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Theory for all-optical responses in topological materials: The velocity gauge picture
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High-order harmonic generation (HHG), which has been widely studied in atomic gas, has recently been
expanded to solids to study the highly nonlinear electronic response in condensed matter and produce coherent
high-frequency radiation. Recently, attention has turned to topological materials and the use of HHG to character-
ize topological bands and invariants. However, the theoretical interpretation of the nonlinear electronic response
in topological materials presents many challenges. In particular, the Bloch wavefunction phase of topological
materials has undefined points in the Brillouin zone. This leads to singularities in the calculation of the interband
and intraband transition dipole matrix elements of the semiconductor Bloch equations (SBEs). Here, we use the
laser-electromagnetic velocity gauge p · A(t ) to numerically integrate the SBEs and treat the singularity in the
production of the electrical currents and HHG spectra with better numerical efficiency and more straightforward
implementation. We used a prototype of Chern insulators (CIs), the Haldane model, to demonstrate our approach.
The validity of the velocity gauge approach is demonstrated in the following way: for topologically trivial
materials such as MoS2, qualitative agreement is achieved with the results of the length gauge approach and
the time-dependent density functional theory. For the application of the velocity gauge approach to topological
materials, Chern insulator is taken, using the two-band Haldane model. We found a good qualitative agreement
between the velocity gauge and the length gauge approach in view of (i) the selection rules, (ii) the linear cutoff
law scaling, and (iii) anomalous circular dichroism. We conclude that the velocity-gauge approach for HHG
provides a theoretical tool to investigate topological materials.

DOI: 10.1103/PhysRevB.106.214314

I. INTRODUCTION

The measurement of the quantum spin Hall effect (QSHE)
[1–5] in HgTe (2007) ushered in a new era of condensed
matter physics, paving the way for unexpected technological
advances [3,6,7]. The HgTe material consists of quantum
wells that exhibit transverse spin currents at the edge, but
insulating features in the bulk under a static longitudinal
voltage [6,8] (see Fig. 1). These edge currents and insulating
bulk suggest unique applications for a topological insulator
(TI) in metrology [9] and in the control of quantum logic
operations [10].

The quantum wells of HgTe, as well as other materials
such as CdTe [2], have topological invariants belonging to
the class Z2 of TI. This topological invariant is defined in
terms of the wavefunction parities or Berry phase [2,6]. The
two-dimensional (three-dimensional) TI is a unique phase of
matter in the sense that the edge (surface) current is protected
by the time-reversal symmetry of the Hamiltonian [11]. For
edge states, this symmetry provides robustness against local-
ization and forbids backscattering between states of opposite
spin and opposite momentum [6].
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Despite widespread interest in the nonlinear interaction of
topological materials with ultrafast laser pulses, there is little
research on the topic because of the difficulties in theoretical
modeling and interpretation of resulting high-order harmonic
emission. Addressing these challenges is instrumental in guid-
ing future experimental observations in topological materials.
In this paper, we focus on the study of nonlinear optical emis-
sion to topological materials by solving the semiconductor
Bloch equations (SBEs) in the laser-electromagnetic veloc-
ity gauge (VG) p · A(t ) in the mid-infrared (MIR) spectral
regime. In particular, we introduce a new approach to address
the integration of singularity in the SBEs for the highly non-
linear optical response in the topological materials.

There is a wide variety of topological materials depending
on the topological invariant and the Hamiltonian symme-
tries of these materials. These classifications are organized
in the periodic table of topological materials (insulators),
shown in Ref. [6]. Depending on the dimensionality of
the samples, symmetries, and topological invariant, this table
shows topological materials with charge currents, locked-
spin up and down currents [12,13], and Weyl fermions,
among others. For instance, QSHE leads to quantum spin
hall insulators (QSHI) HgTe (two-dimensional TI) or Bi2Se3

(three-dimensional TI).
In 1988, Haldane introduced the first paradigmatic class

of topological materials showing quantum anomalous Hall
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FIG. 1. Quantum anomalous Hall effect. Panel (a) depicts a path
of the longitudinal electrical currents Ix (red dots) and the quantized
transversal conductivity σxy = ν e2

h (Hall voltage VH �= 0 or charge
current in blue dots) in an ideal Chern insulator (CI) proposed by
Haldane [13] (the Chern number or topological invariant can be
ν = ±1), i.e., the quantum Hall effect without any applied external
magnetic field. Panel (b) shows an example of traditional conductors,
which do not exhibit any quantized transversal Hall voltage (VH = 0
or conductivity), ν = 0.

effects (QAHEs) (see Appendix A). The Haldane model ex-
hibits quantized conductivities, σxy = ν e2

h at the edge, where
e is the electron charge, h is the Planck constant, and ν is the
topological invariant (or the Chern number). This invariant
is a quantized integer number that characterizes topological
Chern insulators (CIs) (see Fig. 1). Topological states have
singularities in the Brillouin zone (BZ), which can lead to
numerical problems (see Fig. 12 in Appendix B or Fig. 2 of
Ref. [14]). Here, we treat these singularities by using the VG
approach. As a proof of concept, we use the Haldane model
for CI to test and validate this approach.

