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Optical conductivity of an anharmonic large polaron gas at weak coupling
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In a polar solid, electrons or other charge carriers can interact with the phonons of the ionic lattice, leading to
the formation of polaron quasiparticles. The optical conductivity and optical absorption spectrum of a material
are affected by this electron-phonon coupling, most notably leading to an absorption peak in the midinfrared
region. Recently, a model Hamiltonian for anharmonic electron-phonon coupling was derived [M. Houtput
and J. Tempere, Phys. Rev. B 103, 184306 (2021)] that includes both the conventional Fröhlich interaction
as well as an interaction in which an electron interacts with two phonons simultaneously. In this article, we
calculate and investigate the optical conductivity of the anharmonic large polaron gas, and we show that an
additional characteristic absorption peak appears due to this one-electron–two-phonon interaction. We calculate
a semianalytical expression for the optical conductivity σ (ω) at finite temperatures and weak coupling using
the Kubo formula. The electronic and phononic contributions can be split and treated separately, such that the
many-body effects of the electron gas may be taken into account through the well-known dynamical structure
factor S(k, ω). From the resulting optical conductivity, we calculate the polaron effective mass, an estimate
for the electron-phonon scattering times, and the optical absorption spectrum of the anharmonic polaron gas.
It is shown that the effects are negligible for four common III-V semiconductors (BN, AlN, BP, AlP) in the
zinc-blende structure, which justifies the commonly used harmonic approximation in these materials. We show
that alongside the well-known polaron absorption peak at the phonon energy h̄ωLO, the one-electron–two-phonon
interaction leads to an additional absorption peak at 2h̄ωLO. We propose this absorption peak as an experimentally
measurable indicator for non-negligible one-electron–two-phonon interaction in a material, since the height of
this peak is proportional to the strength of this anharmonic interaction.
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I. INTRODUCTION

A free electron moving through a lattice of ions can interact
with the phonons of the lattice, for example by Coulomb inter-
action with these ions. This electron-phonon interaction will
cause the electron to become dressed by the phonons, leading
to the polaron quasiparticle. The polaron problem is nearly a
century old [1,2] and has been extensively studied ever since
its prediction. Since it is one of the simplest models of an
impurity interacting with a bosonic field, many analogies of
the polaron exist, including spin polarons [3], exciton polarons
[4], ripplopolarons [5], magnetic polarons [6], and the Bose
[7,8] and Fermi [9] polaron in ultracold gases.

Many of the properties of a polaron are different from that
of a free electron. It is well-known that due to the electron-
phonon interaction, the polaron has a lower ground-state
energy and a higher effective mass [10–13]. Quite impor-
tantly, the response properties of the polaron are also different.
Collisions of the polaron with phonons cause the material
to have a finite dc conductivity [14–16]. Additionally, in the
weak electron-phonon coupling limit, the optical absorption
spectrum of a polaron has an additional absorption peak in
the midinfrared region near the phonon energy, caused by the
elementary phonon emission process [17–20]. Both of these
effects are described by the optical conductivity σ (ω), which
describes the response of the polaron with respect to an elec-
tric field. It can be calculated using several different methods

[21–24]; calculations based on the Kubo formula are among
the most popular methods when calculating the conductivity
in the weak-coupling limit [18,25–27].

If the material under consideration is a polar semicon-
ductor, and the electron wave function is sufficiently large
(a so-called “large” polaron), the electron-phonon coupling
is usually well described by the Fröhlich Hamiltonian [11].
In this Hamiltonian, it is assumed that the electron-phonon
coupling is linear, as in Fig. 1(a), and the electron only inter-
acts with longitudinal optical (LO) phonons. In recent years,
however, it has been shown that in some materials, other
interactions play a non-negligible role. Recent work in SrTiO3

[28] has shown the importance of an interaction term of the
form shown in Fig. 1(c), where an electron interacts simulta-
neously with two transverse optical (TO) phonons [29]. This
interaction has been proposed as a mechanism for supercon-
ductivity in SrTiO3 [30,31], and it has been used to explain
the anomalous T 2-behavior of the resistivity at low tempera-
tures [32]. In several hydrogen-rich materials under extreme
pressures [33–35] and potentially also metallic hydrogen
[36–38], phonon-mediated superconductivity is possible at
temperatures very close to room temperature. However,
since hydrogen-rich materials are strongly anharmonic,
interactions between the phonons as in Fig. 1(d) and po-
tentially also interactions such as Fig. 1(c) must be taken
into account. Finally, similar one-electron–two-phonon in-
teractions and three-phonon interactions are also present in
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FIG. 1. Feynman diagrams of the different interactions between
electrons and phonons that are considered in this article. Solid lines
represent electrons, and dashed lines represent phonons. The Fröh-
lich and Coulomb interactions are considered in the usual large
polaron treatment; the novelty of this article is the inclusion of
interactions (c) and (d). In the present analysis text, the dashed lines
represent LO phonons only.

the ultracold Bose polaron, where they lead to a significant
change in the energy [39,40].

In a recent paper [41], analytical expressions were derived
for the interaction strengths of the one-electron–two-LO-
phonon interaction [Fig. 1(c)] and the three-LO-phonon
interaction [Fig. 1(d)], suitable under the same conditions
that are used for the Fröhlich Hamiltonian. The goal of this
article is to calculate the optical conductivity σ (ω) of a po-
laron where these anharmonic interaction terms are also taken
into account. We will calculate the conductivity in the weak-
coupling limit using the method proposed in [18], which also
yields the conductivity of a many-polaron gas without much
additional effort. Since the interaction strengths are known
analytically just as for the Fröhlich Hamiltonian [11,41], the
derivation may also proceed analytically.

The structure of this paper is as follows. In Sec. II, the
model Hamiltonian is outlined, and an expression for the
conductivity in terms of the dynamical structure factor of
the electron gas is obtained. In Sec. III, the various limits of
this expression are examined in detail, and the effect of the
anharmonic interaction terms is investigated. We conclude in
Sec. IV.

II. THEORY

A. Extended Fröhlich Hamiltonian

The Hamiltonian that will be studied in this article is
an extension of the well-known Fröhlich Hamiltonian [11],
which is derived for a polar cubic lattice with two atoms in
the primitive unit cell. It must additionally be assumed that
the crystal has no inversion symmetry [41]. Under all these
assumptions, the anharmonic polaron Hamiltonian including
three-phonon and one-electron–two-phonon interaction is

Ĥ = Ĥel + Ĥph + Ĥel-ph, (1)

where the three terms in the Hamiltonian represent the
electron Hamiltonian, the phonon Hamiltonian, and the
electron-phonon interaction [27,41]:

Ĥel =
∑

k

εkĉ†
kĉk + 1

2

∑
k,k′

∑
q �=0

V (C)
q ĉ†

k+qĉ†
k′−qĉk′ ĉk, (2)

Ĥph =
∑

q

h̄ωq

(
b̂†

qb̂q + 1

2

)

+ 1

6

∑
q �=q′ �=0

V (0)
q,q′
(
b̂†

−q + b̂q
)(

b̂†
q−q′ + b̂−q+q′

)

× (
b̂†

q′ + b̂−q′
)
, (3)

Ĥel-ph =
∑
q �=0

V (F )
q

(
b̂†

q + b̂−q
)
ρ̂−q

+ 1

2

∑
q �=q′ �=0

V (1)
q,q′
(
b̂†

−q + b̂q
)

