( 1
N ).

Since we will work at large N , we are justified to neglect
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FIG. 1. Upper row: Unit cell used in this paper with two atoms
per cell. Lower row: Sketch of the spatial structure of the two
competing equilibrium phases Peierls (one strong bond ρ0 and three
identical weak bonds ρ1,2,3 per unit cell) and Flux (four complex
bonds with equal magnitude and nonvanishing plaquette flux).

these corrections. The Wigner function is constructed as a
multivariate Gaussian reproducing the quantum mechanical
means and (connected) covariances of the ρ̂i j in a quantum
state |ψ〉,

〈ρi j〉W
!= 〈ρ̂i j〉ψ, 〈ρi jρmn〉cc

W
!= 1

2
〈ρ̂i j ρ̂mn + ρ̂mnρ̂i j〉cc

ψ ∼ 1

N
.

(8)

The fTWA method generates a hierarchy of correlations akin
to the BBGKY hierarchy [71]. Despite some recent discussion
[69] about the connection of the two, a systematic picture how
to formulate fTWA in terms of more conventional hierarchy
approximations is still missing.

C. Equilibrium states of the model

The N → ∞ equilibrium zero temperature phase diagram
was first obtained using field theoretical methods [43,46].
Later it was re-examined [72] with quantum Monte Carlo also
for finite N < ∞. For a self-consistent mean-field solution,
one needs to define a unit cell. We choose Marston’s and Af-
fleck’s original tilted two-site unit cell depicted in the top row
of Fig. 1. We will always use periodic boundary conditions
(with respect to the lattice of unit cells) for quadratic systems
with at least 11 × 11 cells, i.e., V = 2 × 112 = 242 lattice
sites. The choice of the unit cell corresponds to a reduced
Brillouin zone, which is sketched with black color in Fig. 2.

1. Mean-field solution at N → ∞
The limit N → ∞ is a mean-field limit that corresponds to

a Hartree decoupling of the interaction: The way we write the
interaction terms with ρ̂i j operators determines their decou-
pling. Leaving the details for Appendix A, we obtain a set of
single-particle eigenenergies Ek± = ±[|εk − χk|2 + U 2(ρB −

Γ

X

M

(π,0)

(0, π)

FIG. 2. Single-particle mean-field band structure for J/th = 15
and a system size of Vu = 41 × 41 unit cells. The spectrum is sym-
metric around energy zero; here we only plot the upper half with
positive energy. The Peierls phase is gapped, while the Flux phase is
gapless. Inset: Sketch of the reduced Brillouin zone derived from the
unit cell in Fig. 1.

ρA)2]
1/2

. Charge-density wave (CDW) states ρA �= ρB would
lead to a gap in the single-particle spectrum. Some caution
needs to be taken when looking for a saddle point in the
mean-field free energy. The saddle point curvature in the U
direction is inverse to one of the J term (some more details
are given in the original publication [43]). The internal energy
(expectation value of the Hamiltonian) per flavor is given by

H/N = V

2

[
−U

(
ρ2

A + ρ2
B

) + J
3∑

i=0

|ρ0|2
]

+
∑

k

Ek (ρk+,k+ − ρk−,k−), (9)

where V is the total number of lattice sites. Using

U
(
ρ2

A + ρ2
B

) = U

2
(ρA + ρB)2 + U

2
(ρA − ρB)2, (10)

where ρA + ρB is fixed by the filling, we see that ρA = ρB is
required for a stable saddle point. It implies that in this model
CDWs are thermodynamically unfavorable due to the U term
in the Hamiltonian. In particular, the value of U is irrelevant
for the mean-field phase diagram. It is worth noting that this
is different for nearest-neighbor density-density interactions
instead of the Hubbard interaction. Setting ρA = ρB we obtain

H/N = V

2
J (|ρ0|2 + |ρ1|2 + |ρ2|2 + |ρ3|2)

+
∑

k

Ek (ρk+,k+ − ρk−,k−),

Ek = 2th[cos(kx ) + cos(ky)] − J (ρ∗
0 e−iky + ρ∗

1 eikx

+ ρ2eiky + ρ3e−ikx ). (11)

Due to the symmetry of Ek± around E = 0, the ground
state at half filling is always obtained by setting ρk−,k− = 1

2
and ρk+,k+ = − 1

2 for all momenta k. We find self-consistent
values for ρ0, ρ1 at zero temperature from the numerical
minimization of (11) using a simulated annealing algorithm.
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At half filling three phases are realized. First, the dimerized
bond density wave Peierls phase at large J/th has got real ρi

with one strong bond ρ0 	 ρ1 = ρ2 = ρ3. We introduce the
following order parameter for the Peierls phase:

OPeierls = |ρ0| − max
i=1,2,3

|ρi|. (12)

Second, the staggered Flux phase (also known as DDW phase)
at intermediate J/th comes with complex bonds ρi that are
equal in magnitude and multiply to a flux operator 
 = 
0ei�

around a plaquette with nonvanishing phase � �= 0. Hence,
we will consider

OFlux = �. (13)

Last, there is the uniform phase which is a stable saddle
point at all values of J but has the lowest free energy only
at J = 0. In the uniform phase the unit cell bonds are real and
OPeierls = OFlux = 0. The single-particle band structures ob-
tained from the mean-field calculation are plotted in Fig. 2 for
the reduced Brillouin zone. The bands in the figure correspond
to the electron removal/addition energies and do not directly
contain information about excited states of the system.