Figure 1(a) depicts the quantum Hall effect (QHE) with-
out Landau levels [6,13,15]. This shows that ν is essential
for topological materials. Moreover, this critical aspect of
topological materials is contained in the undefined phase of
the topological states. The singularity itself is independent
of the wavefunction gauge |ũs

m〉 = exp (iφm)|ũs
m〉: the k posi-

tion of the singular point can be manipulated via the gauge
transformations, but not eliminated in topological materials.
The latter leads to an interconnection of the singularity in
the wavefunction phase with ν [16]. Kohmoto showed that
without this singularity, no QHEis observed [16] and the ma-
terial behaves as an ordinary semiconductor or conductor [see
Fig. 1(b)]. Unfortunately, this singularity of the wavefunction
affects the calculation of the Chern number, which is defined
by [6,12,13,15]

νm = 1

2π

∫
BZ

d2k · �m(k), (1)

where �m(k) = 〈∂kum,k| × |∂kum,k〉 = ∇k × ξm(k) is the
Berry curvature, ξm(k) = i〈um,k|∇kum,k〉 is the Berry
connection, and dmn(k) = i〈um,k|∇kun,k〉 are the transition
dipole matrix elements. This singularity extremely
complicates the calculations of the dipoles and Berry
connections, see Ref. [14] and Fig. 2(a) in comparison
to Fig. 2(b).

On the other hand, the ultrafast nonlinear optical spec-
troscopy and high-order harmonic generation (HHG) in

FIG. 2. Singularity in the Berry connection of topological ma-
terial. The absolute value of the Berry Connection for (a) a Chern
insulator defined in the topological Haldane model and (b) a topo-
logically trivial material, MoS2. The vectorial field indicates how the
Berry connection can accumulate a phase in the Brillouin zone. In
other words, by the Stokes’ theorem, the topological Chern number
is νn = 1

2π

∮
C ξn(k) · dk, where C denotes a closed line-path integral.

The upper panels show a 1D cross section along the orange line with
slightly varying ky for trivial and topological phase, i.e., the absolute
value of the Berry connection for small ky offsets, respectively.

topological materials have drawn the attention of ultrafast
physics and condensed matter communities [17,18] as a
complementary alternative to angle-resolved photoelectron
measurements [17,17,19,20]. However, the use of HHG to
characterize topological materials is still in its infancy. How
topological invariants are encoded in the HHG spectrum
is yet to be explored. A few recent studies of HHG us-
ing the paradigmatic Haldane model [17,21] have shown
the complexity of computing the nonlinear currents using
the SBEs.
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The evolutionary density matrix ρ̂(K, t ) or the semicon-
ductor Bloch equations (SBEs) reads

∂

∂t
ρ̂mn(K, t ) = −i

[
εmn(K + A(t )) − i

1 − δm,n

T2

]
ρ̂mn(K, t )

− iE(t ) · [D(K + A(t )), ρ̂(K, t )]mn. (2)

The above equation contains the singular term of the topolog-
ical wavefunction: the Berry connection and the dipole matrix
element that are encoded in Dmn(k) [14] (see Appendix A
for mathematical definition). This Dmn(k) contains both the
interband dipole matrix element dmn(k) for m �= n and the
intraband Berry connection ξm(k) for m = n. Here A(t ) =
− ∫ t

t0
E(t ′)dt ′ is the vector potential of the electric field E(t ),

and εmn(k) = εm(k) − εn(k) is the energy difference between
the mth and nth bands. We use the so-called moving BZ
frame [22], k = K + A(t ), and the phenomenological dephas-
ing time T2 as in previous works [22–26]. For relaxation, we
consider only the dephasing time of coherence T2 [22,24].
Relaxation of the population is ignored due to its longer time
scale compared to T2. If the singularities in Dmn(k) in Eq. (2)
are not handled properly, it induces numerical errors in the
calculation of HHG from topological materials, which is more
noticeable in strong field regimes. These lead to incorrect
plateau and cutoff structures of the HHG spectra (see Ap-
pendix B).

To address this problem, we previously developed the vari-
able “matter-gauge wavefunctions” method [approach (a)],
which considers the pseudospin gauge Hamiltonian and the
periodicity of the Haldane model in the BZ [14]. This ap-
proach showed an excellent resolution of the harmonic orders
(HOs) and cutoff of the HHG spectra. Additionally, the theo-
retical efforts of Silva et al. [27] dealt with this singularity by
using the time evolution of ρ̂(k, t ) in the maximally localized
Wannier basis (MLWB) [approach (b)]. Note that we have
verified that both approaches (a) and (b) reach the same results
in the Hamiltonian Bloch basis [14].