× (
b̂†

q′ + b̂−q′
)
ρ̂q−q′ . (4)

The sums over q and q′ in (2)–(4) exclude the cases for which
q = 0, q′ = 0, and q = q′. It is usually more convenient to
take this into account by requiring that V (F )

0 = 0, V (n)
0,q = 0,

V (n)
q,q = 0, and so on. b̂†

q, b̂q and ĉ†
k, ĉk represent the creation

and annihilation operators of the LO phonons and the elec-
trons, respectively, and the electron density operator ρ̂k is
given by

ρ̂k =
∑

k′
ĉ†

k+k′ ĉk′ . (5)

As in the Fröhlich model [11], it is assumed that the electrons
occupy a single parabolic band described by a band mass mb,
and that the electrons only interact with a single LO-phonon
branch, which has a constant frequency ωLO:

εk = h̄2k2

2mb
, (6)

ωq = ωLO. (7)

The electron Hamiltonian (2) contains the Coulomb interac-
tion of Fig. 1(b), the phonon Hamiltonian (3) contains the
three-phonon interaction of Fig. 1(d), and both the Fröhlich
interaction of Fig. 1(a) and the one-electron–two-phonon in-
teraction of Fig. 1(c) are included in the electron-phonon
interaction term (4). In the large polaron limit, the interaction
strengths have the following analytical expressions [41]:

V (C)
q = e2

V εvacε∞

1

|q|2 , (8)

V (F )
q = h̄ωLO

√
4πα

V

(
h̄

2mbωLO

) 1
4 1

|q| , (9)

V (0)
q,q′ = −ih̄ωLO

T0√
V

(
h̄

2mbωLO

) 3
4

|εi jl |
qi(q j − q′

j )q
′
j

|q||q − q′||q′| , (10)

V (1)
q,q′ = −ih̄ωLO

√
4παT1

V

h̄

2mbωLO
|εi jl |

qi(q j − q′
j )q

′
j

|q||q − q′|2|q| . (11)
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In these expressions, εvac is the vacuum permittivity in SI
units, |εi jl | is the absolute value of the Levi-Civita tensor, α is
the Fröhlich electron-phonon coupling constant [11,27], and
T0 and T1 are dimensionless material parameters that char-
acterize the strength of the three-phonon interaction and the
one-electron–two-phonon interaction, respectively. All results
will be plotted in terms of the coupling constants α, T0, and
T1, which are assumed to be known. We present values for
some of these parameters in Sec. III A.

A remark must be made on the applicability of the Hamil-
tonian (1)–(4). While many assumptions were made in its
derivation, there is a broad class of III-V semiconductors in
the zinc-blende structure that satisfy all these assumptions
[41]. To have a concrete example in mind during the calcu-
lations, a semiconductor with the zinc blende structure (such
as AlN or GaAs) is assumed for the remainder of the article.

B. Memory function formalism

To calculate the conductivity of a gas of N polarons in
the weak-coupling limit, we follow the method used in [18],
which is based on the Kubo-Greenwood formula [27]. It re-
lates the conductivity to a momentum-momentum correlation
function:

σ (ω) = lim
δ→0+

(
i

ne2

mb(ω + iδ)
+ ne2

Nm2
bh̄(ω + iδ)

×
∫ +∞

0
〈[P̂x(t ), P̂x(0)]〉ei(ω+iδ)t dt

)
, (12)

where P̂ =∑N
i=1 p̂el,i is the total electron momentum operator

defined in the Heisenberg picture, and n := N/V is the elec-
tron density. Note that the conductivity can be represented by
a scalar, since cubic symmetry is assumed. When calculating
the conductivity of polarons, it is customary to write this
function in the following form [23,42]:

σ (ω) = lim
δ→0+

i
ne2

mb

1

ω + iδ − 	(ω)
, (13)

where the memory function 	(ω) is defined as

	(ω) = lim
δ→0+

	0(ω + iδ)

1 + 	0(ω+iδ)
ω+iδ

= 	0(ω)

1 + 	0(ω)−	0(0)
ω

, (14)

	0(ω) := lim
δ→0+

(ω + iδ)

iNmbh̄

∫ +∞

0
ei(ω+iδ)t 〈[P̂x(t ), P̂x(0)]〉 dt .

(15)

In practice, all the information of the conductivity is now
contained in the simpler function 	0(ω), which is written in
terms of a retarded momentum-momentum Green’s function.
In the weak-coupling limit, 	0(ω) can be calculated using a
Green’s function diagrammatic expansion [27]. Once 	0(ω) is
known, the conductivity can be calculated using the algebraic
formulas (13) and (14).

In [13,18], it is shown that 	0(ω) can also be written in
terms of a force-force correlation function by applying two

partial integrations to Eq. (15):

	0(ω) := lim
δ→0+

1

iNmbh̄(ω + iδ)

∫ +∞

0
e−δt

× (eiωt − 1)〈[F̂x(t ), F̂x (0)]〉 dt, (16)

where the force operator F̂ is defined as

F̂(t ) := dP̂
dt

= i

h̄
[Ĥ, P̂(t )]. (17)

The force operator can be calculated exactly by plugging
in the Hamiltonian (1)–(4) into Eq. (17). Since the electron
Hamiltonian Ĥel conserves the total electron momentum P̂(t ),
and all phonon operators commute with P̂(t ), it holds that
[Ĥel, P̂] = [Ĥph, P̂] = 0, so that only the interaction Hamil-
tonian Ĥint (4) contributes to the force operator. Making use
of the identity [ρ̂k, P̂] = −h̄kρ̂k, the force operator can be
written as follows:

F̂(t ) = i
∑

k

kF̂kρ̂−k, (18)

where the auxiliary operator F̂k is a bosonic operator related
to the phonon operators:

F̂k := V (F )
k

(
b̂†

k + b̂−k
)+ 1

2

∑
q

V (1)
−k+q,q(b̂†

k−q + b̂−k+q)

× (b̂†
q + b̂−q

)
. (19)

Only the electron-phonon interaction terms (4) contribute to
the force operator (18). This means the product F̂x(t )F̂x(0)
in Eq. (16) is proportional to α: indeed, in expression (19),
both V (F )

k and V (1)
−k+q,q are proportional to

√
α [see expressions

(8)–(11)]. Since one factor α is factored out beforehand, this
means 	0(ω) can be calculated exactly up to first order in α. In
particular, the expectation values with respect to the electron
and phonon operators can be factorized, since for any electron
operator Âel and any phonon operator B̂ph, it holds that

〈ÂelB̂ph〉 = 〈Âel〉0〈B̂ph〉0 + O(α), (20)

where 〈〉0 indicates an expectation value with respect to Ĥel

(2) for the electron operators, and with respect to Ĥph (3) for
the phonon operators. This factorization means the electron
and phonon problems can be treated separately.

Using (18) and (20), the force-force correlation function in
(16) can be written as

〈[F̂x(t ), F̂x(0)]〉 = 1

3

∑
k

k2Im[〈F̂k(t )F̂−k(0)〉0

×〈ρ̂−k(t )ρ̂k(0)〉0] + O(α2), (21)

where we used that 〈ρ̂−k(t )ρ̂q(0)〉0 is zero unless k = q. This
can be understood by noting that the density operator ρ̂k adds
a momentum k to the electron system, which must be removed
again to end up in the same state. Additionally, since the sys-
tem is isotropic, k2

x was replaced by (k2
x + k2

y + k2
z )/3 = k2/3.