2. Nonzero temperatures

Since we are interested in the values of the order param-
eters after energy absorption due to the driving, we compare
our results with equilibrium at temperatures T > 0. In order
to determine the finite-temperature states, we need to include
the entropy term in the free energy. Since on the mean-field
level the ground state may be understood as a simple product
state of a single fermion species∣∣�̃MF

0

〉 =
∏

εk±<εF

c†
k± |0〉 (14)

with respect to the mean-field basis, we can use the formula
for the entropy of free fermions

S/N = 1

T

∑
εk

{nFD(εk )(εk − μ) + T ln[1 + e−(εk−μ)/T ]}

(15)

with the Fermi-Dirac distribution nFD(ε). This yields the fol-
lowing (Helmholtz) free energy F = 〈H〉 − T S,

F/N = J
∑
〈i j〉

|ρi j |2 −
∑
εk

β−1 ln[1 + e−β(εk−μ)]. (16)

We determined the minima of the free energy as well using
simulated annealing. In this paper we concentrate on half
filling and on a value of J = 15th, which lies in a region of
the phase diagram where the Peierls phase has the lowest free
energy. The results are shown in Fig. 3. From temperature zero
up to T ≈ 3.5th there is a regime in which all three phases are
stable. Up to T ≈ 1.6th the Peierls phase has the lowest en-
ergy, at more elevated temperatures the flux phase is preferred.
In the high-temperature phase all order is destroyed and only
the uniform phase is left. The order parameters display the
typical mean-field scaling with exponent β ∼ 1

2 . For larger
values of J the range of temperatures with stable order beyond
the uniform phase will be broader.

FIG. 3. Finite-temperature equilibrium states for the N → ∞
Hubbard-Heisenberg model with Vu = 11 × 11 unit cells, J/th = 15
and U = 0. Upper two rows: Helmholtz free energy F and total (in-
ternal) energy 〈Ĥ〉 per unit cell. Lower two rows: Order parameters
for the Flux and Peierls phases displaying the typical mean-field
scaling. At temperature T ≈ 1.5th there is a first-order transition
from Peierls to Flux order.

3. Order parameters in the finite-N model

It was demonstrated using quantum Monte Carlo [72]
that the mean-field saddle points yield a qualitatively correct
picture of the finite-N Hubbard-Heisenberg model down to
N = 6, albeit with renormalized order parameters and phase
boundaries. We can therefore work with the same order pa-
rameter definitions as for the infinite-N model but we need to
take care how to consistently calculate them within the TWA
scheme. In the numerical determination of the Flux order
parameter we average ei� over all trajectories, i.e., we work
with numbers on the unit circle. However, one needs to take
care of the spontaneous breaking of the orientation symmetry
of the plaquette flux. There are two ergodic components, for
which � lies in the intervals [0, π ] and [−π, 0], respectively.
Different fTWA trajectories can select different ergodic com-
ponents such that direct averaging of the order parameter may
become unphysical (analogous to averaging the magnetiza-
tion of a ferromagnet without explicit symmetry breaking).
Hence, in order to calculate the Flux order parameter directly,
we introduce a weak symmetry breaking iεmn( ĵmn − ĵnm) that
selects the � ∈ [0, π ] component. The current operator (for
lattice sites m, n) is given by

ĵmn = ith(c†
mcn − c†

ncm) = −2th Im(ρ̂mn). (17)

We tried out a few symmetry breaking strengths and con-
cluded that ε ∼ 10−3 gives the best balance of breaking the
symmetry but not influencing the dynamics too much. An-
other probe for long-range Flux order which is well defined
without symmetry breaking field [73] are current-current cor-
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relators of the form 〈 ĵmn ĵrs〉. We calculate these for two bonds
at the largest spatial separation in the system to detect long-
range order. Making use of the translational symmetry of the
system we determine the correlators for all translationally
equivalent pairs of unit cells and average over them.

4. Initial state for finite N

For N < ∞, it would be desirable to explicitly construct
the equilibrium states of the model as controlled starting
points for the light-driven dynamics. In complete generality,
this requires the calculation of 1/N corrections to the sad-
dle points and is a nontrivial task. The equilibrium states so
obtained would be stationary under the semiclassical time-
evolution. To proceed without a full calculation, we resort to a
simpler strategy and make direct use of the fTWA dynamics.
This is possible in at least to ways: We can adiabatically
switch on the interactions or we can construct an approximate
Wigner function which relaxes to a stationary state in the
phase of interest. The first strategy has the advantage that
for sufficiently slow switching the system can be prepared in
an equilibrium ground state, i.e., without additional heating.
However, it turns out to be challenging to implement this in
practice. For switching times of 1000t−1

h the final-state ener-
gies we obtained were significantly higher than those from
the strategy discussed below. Another difficulty is posed by
the fact that all three phases are stable and a suitable transient
symmetry breaking might be required to reach the desired
phase. We leave for future work a more detailed discussion
of adiabatic switching with fTWA.