To calculate the expectation values appearing in (21), we
note that they can be related to more familiar quantities
from the literature. In particular, the expectation value of
the electron operators is the inverse Fourier transform of the
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dynamical structure factor S(k, ω) of the electron gas [18,27]:

S(k, ω) := 1

2πN
(1 − e−h̄βω )

∫ +∞

−∞
〈ρ̂k(t )ρ̂−k(0)〉0eiωt dt .

(22)
A similar quantity can be defined for the phonon opera-

tors, which we will refer to as the phonon spectral function
M(k, ω):

M(k, ω) := 1

2π
(1 − e−h̄βω )

∫ +∞

−∞

〈
F̂−k(t )F̂k(0)

〉
0eiωt dt .

(23)
The phonon spectral function M(k, ω) will be calculated in
Sec. II C, and the possible models for the dynamical structure
factor S(k, ω) will be discussed in Sec. II D. First, the force-
force correlation function (21) will be rewritten in terms of
these two quantities.

Inverting the Fourier transforms in (22) and (23) gives use-
ful expressions for the expectation values appearing in (21):

〈ρ̂−k(t )ρ̂k(0)〉0 =N
∫ +∞

−∞

S(−k, ω)

1 − e−h̄βω
e−iωt dω, (24)

〈F̂k(t )F̂−k(0)〉0 =
∫ +∞

−∞

M(k, ω)

1 − e−h̄βω
e−iωt dω. (25)

With these expressions, Eq. (21) for the force-force correla-
tion function can be straightforwardly calculated. The result
can be written as follows:

〈[F̂x(t ), F̂x(0)]〉 = (26)

− 2Ni

3

∑
k

k2
∫ +∞

0

{∫ +∞

−∞
[1 + nB(ω′) + nB(ω − ω′)]

× S(k, ω − ω′)M(k, ω′)dω′
}

sin(ωt ) dω, (27)

where nB(ω) = 1/(eh̄βω − 1). Plugging this force-force cor-
relation function back into (16), another straightforward
calculation shows that 	0(ω) can be written in terms of
S(k, ω) and M(k, ω):

Re[	0(ω)] = 2ω

π
P
∫ +∞

0

Im[	0(ω′)]
ω′2 − ω2

dω′, (28)

Im[	0(ω)] = − π

3mbh̄ω

∑
k

k2
∫ +∞

−∞
[1 + nB(ω′)

+ nB(ω − ω′)]S(k, ω − ω′)M(k, ω′)dω′

+ O(α2). (29)

Note that (28) is similar to the usual Kramers-Kronig rela-
tions, but is not exactly the form found in the literature [43] for
a function f (ω) on the domain ω ∈ [0,+∞[. This is because
the usual Kramers-Kronig relations are derived for a function
satisfying f (−ω) = f ∗(ω), whereas Eq. (28) is for a function
satisfying 	0(−ω) = −	∗

0 (ω).
Equations (28) and (29) in combination with (13) and (14)

allow for the calculation of the conductivity σ (ω) up to first
order in α if the dynamical structure factor of the electron gas
S(k, ω) and the phonon spectral function M(k, ω) given by
(22) and (23) are known. The dynamical structure factor of
the electron gas is well-known in the literature, and is related

to the dielectric function of the electron gas [18,27,44–46].
The phonon spectral function M(k, ω) is the spectral function
associated with the operator F̂k, and it can be calculated
analytically. Both of these quantities are discussed in the
following sections.

C. Calculation of the phonon spectral function M(k, ω)

The phonon spectral function can be calculated using
a Matsubara-Green diagrammatic expansion [27]. First, the
definition (23) is rewritten in terms of a retarded Green’s
function:

M(k, ω) = − 1

π
Im[Fret(k, ω)], (30)

Fret(k, ω) = −i
∫ +∞

0
〈[F̂−k(t ), F̂k(0)]〉eiωt dt . (31)

It can straightforwardly be shown that the definition (30) and
(31) is equivalent to the original definition (23). It is rewrit-
ten using a retarded Green’s function because a theorem by
Matsubara [27,47] states that this retarded Green’s function
Fret(k, ω) can be written as the analytic continuation of the
Matsubara Green’s function F (k, iωn) [27,47], which is a
time-ordered Green’s function in imaginary time:

M(k, ω) = − 1

π
Im[F (k, ω + iδ)], (32)

F (k, iωn) = −
∫ h̄β

0
〈T̂ F̂−k(τ )F̂k(0)〉e−iωnτ dτ, (33)

where ωn = 2πn/h̄β are the bosonic Matsubara frequencies.
The time ordering allows one to analyze this Green’s function
using a diagrammatic expansion. If both anharmonic inter-
actions are neglected, i.e., V (0)

k,q = V (1)
k,q = 0, the Matsubara

Green’s function F (k, iωn) can be calculated exactly by plug-
ging (19) into (33):

F (k, iωn) = ∣∣V (F )
k

∣∣2D0(k, iωn), (34)

+(a)

+ + + . . .(b)

+ Γ Γ + Γ Γ + . . .(c)

Γ = +(d)

FIG. 2. Contributions to the Matsubara function F (k, iωn) con-
sidered in this article. Dashed lines represent phonons. Fröhlich
interactions V (F )

k are represented as solid vertices, one-electron–
two-phonon interactions V (1)

k,q as shaded vertices, and three-phonon

interactions V (0)
k,q as open vertices. (a) Contributions when the three-

phonon interactions are neglected: only two diagrams are possible,
and the result is exact. (b) Contributions when the one-electron–
two-phonon interactions are neglected, which form a Dyson series.
(c) Contributions when neither interaction is neglected, expressed in
terms of the combined vertex factor � defined in (d) and Eq. (43).
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where the phonon Green’s function D0(k, iωn) is defined as
[27]

D0(k, iωn) = −
∫ h̄β

0

〈
T̂
(
b̂†

−k(τ ) + b̂k(τ )
)(

b̂†
k(0) + b̂−k(0)

)〉
× e−iωnτ dτ = 2ωLO

(iωn)2 − ω2
LO

. (35)

In the case in which the anharmonic terms in the Hamiltonian
are not neglected, F (k, iωn) can be calculated using a dia-

grammatic expansion. The diagrams that will be considered
in this article are shown in Fig. 2: Here, we will motivate
these diagrams by investigating the limits where either the
three-phonon interaction or the one-electron–two-phonon in-
teraction is negligible. First, let us neglect the three-phonon
interaction in the phonon Hamiltonian (3), so that it is har-
monic. The one-electron–two-phonon interaction is included
by using expression (19) for F̂k. Calculating the expectation
value in (33) using Wick’s theorem eventually leads to two
contributions:

F (k, iωn) = ∣∣V (F )
k

∣∣2D0(k, iωn) + 1

2

∑
q

∣∣∣V (1)
q−k,q

∣∣∣2
(

−1

h̄β

∑
m

D0(k − q, iωn − iωm)D0(q, iωm)

)
. (36)

This result can be written as the sum of two diagrams, which are shown in Fig. 2(a). The above result is exact when T0 = 0: no
Dyson summation is necessary.

Next, let us only consider the three-phonon terms as in Fig. 2(b) and neglect the one-electron–two-phonon term in (19). Then,
Eq. (33) for F (k, iωn) reduces to the full phonon Green’s function:

F (3ph)(k, iωn) = ∣∣V (F )
k

∣∣2 D0(k, iωn)

1 − D0(k, iωn)(k, iωn)
, (37)

where (k, iωn) is the self-energy of the phonon propagator. It is difficult to calculate in general. To proceed analytically, we will
approximate it to lowest order: (k, iωn) ≈ 0(k, iωn) + O(T 4

0 ), where 0(k, iωn) is a bubble diagram. Using the Feynman
rules and vertex factors in [41], or by doing the Wick expansion explicitly, this bubble diagram can be evaluated exactly:

Π0(k, iωn) =

q

k − q

, (38)

= ω2
LO

2

∑
q

∣∣∣∣∣
V (0)

k,q

h̄ωLO

∣∣∣∣∣
2(−1

h̄β

∑
m

D0(k − q, iωn − iωm)D0(q, iωm)

)
. (39)

The Matsubara summation over m can be evaluated by complex integration using a contour that encircles the whole complex
plane:

−1

h̄β

∑
m

D0(k − q, iωn − iωm)D0(q, iωm) = coth

(
h̄βωLO

2

)
4ωLO

(iωn)2 − 4ω2
LO

. (40)

This result does not depend on q. The remaining sum over q in (39) has been evaluated in [41]:

∑
q

∣∣∣∣∣
V (0)

k,q

h̄ωLO

∣∣∣∣∣
2

= 4T 2
0

15Ṽ0
, (41)

where Ṽ0 = V0( 2mbωLO
h̄ )

3
2 is a dimensionless parameter representing the size of the unit cell. Therefore, the lowest order self-

energy of the phonon propagator is equal to

0(k, iωn) = ω2
LO

2T 2
0

15Ṽ0
coth

(
h̄βωLO

2

)
4ωLO

(iωn)2 − 4ω2
LO

. (42)

With this expression for the self-energy, Eq. (37) corresponds to the Dyson series in Fig. 2.
To include both the three-phonon interactions and the one-electron–two-phonon interactions, we consider the same Dyson

series as in Fig. 2(a), but starting and ending with two possible ways for the electron to create two phonons, as in Fig. 2(b). First,
the electron can create a phonon through the Fröhlich interaction, which then splits into two phonons through the three-phonon
interaction. Secondly, the electron can simultaneously create two phonons through the one-electron–two-phonon interaction.
These two processes are due to the first and second term in (19), respectively; in the derivation of (37), only the first term was
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considered. Both processes can be combined into a single vertex �, as in Fig. 2(c):

�(k − q, iνn − iνm; q, iνm) = V (1)
q,q−k + 1

h̄
V (F )

k V (0)
k,qD0(k, iνn), (43)

= −V (F )
k V (0)

k,q

h̄ωLO

(T1

T0
− ωLOD0(k, iνn)

)
. (44)

Summing all the terms in Fig. 2(c) gives the final expression for the Matsubara Green’s function:

F (k, iωn) = ∣∣V (F )
k

∣∣2
⎛
⎝D0(k, iωn) +

( T1
ωLOT0

− D0(k, iωn)
)2

0(k, iωn)

1 − D0(k, iωn)0(k, iωn)

⎞
⎠. (45)

This is a closed expression for the Matsubara Green’s function since the lowest order phonon self-energy 0(k, iωn) is known
(42). Equation (45) contains both (36) and (37) as limiting cases: this can be seen by taking the limit T0 → 0 or T1 → 0.
Graphically, this procedure corresponds to starting from Fig. 2(c), and removing either the three-phonon vertex or the one-
electron–two-phonon vertex: this indeed results in Fig. 2(a) or 2(b), respectively. Expression (45) is valid up to second order
in T0. To get a more accurate result, the full phonon self-energy (k, iωn) should be used in (45), but in order to continue the
analytic treatment of this article, we will be satisfied with the results up to second order in T0.

To calculate the phonon spectral function M(k, ω), we use expression (42) for the phonon self-energy in (45), and we split
the resulting Matsubara Green’s function into partial fractions. This yields

F (k, iωn) = ∣∣V (F )
k

∣∣2[c1
2ωLOx1

(iωn)2 − ω2
LOx2

1

+ c2
2ωLOx2

(iωn)2 − ω2
LOx2

2

]
, (46)

where the numerical constants x1, x2, c1, and c2 are defined as the following combinations of T0, T1, Ṽ0, and h̄βωLO:

x1 :=

√√√√√1

2

⎛
⎝5 − 3

√
1 + 64T 2

0

135Ṽ0
coth

(
h̄βωLO

2

)⎞⎠, (47)

x2 :=

√√√√√1

2

⎛
⎝5 + 3

√
1 + 64T 2

0

135Ṽ0
coth

(
h̄βωLO

2

)⎞⎠, (48)

c1 := 1

2x1

⎛
⎜⎝1 + 4T 2

1

15Ṽ0
coth

( h̄βωLO

2

)
+
[
1 + ( 8

3T0T1 − T 2
1

)
4

15Ṽ0
coth

( h̄βωLO

2

)]
1√

1+ 64T 2
0

135Ṽ0
coth

(
h̄βωLO

2

)

⎞
⎟⎠, (49)

c2 := 1

2x2

⎛
⎜⎝1 + 4T 2

1

15Ṽ0
coth

( h̄βωLO

2

)
−
[
1 + ( 8

3T0T1 − T 2
1

)
4

15Ṽ0
coth

( h̄βωLO

2

)]
1√

1+ 64T 2
0

135Ṽ0
coth

(
h̄βωLO

2

)

⎞
⎟⎠. (50)

The phonon spectral function M(k, ω) can then be straightforwardly calculated from (32). Since

lim
ε→0+

− 1

π
Im

[
2ν

(ω + iε)2 − ν2

]
= δ(ω − ν) − δ(ω + ν) (51)

for any frequency ν, the phonon spectral function becomes

M(k, ω) = ∣∣V (F )
k

∣∣2[c1[δ(ω − ωLOx1) − δ(ω + ωLOx1)]
+c2[δ(ω − ωLOx2) − δ(ω + ωLOx2)]

]
+ O

(
T 4

1

)
. (52)

The phonon spectral function in the region ω > 0 is therefore a sum of two infinitely sharp δ peaks. In the absence of three-
phonon interaction, these peaks appear at ω = ωLO and ω = 2ωLO, and they can be associated with the Fröhlich interaction and
the one-electron–two-phonon interaction, respectively. The three-phonon terms only shift the locations and heights of these δ

peaks. Indeed, the δ peaks occur at ω = x1ωLO and ω = x2ωLO, or equivalently

ω ≈ ωLO − T 2
0

8ωLO

45Ṽ0
coth

(
h̄βωLO

2

)
+ O

(
T 4

0

)
, (53)

ω ≈ 2ωLO + T 2
0

4ωLO

45Ṽ0
coth

(
h̄βωLO

2

)
+ O

(
T 4

0

)
. (54)
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Other treatments of three-phonon anharmonicity [48–53] usually lead to a finite lifetime of the phonon, which dampens and
broadens the δ peaks in the spectral function M(k, ω). This does not happen in (52) because the Hamiltonian (1)–(4) of [41] only
includes one longitudinal optical phonon mode, and neglects all other modes. The only possible three-phonon processes LO →
LO + LO and LO + LO → LO do not satisfy conservation of energy, since the initial (final) state has an energy of Ei = h̄ωLO,
whereas the final (initial) state has energy E f = 2h̄ωLO. Therefore, according to Fermi’s golden rule [54],

1

τ
∼ 2π

h̄

∑
f

|〈 f |Ĥ3−ph|i〉|2δ(E f − Ei ), (55)

this process cannot contribute to the finite lifetime of the phonon [55]. Other three-phonon processes, such as LO → LA
+ LA, would indeed lead to a finite lifetime [50]. The fact that no broadening is present is a significant limitation of the
three-phonon interaction term (3). Therefore, for the discussion of the results in Sec. III, we will mainly focus on the effect of
the one-electron–two-phonon interaction, rather than the effect of the LO → LO + LO three-phonon process.