In the following, we employ the conceptually simpler sec-
ond strategy and prepare a nonstationary Gaussian Wigner
function (8), which derives from an initial product state at half
filling of the form

∣∣�N
0

〉 =
∏

k

N∏
α=1

c†
k−,α

|0〉 , (18)

where k± label the mean-field modes. The idea behind this
is that we take the self-consistent mean-field data for the
one-particle density matrix and assume it will be close to the
equilibrium at large but finite N . The classical phase space
includes all variables ρk±,l± for momenta k, l . The nonvan-
ishing covariances of the state (18) are of the form 〈ραβραβ〉
and 〈ραβρβα〉. The complete initial data for a Gaussian Wigner
function of this type is listed in Appendix C. The undriven
system will relax to a stationary state on a characteristic
warm-up timescale. Later, when we investigate the dynamics
of the driven system we switch the drive on only after this
warm-up. A disadvantage of this procedure is that the result-
ing stationary state is not a ground state. This, however, is
not too problematic for this paper since we are only interested
in a stationary reference state in the Peierls phase. During
the warm-up the system may get pushed out of the Peierls
phase thereby restricting the range of N to which this strategy
can be applied. Figure 4 shows the time evolution of the or-
der parameters starting from a Wigner function derived from
(18). For N � 200 the dynamics leads to a decrease of the
Peierls order parameter, while OFlux remains zero at all times.
Around N ≈ 200 the system transitions to the Flux phase and

0.00

0.05

cu
rr
-c
ur
r

0

+π

O F
lu
x

0.0

0.25

0.5

O P
ei
er
ls

0 50 100 150 200 250

time t [1/th]

−1.50

−1.25

E
ki
n
/
(N
V
u
t h
)

N = 100

N = 150

N = 190

N = 200

N = 210

N = 250

N = 300

FIG. 4. Initial relaxation dynamics generated by a Gaussian
Wigner function corresponding to the state (18) in the finite-N
Hubbard-Heisenberg model with J = 15th, U = 0, and Vu = 11 ×
11 unit cells. The order parameters and the kinetic energy reach
a stationary state before time t = 250t−1

h for all shown values of
N except for N = 200 for which the relaxation takes longer than
1000t−1

h .

the dynamics is very slow. For smaller values N � 150, the
system ends up in the Uniform phase. In Fig. 5 we collect
the stationary values of the order parameters in Fig. 4. We
conclude that for J = 15th and a lattice with 11 × 11 unit cells
we can use this approximative approach for the initial Wigner
function down to values of about N = 200.

III. PHOTOEXCITATIONS

Now we turn to the dynamics induced by a time-dependent
electromagnetic field E (t ) using the Peierls substitution tech-
nique [74], which describes a classical electromagnetic field
(i.e., no quantized photons). Within this approach the hop-
ping matrix element acquires a time-dependent complex phase

FIG. 5. Stationary values of the order parameters after the warm-
up shown in Fig. 4. �Emf

tot = Etot − Emf
tot measures the amount of

correlation energy that is added to the system at time t = 0. We
omit the data at N = 200 because they were not relaxed after time
1000t−1

h .
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0.00

0.25
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A = 0.52
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tot kin Hei

0 10 20 30 40
time t [1/t ]
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0.0
0.5

A
(t
)
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time t [1/t ]

FIG. 6. Mean-field dynamics of order parameters in the photoex-
cited Hubbard-Heisenberg model with J = 15th, U = 0, and Vu =
41 × 41 unit cells. Left: Pulse amplitude of Ay = 0.48 yields oscilla-
tions of OFlux around average value zero. Right: Pulse amplitude of
Ay = 0.52 excites oscillations around nonvanishing average.

theiAi (t ), i ∈ {x, y}, where Ai(t ) is the vector potential. It is
related to the electric field Ei(t ) = −∂t Ai(t ) but for simplicity
we concentrate the discussion on the vector potential itself
with linearly polarized pulsed driving amplitudes of the form

Ai(t ) = Amax
i e− 1

2σ2 (t−t0 )2

sin[ω(t − t0)]. (19)

We will always work at a fixed pulse width σ = 4/th. In
the two-dimensional model there is an additional freedom of
choice for the polarization direction of the pulse. For initial
Peierls states there are two special directions: along or or-
thogonal to the strong bond. We will mostly orient the vector
potential along the direction of the strong bond (Ax = 0, Ay �=
0) and for comparison orthogonal to it (Ax �= 0, Ay = 0).

A. Mean-field dynamics N → ∞
The simplest dynamical approach is mean-field theory. It

corresponds to setting the variance of the Gaussian Wigner
function to zero and to consider only a single trajectory. For
now we set U = 0. Figure 6 shows exemplary results for
the order parameter dynamics with two different values of
the driving amplitude Ay. In both cases there are undamped
coherent oscillations of the bonds and of OFlux subsequent to
the pulse. It illustrates that within mean-field theory for the
Hubbard-Heisenberg model one does not reach a stationary
state on the timescales considered here due to the absence
of dephasing and collisions (however, this statement is not
generally true for all mean-field theories [75–77]).