Because the phonon spectral function is composed of δ peaks, the integral in expression (29) for the approximate memory
function Im[	0(ω)] can be calculated explicitly. Since M(k, ω) ∼ |V (F )

k |2, and the dynamical structure factor S(k, ω) = S(k, ω)
is isotropic in k for the homogeneous electron gas, the sum over k in this expression will always be of the following form:

∑
k

k2
∣∣V (F )

k

∣∣2S(k, ω) = α

2π2
(h̄ωLO)2

√
h̄

2mbωLO
× 4π

∫
S(k, ω)k2 dk. (56)

Therefore, for all further results, we require the integral of the dynamical structure factor over all momenta. A straightforward
calculation leads to the following expression for the imaginary part of 	0(ω):

Im[	0(ω)] = −4α

3

(
h̄ωLO

2mb

) 3
2

2∑
i=1

∑
±

ci

ω
[1 + nB(±xiωLO) + nB(ω ∓ xiωLO)]

∫
S(k, ω ∓ xiωLO)k2 dk, (57)

where xi and ci are given by expressions (47)–(50).
The calculation of the structure factor will be discussed

in the next section. Once the integrated structure factor∫
S(k, ω)k2 dk has been calculated, the conductivity σ (ω) can

be found by using Eq. (57) to find the imaginary part of 	0(ω),
Eq. (28) to find its real part, Eq. (14) to find the memory
function, and Eq. (13) to find the conductivity.

Note that (57) reproduces the result for the Fröhlich po-
laron gas in [18] if we set T0 = T1 = 0 and work in the
zero-temperature limit β → +∞:

Im[	0(ω)]=− π

3mbh̄ω

∑
k

k2
∣∣V (F )

k

∣∣2S(k, ω−ωLO)�(ω−ωLO),

(58)
where �(x) is the Heaviside function. Combining Eqs. (13),
(14), and (28), and the fact that 	0(0) = 0 at zero temperature
according to Eqs. (28) and (58), eventually yields

Re[σ (ω)]= πne2

3m2
bh̄ω3

∑
k

k2
∣∣V (F )

k

∣∣2S(k, ω−ωLO)�(ω−ωLO),

(59)
which is indeed the result of [18], up to a conventional factor
π that is included in the definition of S(k, ω) in [18]. The
method presented in this section is therefore an extension of
the method in [18]: the treatment of this section includes finite
temperatures as well as one-electron–two-phonon interaction
and three-phonon interactions of the form (3) and (4).

D. Dynamical structure factor of the electron gas

The dynamical structure factor S(k, ω) of the homoge-
neous electron gas, defined by (22), is a well-known quantity
in the literature [27,45,46,56]. It represents the response of the
homogeneous electron gas to a perturbation with momentum

h̄k and energy h̄ω, and it is related to its dielectric function
ε(k, ω) as follows [27]:

S(k, ω) = − h̄εvacε∞k2

πne2
Im

[
1

ε(k, ω)

]
. (60)

The structure factor depends on the density n of the electron
gas. In this article, the dependence on the density is written in
terms of the Wigner-Seitz radius [27] rs = 1

ε∞aB
( 3

4πn )
1
3 , where

aB = 0.53 Å is the Bohr radius. The dynamical structure
factor is written in terms of standard quantities derived from
the density: the Fermi wave vector kF = (3π2n)1/3, the Fermi

energy EF = h̄2k2
F

2mb
, and the plasma frequency ωpl = ne2

mbεvac
[27].

There is no exact expression for the dynamical structure
factor. However, there are several models that describe the
dynamical structure factor with an increasing degree of pre-
cision. Most of these models can be expressed in terms of the
Lindhard polarization function [27]:

P(k, ω) = lim
δ→0+

V (C)
k

∑
q

nF (εq) − nF (εq+k )

εq − εq+k + h̄(ω + iδ)

:= A(k, ω) + iB(k, ω), (61)

where εk and V (C)
k are given by (6) and (8), and nF (E ) =

1/(eβ(E−μ) + 1) is the Fermi-Dirac distribution. The real and
imaginary parts A(k, ω) and B(k, ω) can be found by evaluat-
ing (61), or by using the expressions found in [27,57].

In this article, we will discuss and compare the following
four commonly used [27] models for the dynamical structure
factor, listed in order of increasing precision:
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(i) The one-polaron model, which neglects the Coulomb
interaction and exchange effects of the electron gas [18]:

S(k, ω) = δ

(
ω − h̄k2

2mb

)
. (62)

This basic model allows for further analytical calculations due
to its simplicity.

(ii) The Hartree-Fock model, which includes the exchange
effects but neglects the Coulomb interaction:

S(k, ω) = − h̄εvacε∞k2

πne2
B(k, ω). (63)

This model is valid when the Coulomb interaction between the
electrons is negligible, which is the case when h̄ωpl � EF .

(iii) The Lindhard model, also known as the random phase
approximation (RPA) model, which includes the Coulomb
interaction up to lowest order [44]:

S(k, ω) = − h̄εvacε∞k2

πne2

B(k, ω)

[1 − A(k, ω)]2 + B(k, ω)2
. (64)

(iv) The Hubbard model, which includes a local field factor
G(k) to account for the exchange and correlation hole around
the electron [27]:

G(k) = 1

2

k2

k2 + k2
F + 3mbω

2
pl

2EF

. (65)

The Hubbard dynamical structure factor is then given by

S(k, ω) = − h̄εvacε∞k2

πne2

× B(k, ω)

{1 − [1 − G(k)]A(k, ω)}2 + [1 − G(k)]B(k, ω)2
.

(66)

The Hubbard model is especially good for the large polaron
problem, since the local field factor G(k) is small in the k → 0
limit. Therefore, although more specialized models for the
structure factor exist [45,46], we will limit ourselves to the
RPA and Hubbard models in this article—this assumption
will be motivated a posteriori in Sec. III. Figure 3 shows
the dynamical structure factor for the Hubbard model. To
calculate the conductivity of the polaron gas (57), the structure
factor must be integrated over all momenta k2 dk. The dy-
namical structure factor has a sharp undamped plasmon peak
[18] when ε(k, ω) = 0, which needs to be treated carefully
when performing this integral. The plasmons lead to a kink at
ωpl in the integral of the structure factor, which will lead to
additional features in the optical conductivity [18].

III. RESULTS

A. Material parameters

The combination of expressions (13), (14), (28), (57), and
any of the structure factors (62)–(66), allows us to calculate
the conductivity of the anharmonic polaron gas, given values
for all the necessary material parameters. At the very least,
this includes values of the electron density n or the Wigner-
Seitz radius rs, and the polaron material parameters α, T0,
T1, and Ṽ0. The phonons and electron gas have their own

pl

0 1 2 3
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6

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5

Sint( )
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1

2

3

4

5

6

FIG. 3. Contour plot of the dynamical structure factor S(k, ω) of
the electron gas, calculated at zero temperature using the Hubbard
model (66) with rs = 12. Outside the red lines, the structure factor
is exactly zero, except for the Dirac δ peak due to the formation of
undamped plasmons (blue). The right inset shows the structure factor
integrated over all momenta, defined as Sint(ω) = EF

h̄k3
F

∫
S(k, ω)k2 dk.

characteristic energy scales h̄ωLO and EF , so the result will
also depend on the ratio of these energies. This parameter can
be written in terms of the Rydberg energy ERy:

EF

h̄ωLO
= ERy

h̄ωLO

(
9π

4

) 2
3 1

r2
s

, (67)

ERy

h̄ωLO
=
(

α

1 − ε∞
ε0

)2

. (68)

ERy/h̄ωLO is independent of the electron density, and is there-
fore another dimensionless material parameter. Finally, the
result also depends on the temperature of the system. Table I
shows the values of α, T1, Ṽ0, and ERy

h̄ωLO
for the lightest III-V

semiconductors, for which the Hamiltonian (1)–(4) is valid.
The values of T1 for these four materials were calculated
by ab initio methods [63]. These materials turn out to have
negligible one-electron–two-phonon interaction since their
values of T1 are quite low (T1 ∼ 10−3). Currently, the values
of T1 are unknown for all other materials. In the remain-
der of this section, we will therefore use larger, arbitrarily
chosen values for T1 to demonstrate the effect of signifi-

TABLE I. Material parameters for electron polarons in several
cubic III-V semiconductors The material parameters in the left part
of the table are found in [58–62]; the other parameters are derived
quantities, except for T1, which were calculated by [63].

ωLO (THz) mb (me) ε0 ε∞ α T1 Ṽ0
ERy

h̄ωLO

BN 38.41 0.329 6.98 4.62 0.973 −0.00134 0.00121 8.28
BP 24.48 0.331 9.28 9.19 0.018 −0.00085 0.00123 3.44
AlN 26.52 0.285 8.59 4.62 1.492 −0.00069 0.00100 10.42
AlP 14.65 0.311 10.41 8.14 0.561 0.00050 0.00092 6.62
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cant one-electron–two-phonon interaction. Similarly, T0 is not
known for any material to the best of our knowledge. Com-
parisons with other treatments of three-phonon anharmonicity
[48–53,55] are difficult for the reasons outlined in Sec. II C:
T0 represents the strength of only the LO → LO + LO pro-
cess, whereas most treatments take all possible three-phonon
processes into account at once. Therefore, we will choose
arbitrary values of T0 to show the effect of the three-phonon
interaction.

The Wigner-Seitz radius rs is fully determined by the car-
rier density n, which can be chosen freely in experiments by
doping. For concreteness, results in this article will be plotted
using n ∼ 5×1018 cm−3, a typical density for doped semicon-
ductors [18]. Using the values in Table I, this corresponds to a
Wigner-Seitz unit radius of the order rs ∼ 12.

B. The low-frequency and high-frequency limits,
and the imaginary part of the conductivity

Using the theory of Sec. II, the optical conductivity of the
anharmonic polaron gas can be calculated in several different
limits. Here, the low-frequency and high-frequency limits are
explored, and we show that both limits can be written as a
Drude conductivity [64]. Combining (13) and (14) allows us
to write the optical conductivity σ (ω) in terms of 	0(ω):

σ (ω) = i
ne2

mb

1

ω + i
τeff

(
1 + 	0(ω) − 	0(0)

ω

)
, (69)

where τ−1
eff = −Im[	0(0)] plays the role of collision rate of

the electrons and the phonons. From expressions (28) and
(29), it can be seen that the imaginary part of 	0(ω) is an
even function and its real part is an odd function. Taking the
ω → +∞ limit of Eq. (69) yields

lim
ω→+∞ σ (ω) = i

ne2

mbω
. (70)

At high frequencies, the conductivity simply reduces to the
Drude conductivity of the free electron gas, as the heavy ions
are too slow to follow the fast-moving electrons. Similarly,
taking the ω → 0 limit of Eq. (69) also yields a Drude con-
ductivity, but with a different effective mass meff and with the
relaxation time τeff:

lim
ω→0

σ (ω) = i
ne2

meff
(
ω + i

τeff

) . (71)

The relaxation time τeff and effective mass meff of the con-
ductivity are defined from the low-frequency behavior of the
memory function 	0:

1

τeff
= − Im[	0(0)] = 4α

3

(
h̄ωLO

2mb

) 3
2

×
2∑

i=1

∑
±

cin
′
B(±xiωLO)

∫
S(k,±xiωLO)k2 dk, (72)

mb

meff
= 1 + Re[	′

0(0)]

= 1 + 2

π

∫ ∞

0

Im[	0(ω)] − Im[	0(0)]

ω2
dω. (73)

0 ωLO 2ωLO 3ωLO 4ωLO
0

0.5

1

1.5

2

ω

Im[σ(ω)]
ne2

mbωLO

T1 = 0

T1 = 0.05

T1 = 0.1

Drude

FIG. 4. The imaginary part of the optical conductivity of the
polaron gas at zero temperature, calculated using the Hubbard
model (66) for the structure factor, α = 1, Ṽ0 = 0.001, T0 = 0,
ERy/h̄ωLO = 8, and rs = 12. The dashed lines represent the Drude
conductivity: the black dashed line represents the high-frequency
limit (70) calculated with the band mass, and the colored dashed lines
represent the low-frequency limit (71) calculated with the effective
polaron mass.

For a single polaron, τeff represents the average collision time
between collisions with a phonon, and meff represents the
effective polaron mass. Note that at zero temperature, τ−1

eff =
0 because no phonons are present. Indeed, in expression
(72), the derivative of the Bose-Einstein distribution becomes
n′

B(±xiωLO) → −δ(±xiωLO) = 0. In practice, this means that
the optical conductivity (71) will have a Dirac δ contribution
at zero temperature:

lim
ω→0

σ (ω)
∣∣
T =0 = πne2

meff
δ(ω) + i

ne2

meffω
. (74)

This contribution is necessary to satisfy the f-sum rule at zero
temperature and is well-known in the literature [13,18,65].
Overall, the imaginary part of the conductivity can be excel-
lently described by a combination of the two limits (70) and
(71), as shown in Fig. 4. There are some features in the inter-
mediate region ω ∼ ωLO, which becomes more pronounced as
α is larger; however, when α is too large, the theory presented
in this article becomes invalid and more specialized tech-
niques are necessary [24]. In the weak-coupling limit α → 0,
the main effect on the imaginary part of the conductivity is to
change the effective polaron mass in the low-frequency limit
(71).