Nevertheless, the system can absorb energy and it is pos-
sible to induce Flux order parameter oscillations around a
nonvanishing average value. However, the averaged absolute
values of the bonds need not match with the saddle point
symmetries of the equilibrium phases (e.g., all equal in the
Flux phase) as can be seen in the right column.

Figure 7 allows for a more systematic look at the energy
absorption. In (a) we vary the driving amplitude for some fixed

FIG. 7. Energy absorption (mean-field dynamics) after a Gaus-
sian pulse with Ax = 0, Ay �= 0 in a Hubbard-Heisenberg square
lattice with Vu = 41 × 41 unit cells, J/th = 15 and U = 0. (a) Post-
pulse total energy (per unit cell) plotted against the pulse amplitude.
Energy absorption is efficient only beyond a frequency-dependent
threshold amplitude. (b) Total energy plotted against the driving
frequency for fixed values of the amplitude. At small amplitudes two
absorption peaks are visible.

values of the frequency ω. All curves in the figure display
similar behavior: There is almost no energy absorption up
to a frequency-dependent threshold amplitude. Above it, the
total energy develops oscillatory patterns as a function of the
driving amplitude. We found that—in contrast to the threshold
regime—the precise shape of these patterns can depend on the
system size. Nevertheless, the averaged trends in the data are
consistent for different system sizes. A way to make sense of
this is to think about the Peierls phase as a minimum in a free-
energy landscape [10] that is separated from other regions,
e.g., the Flux phase minimum, by barriers. If the system is
only weakly excited, then order parameter oscillations around
the immediate vicinity of the Peierls phase minimum are in-
duced. At and beyond the threshold amplitude other regions
of the landscape become accessible. The free energy (16)
contains a discrete crystal momentum sum over the εk , which
leads to an oscillatory fine structure of the mean-field free
energy as a function of the bond operators and thereby likely
affects the energy absorption if the system leaves the initial
minimum. In the finite-N case, however, this fine structure
will average out over many trajectories and so we do not ex-
pect the system size to play a significant role. In Fig. 7(b) the
roles of frequency and amplitude are exchanged. We observe
two main peaks of the absorption at small amplitudes. This
is reminiscent of results reported for a driven noninteracting
two-band model [78]. The authors plot the occupation of the
upper band against ω and observe a multipeak structure. In
their paper the main peak position corresponded to the band

214318-6



PHOTOINDUCED PRETHERMAL ORDER PARAMETER … PHYSICAL REVIEW B 106, 214318 (2022)

FIG. 8. Dynamics of the order parameters during and subsequent to a photoexcitation in the Hubbard-Heisenberg model with N = 300
and for Vu = 11 × 11 unit cells. The frequency of the sinusoidal drive is ω/th = 3. The three columns represent three different maximum
amplitudes of the vector potential Ay(t ) (i.e., fluences). The dynamics leads to transitions within the Peierls phase (left), from the Peierls phase
to the Flux phase (middle) and to the uniform phase (right).

gap and the existence of amplitude-dominated and frequency-
dominated driving regimes are proposed. It is not clear if
similar arguments apply here since our band structure is not
static and multiple phases with different single-particle spec-
tra exist. The gap in the single-particle energy spectrum of the
Peierls phase shown in Fig. 2 is larger than the peak positions
observed in Fig. 7(b). However, the mean-field band structure
does not describe single-particle excitations, which can well
occur at a lower energy. For driving amplitudes Amax

y � 1
the double peak structure disappears and some, sporadically
large, oscillations occur. These are again most likely due to
the discrete k-space structure and will average out if multiple
trajectories are used.

B. Finite-N model: Mean-field + dephasing

In this section we refine the previous discussion by in-
cluding dephasing dynamics with fTWA. This allows us to
describe the formation of prethermal order during and subse-
quent to the pulse. In the following we will always work on
a lattice with periodic boundary conditions and Vu = 11 × 11
unit cells, i.e., V = 2Vu = 242 lattice sites. We keep J/th =
15, U = 0 and prepare the system in the initial state (18) as
outlined under Methods assuming that a stationary Peierls
state is reached after a time of about 200t−1

h (cf. Fig. 4).
We center the pulse at t0 = 250t−1

h . When we calculate the
Flux order parameter OFlux directly, we always turn on a
weak symmetry breaking εmn = 10−3 (cf. Methods). Peierls
order parameters and current-current correlators are calcu-
lated without symmetry breaking field. In Fig. 8 we show the
time evolution of order parameters in an exemplary way for
ω = 3th and three values of the driving amplitude Ay along
the direction of the strong bond. Time zero in the panels is set

to t0 − 15t−1
h . In contrast to the N → ∞ case, coherent order

parameter oscillations subsequent to the pulse are damped out
and a stationary state is reached. Note that |ρ1| = |ρ3|, i.e.,
the spatial symmetry of the applied vector potential along the
y direction is preserved throughout the dynamics. The three
driving amplitudes lead to final states corresponding to the
three equilibrium phases at half filling: After weak driving
the system remains in the Peierls phase with a smaller order
parameter than in the initial state. For intermediate amplitudes
the Flux order parameter becomes nonvanishing and the sys-
tem is Flux ordered, while strong driving pushes the system
into the Uniform phase. The symmetries of the stationary
state observables agree with the saddle point expectations. We
further observe that the postpulse order parameter dynamics
can continue even if the total energy is already at its stationary
value.