At zero temperature and assuming the single polaron struc-
ture factor (62), the effective polaron mass can be calculated
explicitly using expression (73) in combination with (57).
With nB(ω) = �(ω) − 1 at zero temperature, the resulting
inverse effective mass is

mb

meff
= 1 − α

6

(
c1

x3/2
1

+ c2

x3/2
2

)
+ O

(
α2, T 4

0

)
. (75)

This result is valid up to second order in T0 because the
phonon self-energy (42) was approximated up to lowest or-
der. Expanding the expressions (47)–(50) for the coefficients
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FIG. 5. Optical polaron absorption spectra Re[σ (ω)] of the anharmonic polaron gas, calculated for several different material parameters.
Solid lines represent the results when three-phonon interaction is excluded (T′ = 0), and dashed lines represent the results including
three-phonon interaction (T′ = 0.01). The origin of the indicated peaks is discussed in the main text. (a) Single polaron optical absorption
at temperature zero, clearly showing the main polaron peak originating at ωLO and a secondary “anharmonic” polaron peak originating at
2ωLO. (b),(c) Effect of the structure factor of the polaron gas at temperature zero, calculated using T1 = 0.1 and (b) rs = 8 and (c) rs = 12:
the existence of plasmons introduces two new peaks. (d) Effect of the temperature on the absorption spectrum, calculated using the Hubbard
structure factor, T1 = 0.1 and rs = 12. Note that the Drude peak now has a finite height, but it is still too high to fit in the figure with the other
absorption peaks. Parts (a)–(d) all use α = 1, Ṽ0 = 0.001, and ERy/h̄ωLO = 8.

x1, x2, c1, c2 up to second order in T0 yields

m

meff
= 1 − α

6
− 1

90
√

2

α

Ṽ0

[
T 2

1 + 4(4
√

2 − 1)

3
T0T1

+ 4(11
√

2 + 1)

9
T 2

0

]
+ O

(
α2, T 4

0

)
, (76)

which is the same as the polaron effective mass calculated
from perturbation theory [41].

C. Optical absorption of the polaron gas

The real part of the optical conductivity contains signatures
of polaron formation that can be experimentally measured.
Indeed, it is related to the optical absorption coefficient �(ω)
of a material [66]:

�(ω) = 1

εvaccN
Re[σ (ω)], (77)

where N is the index of refraction of that material. It is known
in the literature that a Fröhlich polaron at zero temperature has
an absorption peak that appears near ωLO [Fig. 5(a), blue line],
which is usually in the midinfrared region [19,27]. A many-

polaron gas has a second peak that appears near ωLO + ωpl

[see Figs. 5(b) and 5(c), green and orange lines] due to the
formation of plasmons [13,18]. In this section, the effect of the
one-electron–two-phonon interaction on the optical absorp-
tion spectrum is investigated. The results are shown in Fig. 5.

The most important result is that the one-electron–two-
phonon interaction leads to an additional absorption peak,
which can be seen on the absorption spectra of a single po-
laron in Fig. 5(a). For a single polaron at temperature zero,
without three-phonon terms, the real part of the conductivity
actually has an exact expression:

Re[σ (ω)] = π

2

ne2

meff
δ(ω) (78)

+ ne2

mb

2α

3

ω
3/2
LO

ω3

(√
ω − ωLO�(ω − ωLO)

+ 2T 2
1

15Ṽ0

√
ω − 2ωLO�(ω − 2ωLO)

)
. (79)

This expression has three terms representing, respectively,
the infinitely sharp Drude peak, the polaron absorption peak
(whose expression is well-known in the literature [13,27]),
and a new “secondary polaron peak” that is due to the new
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one-electron–two-phonon interaction process. Each of these
peaks is visible in Fig. 5(a). The third term only contributes
when ω > 2ωLO, which can be understood in the follow-
ing way. The optical conductivity is zero below ω < ωLO

because there are no phonons naturally present to interact
with at zero temperature, so an energy of at least h̄ωLO is
necessary to create a phonon [13]. Similarly, two phonons
with a total energy of 2h̄ωLO must be created before the
one-electron–two-phonon process of Fig. 1(c) can contribute
to the conductivity, which requires h̄ω > 2h̄ωLO.

The secondary polaron peak can serve as an experimental
fingerprint for beyond-Fröhlich electron-phonon interaction.
Its presence indicates that a one-electron–two-phonon in-
teraction term like the one in Fig. 1(c) is not negligible.
Additionally, from (79) it can be seen that the height of the
new peak is proportional to T 2

1 . Therefore, a measurement of
the height of the secondary polaron peak provides a way to
estimate the value of T1 in a material.

At realistic doping densities, there is never a single polaron,
but rather a gas of polarons. Figures 5(b) and 5(c) show
the conductivity of the polaron gas at two different electron
densities, using different models for the dynamical structure
factor. First, we demonstrate a posteriori that the RPA model
(64) for the dynamical structure factor is sufficient to cap-
ture the main features of the optical absorption spectra by
noting that in Figs. 5(b) and 5(c) the RPA model captures
the same qualitative effects as the Hubbard model: adding
the exchange and correlation effects of the electron gas up to
lowest order using the Hubbard model does not fundamen-
tally change the absorption spectra. On the contrary, at the
densities used in Fig. 5, the single polaron and Hartree-Fock
models fail to account for plasmon formation in the polaron
gas [18] and therefore do not capture the fundamental fea-
tures of the absorption spectrum. Because of the formation of
plasmons, the integral of the structure factor over all momenta
(shown in Fig. 3) has a kink at the plasma frequency ωpl,
which leads to an additional peak in the optical absorption
spectra of Figs. 5(b) and 5(c) at ωLO + ωpl. The interplay
of both one-electron–two-phonon interaction and plasmons
can finally lead to a secondary plasmon peak. Therefore, up
to four distinct features may appear in the absorption spec-
trum: the polaron absorption peak, which starts at ωLO, the
plasmon peak at ωLO + ωpl, the secondary polaron absorption
peak at 2ωLO, and a secondary plasmon peak at 2ωLO + ωpl.
Note that, depending on the relative strength of the couplings,
some peaks may appear as shoulders or as kinks in the spec-
trum. Additionally, some of these features may overlap: for
example, in Fig. 5(c) only three peaks are visible, because
the plasmon peak and the secondary polaron peak cannot be
distinguished from each other.

Figure 5(d) shows the results calculated at finite tempera-
tures. In this case, the relaxation time τeff in expression (69)
becomes finite, which causes broadening and smearing of
the different peaks. Perhaps most notably, the Drude peak
broadens from a Dirac δ function to a peak with finite height
and width. The Drude peak is much taller than the other
absorption peaks and therefore quickly dominates the whole
absorption spectrum. To discern each of the absorption peaks,
the spectrum should be measured at sufficiently low tempera-
tures (kBT � 0.1h̄ωLO).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

kBT/h̄ωLO

(ω
L
O
τ e

ff
)−

1

T1 = 0

T1 = 0.05

T1 = 0.1

FIG. 6. The scattering rate τ−1
eff of the electron-phonon collisions

as a function of temperature. At zero temperature, no phonons are
present and τ−1

eff = 0. In this figure, α = 1, Ṽ0 = 0.001, rs = 12,
ERy/h̄ωLO = 8, the Hubbard model for the structure factor was used,
and T0 = 0 (solid lines) or T0 = 0.01 (dashed lines).

The dashed lines of Fig. 5 show the result when the
three-phonon interaction is included. The results are qualita-
tively the same: the three-phonon interaction only changes the
height of the peaks, and moves the locations of the peaks very
slightly. Overall, the three-phonon interaction seems to be
most impactful when there is also one-electron–two-phonon
interaction.