C. Prethermal dependence on drive parameters

In this section we study the influence of drive parameters
like frequency, amplitude, and polarization direction on the
final-state order parameters. Figure 9 presents the numerical
results as a function of Ay for varying drive frequencies ω.
In the uppermost row we plot the current-current correlation
function for one of the bonds in a unit cell (the strong bond
of the Peierls phase), which displays a sharp transition from
Peierls to Flux and a broad transition range from Flux to Uni-
form order. The Flux order parameter OFlux agrees well with
the correlator data except for deviations at low frequencies
ω/th � 4 and energies −4 � E/th � −3.5. These deviations
depend on the choice of the flux symmetry breaking strength
and indicate that a slightly larger εmn might be needed in this
regime. Current-current correlators are thus the more robust
quantifiers of Flux order.
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FIG. 9. Late-time stationary values of the order parameters after photoexcitation with varying frequencies ω plotted against the amplitude
of the vector potential Amax

y . The top row shows current-current correlators of ρ0 for two unit cells with the largest spatial separation in the
system (averaged over all unit cell pairs related by translational symmetry). The three columns correspond roughly to three different frequency
regimes (see text). The data in this figure are obtained for a 11 × 11 unit cells Hubbard-Heisenberg model with J = 15th and U = 0.

One can roughly identify three frequency regimes, which
correspond to the three columns. At low values of the fre-
quency ω � 5th, there is a threshold amplitude—analogous
to the mean-field one but shifted to lower amplitudes—at the
transition from Peierls to Flux order. The transition moves
to lower amplitudes if the frequency increases. For ω = 5th
the Peierls order parameter starts to decrease already at very
low field amplitudes, which indicates that the drive is likely
resonant with an elementary excitation of the system. At
higher frequencies, in the middle and right columns of the
figure, there is no threshold amplitude any more and the
electrons absorb energy also for small values of Ay. In these
regimes, we find that the energy absorption decreases with
increasing driving frequency. This agrees with the physical
expectation that energy absorption should be suppressed in
the high-frequency regime due to the absence of available

states for drive-induced transitions. However, one cannot read
off the elementary excitations of the system directly from the
mean-field band structure in Fig. 2: The Peierls phase has a
large gap, while the Flux phase is gapless—although thermo-
dynamically they are almost degenerate. One way to obtain a
more detailed understanding of elementary excitations of the
system would be to consider quantities like nonequilibrium
spectral functions [9], which is beyond the scope of this work.

Naturally, a question raised by the stationary states of Fig. 8
is whether the postpulse order could as well be a result of
heating. In particular, the mean-field finite-temperature equi-
librium phases in Fig. 3 follow the same sequence Peierls to
Flux to Uniform as a function of temperature. To shed more
light on this question we plot the order parameters of Fig. 9
directly against the total energy of the system after the pulse,
shown in Fig. 10 and again grouped by frequency. At very

FIG. 10. Same data as in Fig. 9 but all final-state order parameters are plotted against the total energy. In the first and third column the order
parameters display a similar behavior for very low and very high frequencies. In the middle column there is a clear influence of the driving
frequency on the order parameter characteristics.
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FIG. 11. Late-time stationary values of the order parameters after
a pulse with a vector potential that is polarized in the direction or-
thogonal to the strong bond of the Peierls phase (Ax �= 0, Ay = 0) and
for three different driving frequencies. The lattice has Vu = 11 × 11
unit cells and J/th = 15, U = 0.

low and high energies, the order parameters follow universal
lines, independent of ω. The transition from Peierls to Flux
order, in contrast, depends explicitly on the driving frequency.
The fact that not all curves lie on top of each other indicates
the nonthermal nature of the stationary states. Let us look at
the regime of low driving frequencies. As the total energy
increases, the Peierls order parameter shrinks linearly down
to a point where it decays and a nonzero Flux order parameter
is found. With increasing driving frequency this transition
point shifts to lower energies. In the intermediate-frequency
regime the transition moves back to higher energies. In the
high-frequency regime, finally, we find that for 12th � ω the
order parameter curves for all frequencies collapse. The initial
Peierls order is stable over a maximal energy range.

So far we discussed pulses with Ax = 0, Ay �= 0, i.e., po-
larized linearly along the direction of the strong bond in a
unit cell of the Peierls phase. Let us compare the results
to simulations with a vector potential along the x direction.
Figure 11 shows results for the late-time stationary state value
of the order parameters after a pulse with Ax �= 0, Ay = 0 for
three different values of the driving frequency ω. For frequen-
cies ω � 6th, the amount of absorbed energy as a function
of Amax

x is reduced compared to Ay driving, in particular at
high amplitudes. The transition from Peierls to Flux order in
Fig. 11(b) happens in a similar way to Fig. 10, although the
regime with the earliest departure from Peierls order is shifted
to higher frequencies.

FIG. 12. Transition energies between the three equilibrium
phases in the Hubbard-Heisenberg model for J/th = 15 and Vu =
11 × 11 unit cells after a pulse with driving frequency ω. Red sym-
bols correspond to pulses with Ay = 0, Ax �= 0 (along the direction
of the strong Peierls bond), blue symbols to the orthogonal direc-
tion. The dots connected with solid lines use N = 300, dashed lines
N = 250. Black lines: mean-field model N → ∞. Black dotted line:
thermal transition from Flux to Uniform phase; upper black dashdot-
ted line: energy E above which the Peierls saddle point disappears;
lower black dashdotted line: energy of the Peierls state at which the
first-order transition to the Flux phase occurs.

Finally, we extract the transition energies from the order
parameter curves in order to create the “prethermal phase
diagram” in Fig. 12. At the Peierls-Flux transition we fit a sig-
moid function to OPeierls around the transition and determine
the energy at the half-height sigmoid. For the Flux-Uniform
transition we extract the energy where the current-current cor-
relator vanishes. We show two sets of data: the one with N =
300 discussed so far and for comparison another set obtained
with N = 250 (more detailed presentation in Appendix B).
The transition Flux to Uniform is mostly independent of the
driving frequency and field orientation except for a little up-
trend at low frequencies, which needs to be reexamined with
more data points in the transition range. In contrast, the Peierls
to Flux transition is clearly dependent on the parameters of
the drive. We find a window of frequencies for which the
transition occurs around a lowest energy. It is shifted to higher
frequencies in the case of Ax polarization, which demonstrates
the relevance of the spatial structure of order for optical
excitations in an extended 2D system. In this regime the
transition occurs with the least amount of absorbed energy,
i.e., avoiding additional heating. At low and high frequencies
the transition energies approach similar values. It would be
interesting to see if these limits coincided with the thermal
transition of the system at finite N , which requires a more de-
tailed knowledge of the thermal finite-N phase diagram. The
N = 250 data contains the same qualitative signatures for the
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FIG. 13. Total energy after a Gaussian pulse with frequency
ω = 4th as a function of the driving amplitude Ay for some values of
the Hubbard interaction strength U (J = 15th is fixed). The data are
obtained for the mean-field (N → ∞) model on a lattice of 21 × 21
unit cells.

transition values but shifted to lower energies. A comparison
with the mean-field lines suggests a linear downshift of the
transition energy and a more complex N dependence of the
Peierls-Flux transition.

D. The role of U

Last, we would like to comment on the dynamical role of
the Hubbard interaction U , which we omitted so far. A non-
vanishing value of U will lead to a suppression of the on-site
charge fluctuations during and subsequent to the pulse. At half
filling, U/th → ∞ is the Heisenberg limit of the model. To
illustrate the effect of the U term we show the postpulse total
energy in the N → ∞ model for a driving frequency ω/th = 4
in Fig. 13. The threshold amplitude for energy absorption is
shifted to higher amplitudes on increase of U . However, at
high driving amplitudes the system seems to heat up more than
in the U = 0 case. Without going into a detailed discussion
of these effects, we can at least make the fundamental ob-
servation that parameters which are irrelevant in equilibrium
(like U in this case) may be relevant out-of-equilibrium. In
particular, one could design dynamical protocols to determine
such parameters. In this work we will not discuss the role of
U at finite values of N because then the value of U will also
be relevant for the equilibrium phase diagram, which goes
beyond the scope of this paper.

IV. CONCLUSION AND DISCUSSION

In this paper, we studied the photoinduced dynamics of
order parameters in a two-dimensional interacting electron
model with competing orders, driven by a pulsed sinusoidal
vector potential. A microscopic modeling of the dynamics on
the mean-field level leads to undamped coherent oscillations
that do not allow for a direct extraction of order parameter
information. We demonstrated that finite-N corrections to the
dynamics within the fTWA scheme include dephasing effects
and lead to stationary states whose symmetries agree with
those of the equilibrium phases. Furthermore, we argued that
the observed postpulse order in the system cannot be ther-
mal because otherwise the system should, for a given total
energy E , approach a (unique) state with the lowest free
energy. In the numerical data, in contrast, we observed that
the final stationary state also explicitly depends on drive pa-
rameters like frequency or field direction. This dependence is

particularly pronounced at intermediate frequencies, while
in the low- and high-frequency regimes the order parameter
curves collapse as functions of the total energy. Dephasing-
induced prethermal order describes properties of an electron
system on transient timescales before, in the full quantum time
evolution, thermalization sets in. The intermediate frequency
regime is interesting because it allows to switch the order in
the system (on this transient timescale) with a minimal amount
of heating. Therefore, it might be a particularly relevant target
for experiments since more energy in the system will suppress
values of order parameters, and so on, and renders transient ef-
fects more difficult to observe. Our findings motivate a search
for similar frequency regimes in other models of competing
ordered phases, for instance of superconductivity and charge
density wave order.