D. Qualitative prediction for the dc resistivity

The value of the electron-phonon scattering rate τ−1
eff is

shown in Fig. 6. This scattering rate is also directly propor-
tional to the dc resistivity of the polaron gas ρ(0) = meff

ne2τeff
, and

therefore it also represents the inverse of the height of the
Drude peak in Fig. 5(d). The scattering rate is thermally ac-
tivated, and it remains almost unchanged by the one-electron–
two-phonon interaction at low temperatures. This can be
understood by noting that the one-electron–two-phonon pro-
cess requires two phonons to be present in the material: at
low temperatures, this is much more unlikely than finding
just a single phonon. In the low-temperature limit, using the
one-polaron structure factor, and ignoring the three-phonon
interaction, the scattering rate can be calculated using (72):

τ−1
eff ≈ ωLO

4α

3

h̄ωLO

kBT

(
e− h̄ωLO

kBT + 2
√

2T 2
1

15Ṽ0
e− 2h̄ωLO

kBT

)
, (80)

which highlights the finding that the one-electron–two-
phonon interaction only starts significantly contributing to the
scattering rate at kBT ≈ 2h̄ωLO, while the Fröhlich interaction
already contributes at kBT ≈ h̄ωLO. The result (80) reduces
to the well-known result in the literature if T1 = 0 [13,21,27].

There is a known issue with the calculation of the colli-
sion rate τ−1

eff from the Kubo formula. The electron-phonon
collision rate can also be calculated from the Boltzmann
equation [16]. Comparing the result for T1 = 0 in Fig. 6
with the result in [16] shows that Fig. 6 is wrong by a fac-
tor 3kBT/2h̄ωLO [67]. The difference can be interpreted as
an incorrect exchange of limits [67]: using the Boltzmann
equation correctly calculates lim

α→0
lim
ω→0

σ (ω), whereas using the
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Kubo formula calculates the limit lim
ω→0

lim
α→0

σ (ω), which in this

case leads to a different result. The other curves in Fig. 6 are
presumably also incorrect by a similar factor, which might
be different when one-electron–two-phonon interaction is in-
cluded. Therefore, the results in Fig. 6 should be seen as a
qualitative comparison with the Fröhlich result, rather than
quantitative predictions.

IV. CONCLUSIONS AND OUTLOOK

In this article, we have calculated the optical conduc-
tivity and its related quantities for an anharmonic large
many-polaron gas, most notably including the one-electron–
two-phonon interaction of Fig. 1(c). The Hamiltonian (1)–(4)
from [41] is an extension of the Fröhlich Hamiltonian with
analytical expressions for the interaction strengths. In the low-
and high-frequency limits, the conductivity can be written as
a Drude conductivity. In the low-frequency limit, the carrier
mass is equal to the anharmonic polaron mass [41], which
verifies the intuition that anharmonic polarons play the role
of charge carriers in this regime.

The optical absorption spectrum is proportional to the real
part of the optical conductivity. A gas of Fröhlich polarons
has two peaks: a polaron peak at ωLO, and a polaron-plasmon
peak at ωLO + ωpl [18]. In this paper, we have shown that a gas
of anharmonic polarons has two more peaks: an anharmonic
polaron peak at 2ωLO, and an anharmonic polaron-plasmon
peak at 2ωLO + ωpl.

The method used in this paper is strongly based on the
method first proposed in [18] to calculate the optical conduc-
tivity of a gas of Fröhlich polarons, starting from the Kubo
formula. One difference with the method in [18] is that we
use the memory function formalism to introduce the spectral
function M(k, ω) of the phonons, which is then calculated us-
ing the Matsubara-Green’s formalism. This has the advantage
that the optical conductivity can also be calculated at finite
temperatures. Additionally, the method proposed in this article
works for any Hamiltonian of the following form:

Ĥ = Ĥel + Ĥph +
∑
q �=0

F̂qρ̂−q, (81)

where the operators Ĥph and F̂q depend on one or more
phonon operators, and the dynamical structure factor S(k, ω)
must be calculated with respect to the general electron Hamil-
tonian Ĥel. With the choice (19) for F̂q and the choice
(3) for Ĥph, the above Hamiltonian reduces to (1)–(4). Re-
gardless, many other electron-phonon Hamiltonians can be
written in the form (81). One example is the impurity-boson
Hamiltonian in ultracold gases, written in the Bogoliubov
approximation and including the one-impurity–two-boson in-
teraction [39,40]. For such Hamiltonians, the weak-coupling
conductivity is still given by expressions (13) and (14), in
combination with (28) and (29). If one can calculate the
dynamical structure factor S(k, ω) and the phonon spectral
function M(k, ω) for the Hamiltonian in question, the con-
ductivity can be calculated using this method.

The anharmonic electron-phonon Hamiltonian (1)–(4) in
its current form is quite limited in its application to real mate-
rials, since it only applies to cubic materials and only contains

interaction to a single phonon branch. Furthermore, the most
commonly used materials that satisfy those conditions do
not have significant one-electron–two-phonon interaction, as
shown by the low values of T1 in Table I. To study currently
relevant anharmonic materials with electron-phonon interac-
tion, like SrTiO3 [28] or high-pressure sulfur hydride [33], the
Hamiltonian (1)–(4) must first be generalized to include multi-
ple phonon branches and noncubic point groups. Fortunately,
such a Hamiltonian would be of the form (81). Therefore, the
theory presented in Sec. II of this article can still be applied.
For a noncubic material, the conductivity and the memory
function 	0(ω) will become a 3×3 matrix, so that Eqs. (28)
and (29) become

Re
[
	

(0)
i j (ω)

] =2ω

π
P
∫ +∞

0

Im
[
	

(0)
i j (ν)

]
ν2 − ω2

dν, (82)

Im
[
	

(0)
i j (ω)

] ≈ − π

mbh̄ω

∑
k

kik j

∫ +∞

−∞
[1 + nB(ω′)

+ nB(ω − ω′)]S(k, ω − ω′)M(k, ω′)dω′.
(83)

To use these expressions, only the spectral function M(k, ω)
and perhaps S(k, ω) would have to be recalculated for the
material in question.

An interesting avenue to explore further is the effect of
three-phonon interaction on the optical conductivity of the
polaron gas. In Sec. II C, we demonstrated that the three-
phonon interaction (3) used in this article is insufficient
because it only contains interactions between LO phonons.
With a Hamiltonian that contains all possible three-phonon
processes [55], it would be possible to properly study the
effect of three-phonon interaction on the optical conductiv-
ity. Expressions (32) and (37) suggest that only the phonon
self-energies or the phonon spectral functions are sufficient to
calculate M(k, ω) and study the effect of three-phonon inter-
action, as long as no one-electron–two-phonon interaction is
considered.

It is possible to calculate the conductivity of the anhar-
monic polaron gas described by the Hamiltonian (1)–(4) using
several other methods, which would give results in different
regimes. For example, to calculate the optical conductivity
of one polaron at intermediate or strong electron-phonon
coupling, the path integral method of [21,22] or the diagram-
matic Monte Carlo method of [24] could be generalized. To
calculate the electron-phonon scattering rate τ−1

eff and the dc
conductivity of the polaron gas, and to verify whether the
correct value is still obtained after multiplying with a factor
3kBT/2h̄ωLO, one could use the Boltzmann transport equa-
tion as in [16]. Both of these are left as potential further
research questions.

We propose the anharmonic polaron absorption peak
at 2ωLO as an experimental fingerprint for one-electron–
two-phonon interaction in solids. Since the height of the
anharmonic polaron peak is proportional to T 2

1 , a measure-
ment of the height of this peak can be used to estimate the
relevance of the one-electron–two-phonon interaction in a
material.

The code that was used to generate Figs. 4–6 is publicly
available online [68].
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