An important question for a refined analysis concerns the
lifetimes of the prethermal states. While prethermalization
corresponds to a formation of quasiparticles, thermalization
is due to their scattering. A rough estimate can be based on
the available scattering phase space in the spirit of “Landau’s
argument” for the lifetime τ of quasiparticles, which scales
like τ ∼ ε−2 for an excitation energy ε above the ground
state [79]. In our case, if �E is the excitation energy rel-
ative to the ultimate equilibrium state (e.g., Peierls or Flux
phase), then we estimate that τscat ∼ N/(�E )2. For small
excitation energy this timescale will be larger than the dephas-
ing timescale. A systematic study of the scattering dynamics
is beyond the scope of our current work since it requires
additional method development to incorporate higher-order
correlations into the dynamics. One way to do so could be
to take guiding from the BBGKY hierarchy [62,80,81] and
to add more dynamical variables to the equations of motion.
Another possible procedure is to derive a kinetic equation akin
to the quantum Boltzmann equation (QBE), which is switched
on after prethermalization. Such a QBE would manifestly
evolve the system toward a thermal fixed point and it would
allow for a more precise estimate of lifetimes of prethermal
states [82].

In the main text we considered values of N = 300 and
N = 250, which are clearly off the conventional condensed
matter case of N = 2. Our choice of N is limited in prac-
tice by our state preparation procedure, which starts from
a mean-field state and then switches to finite N . However,
since we are interested in the leading order correction to the
mean-field dynamics, a large value of N is justified and con-
venient. Contributions of order 1/N2 within fTWA need not
agree with the correct quantum dynamics, as we demonstrated
elsewhere by the example of the SU(N) Hubbard model [64].
Dynamical timescales and quantitative values of order param-
eters will depend on the chosen value of N but within the
range of validity of our theory we do expect to observe the
same qualitative behavior also at smaller values of N . The
formalism developed here can directly be applied to other
SU(N) models. Interesting candidates are, for instance, mod-
els with charge-density waves in equilibrium, like a SU(N)
t-V model. While large-N models provide a very natural field
of application for semiclassical methods, the fTWA method
is not restricted to it and can be used to improve mean-field
studies of more generic order parameter constellations, e.g., in
the context of light-induced superconductivity [18]. The range
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of validity of fTWA, however, needs to be assessed carefully
if no semiclassical expansion parameter is present.

To overcome the limitations of our initial state preparation
scheme one could explicitly calculate 1/N corrections to the
saddle points within field theory, or try a calculation of fluc-
tuations around the mean-field state within a self-consistent
RPA [83] or flavor wave [84] theory. Besides, efficient quan-
tum Monte Carlo (QMC) codes [85] exist for SU(N) models,
which allow one to take the initial equilibrium state correla-
tions directly from a QMC calculation.

Finally, since the semiclassical dynamics does not require
translational invariance of the lattice system, a straightforward
extension of the work presented here is to consider spatially
local photoexcitations and to study the role of inhomogenities
for the formation of (prethermal) order [86]. Research in this
direction is currently in progress. Our framework also allows
to prepare systems with boundaries between different mean-
field-like phases to study the ordering dynamics at an interface
microscopically [20].
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APPENDIX A: DETAILS ON THE DETERMINATION OF
THE MEAN-FIELD STATES

In the limit N → ∞ the model is effectively described by a
Hartree mean-field theory, which we will rederive in this Ap-
pendix. Let us consider the operators 1

N

∑N
α=1 (c†

iαc jα − 1
2δi, j )

and their deviations

�ρ̂i j = ρ̂i j − ρi j (A1)

from the expectation value ρi j = 〈ρ̂i j〉. Plugging (A1) into the
model Hamiltonian yields the following representation of the

interaction terms

ĤHei = −JN
∑
〈i, j〉

(ρi j + �ρ̂i j )(ρ ji + �ρ̂ ji )

= −JN
∑
〈i, j〉

(|ρi j |2 + ρi j�ρ̂ ji + ρ ji�ρ̂i j ) + O(�ρ)2

� −JN
∑
〈i, j〉

[
−|ρi j |2 + 1

N

N∑
α=1

(ρi jc
†
jαciα + ρ jic

†
iαc jα )

]

(A2)

ĤHub = UN
∑

i

(ρii + �ρ̂ii )
2

= UN
∑

i

(|ρii|2 + 2ρii�ρ̂ii ) + O(�ρ)2

� UN
∑

i

[
−|ρii|2 + 2

N

N∑
α=1

ρii

(
c†

iαciα − 1

2

)]
. (A3)

In the following we neglect the order (�ρ)2 terms. In order
to construct the ground state of the model we need to specify
the lattice geometry and choose a unit cell. Let us concen-
trate, for simplicity, on a one-dimensional model and give the
generalization to two spatial dimensions in the end. Here we
choose a unit cell with two sites A and B. We call the on-site
elements of the ρ variables ρA := ρi∈A,i∈A and ρB := ρi∈B,i∈B.
The nearest-neighbor bonds are called ρ0 := ρi∈A,(i+1)∈B and
ρ1 := ρi∈B,(i+1)∈A.

Next, we transform all nonlocal operators to momentum
space. A way to do this is to work directly in the reduced
Brillouin zone rBZ ⊆ (−π/2, π/2]. This corresponds to the
following transformation rules with Q = π (also described in
Ref. [87]),

c†
i∈A = 1√

V

∑
k∈rBZ

e−ikri (c†
k + c†

k+Q),

c†
i∈B = 1√

V

∑
k∈rBZ

e−ikri (c†
k − c†

k+Q). (A4)

Introducing εk := 2th cos(k) and χk := J (ρ0e−ik +
ρ∗

1 eik ) we obtain the following representation of the
Hamiltonian:

(H ) = (
c†

k c†
k+Q

)[εk − Re(χk ) + U (ρA + ρB) − μ i Im(χk ) + U (ρB − ρA)
−i Im(χk ) + U (ρB − ρA) −εk + Re(χk ) + U (ρA + ρB) − μ

](
ck

ck+Q

)
. (A5)

In this publication we only consider half filling, μ =
U (ρA + ρB). Diagonalization of the Hamiltonian yields the
following set of eigenenergies:

Ek = ±(−{−[εk − Re(χk )]2 − Im(χk )2 − U 2(ρB − ρA)2})1/2

= ±{|εk − χk|2 + U 2(ρB − ρA)2}1/2. (A6)

In two spatial dimensions the procedure is analogous.
However, since we use the rotated unit cell depicted in Fig. 1,

the k values are defined with respect to the tilted lattice of unit
cells,

εk = 2th

{
cos

[√
2

2
(kx − ky)

]
+ cos

[√
2

2
(kx + ky)

]}
,

χk = J

[
ρ∗

0 e−i
√

2
2 (kx+ky ) + ρ∗

1 ei
√

2
2 (kx−ky )

+ ρ2ei
√

2
2 (kx+ky ) + ρ3e−i

√
2

2 (kx−ky )

]
. (A7)
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FIG. 14. Order parameter dynamics for a Gaussian pulse (Ax =
0, Ay �= 0) in the N = 250 Hubbard-Heisenberg model on a lattice
with Vu = 11 × 11 unit cells. The symbols represent N = 250 while
the dashed line is the N = 300 case from the main text.

Rewritten in terms of the axes of the original lattice (here
denoted k′) the quantities read as follows:

εk = 2th[cos(k′
x ) + cos(k′

y)],

χk = J (ρ∗
0 e−ik′

y + ρ∗
1 eik′

x + ρ2eik′
y + ρ3e−ik′

x ). (A8)

APPENDIX B: ORDER PARAMETER DATA FOR N = 250

In Fig. 14 we compare the order parameter data for N =
250 with N = 300. The total amount of absorbed energy in
Fig. 14(a), divided by N , coincides with the N = 300 data

TABLE II. Note that at half filling all “−” states are occupied
(nk− = 1) and all “+” states are unoccupied (nk+ = 0). Hence nk± +
nl± − 2nk±nl± = 0 and nk± + nl∓ − 2nk±nl∓ = 1.

ραβ μραβ
�

symm
αβ,αβ Csymm

αβ,αβ σ 2
Re(ραβ ) σ 2

Im(ραβ )

ρk±,l± (k = l) 1
2 0 0 0 0

ρk±,l± (k �= l) 0 0 0 0 0
ρk±,l∓ 0 1

2N 0 1
4N

1
4N

for most of the considered driving amplitudes. This is due to
the fact that in both cases the mean-field contribution to the
absorbed energy is dominating. In contrast, the final-state or-
der parameter values differ more strongly. Figure 14(b) shows
that for N = 250 both transitions occur at lower energies than
for N = 300. This agrees with the intuitive expectation of
an increased significance of quantum fluctuations at lower
N , which destabilize mean-field order. Still, the qualitative
behavior of the order parameters is consistent.

APPENDIX C: DETAILS ON THE fTWA NUMERICS AND
ON THE PREPARATION OF THE WIGNER FUNCTION

In the numerics of the finite-N model we average all ob-
servables over at least 200 trajectories. In most cases this is
already sufficient for a converged numerical result, i.e., the
values do not change significantly on increase of the number
of averaged trajectories. In some cases, in particular close
to the Peierls-Flux transition, more samples are needed and
we typically take into account at least 2000 trajectories. For
the solution of the ordinary differential equations we use
the Runge-Kutta Cash-Karp error stepper from the odeint
numerical library [88]. Averaging over the trajectories is im-
plemented using Welford’s algorithm [89]. Tables I and II
collect the covariances that we used to set up the Gaussian
Wigner function. Table I shows the formulas for a general
product state, while Table II is specific for the mean-field
initial state used in the paper.

TABLE I. symmetrized covariance �
symm
αβ,μν = 〈 1

2 {ρ̂αβ, ρ̂νμ}〉c.c.
, symmetrized pseudocovariance Csymm

αβ,μν = 〈 1
2 {ρ̂αβ, ρ̂μν}〉c.c.

. Note that at half
filling all “−” states are occupied (nk− = 1) and all “+” states are unoccupied (nk+ = 0). Hence nk± + nl± − 2nk±nl± = 0 and nk± + nl∓ −
2nk±nl∓ = 1.

ραβ μραβ
�

symm
αβ,αβ Csymm

αβ,αβ σ 2
Re(ραβ ) σ 2

Im(ραβ )

ρk±,l± δkl (nk± − 1
2 ) 1

2N (nk± + nl± − 2nk±nl±) δkl
N nk±(1 − nk±) 1

4N (1 + δkl )(nk± + nl± − 2nk±nl±) 1
4N (1 − δkl )( . . . )

ρk±,l∓ 0 1
2N (nk± + nl∓ − 2nk±nl∓) 0 1

4N (nk± + nl∓ − 2nk±nl∓) 1
4N ( . . . )
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