Each approach, (a) or (b), has its advantages and disad-
vantages. For instance, in [14], the approach (a) only works
in the special case of tight binding approximations (TBAs).
In [27], the approach (b) requires additional computational
power to apply the dephasing time at each time step. (See
Appendix C for more details.) The MLWB approach requires
evaluations of T2 in the Hamiltonian gauge instead of its orig-
inal Wannier gauge representation, resulting in an increased
number of computational operations and a more complex
implementation.

To treat the singularity problem alternatively in topological
materials and give another physical interpretation, we focus
ourselves on the VG to solve the SBEs and compute the elec-
trical currents in trivial materials and topological materials.
Furthermore, we compare the HHG spectra produced by the
proposed VG SBEs with those of the length gauge (LG) SBEs.
The rest of the paper is organized as follows: In Sec. II,
we describe the electrical current and the SBEs in the LG
and VG. In Sec III, we use the VG SBEs to calculate HHG
emission from trivial material such as a monolayer of MoS2.
We compare these results with those of the LG SBEs and
the time-dependent density functional theory (TDDFT) for
MoS2, to confirm the validity of our approach. We then extend

the application of the proposed VG theoretical framework
to topological CIs for both linearly and circularly polarized
MIR or THz light sources. Our approach is further validated
by computing the cutoff law [28] of the HHG spectra and
the circular dichroism (CD) in topological materials. We also
compare these outcomes with the LG results. In Sec. IV, we
discuss the advantages and disadvantages of the LG and VG
approaches in computing the HHG spectra and conclude that
the VG approach is a suitable and straightforward method to
calculate the HHG spectra for topological materials.

II. THEORETICAL FRAMEWORK

In the dipole approximation, VG and LG are theoretically
used to describe the nonlinear optical responses [29–31] in
solids subject to ultrashort lasers. The total Hamiltonian of the
laser-lattice system is Ĥ (t ) = Ĥ0 + V̂int (t ), and the interaction
term V̂int (t ) in the VG or LG reads

V̂ (VG)
int = p̂ · A(t ) + A2(t )/2, and (3)

V̂ (LG)
int = x̂ · E(t ). (4)

Although these laser-electromagnetic gauges should provide
the same results for a physical observable, for instance,
the HHG spectra, previous studies have found that, unfor-
tunately, it is not the case in several systems [31–33]. This
breaking of the gauge symmetry occurs when an approxima-
tion is carried out to solve the time-dependent Schrödinger
equation (TDSE). Note, however, that the full numerical
integration of the TDSE for the HHG spectra under the
LG and VG is covariant [34,35]. This supports the obser-
vation that some approximations of the TDSE can break
the laser-electromagnetic gauge symmetry. For instance, in
the strong field approximation (SFA) applied to a gas, this
laser-electromagnetic gauge symmetry is broken [36], and
produces different HHG spectra, particularly for the intensity
yield [32,33]. Nevertheless, the main qualitative features of
the HHG spectra are reproduced by both the LG and VG in
the SFA formalism. In the case of topological materials, we
expect a similar trend.

In the LG, the numerical integration of the SBEs is an
extremely problematic task: The k-space position operator
depends on the crystalline momentum derivatives ∂k in the
BZ [see Eq. (10)]. Therefore, a discontinuous wavefunction
gauge leads to a singularity in the derivative. Even in trivial
materials, it is a numerical challenge to find a smooth wave
function gauge that has no discontinuity and, therefore, does
not give the singularity in derivatives ∂k [24]. In topological
materials, this is more critical since the discontinuity is not
avoidable.

In contrast, the VG offers a way to avoid the singularity
by decoupling of the different k channels. Hence, notwith-
standing some disadvantages of the VG, related to the Bloch
acceleration theorems [29–31] and crystal kinetic momenta,
the VG offers an attractive alternative to the LG. Therefore,
we propose the VG as an alternative to the LG to study the
nonlinear optical responses of topological materials.
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A. Velocity gauge picture

Frequently, in a periodic crystalline structure under exter-
nal laser fields, the charge current is calculated by integrating
the k-elementary-microscopic currents in the BZ,

J(t ) =
∫

BZ

d3k

(2π )3
j(k, t ). (5)

Here, we define the elementary microscopic current j(k, t ) in
the VG as

j(k, t ) = −Tr(ρ̂v̂)

= Tr(ρ̂(k, t ) p̂) − NVBA(t )

= −
∑
m,n

ρmn(k, t )Pnm(k) − NVBA(t ). (6)

This corresponds to the expectation value of the velocity oper-
ator v̂ = −i[Ĥ (t ), x̂]. The current j(k, t ) is defined in terms of
the density matrix ρ̂ = ρ̂(k, t ), the momentum matrix element
P, and the number of valence band NVB [24,30,31].

The time-propagation of the density matrix ρ̂(k, t ) is given
by the Liouville-von Neumann equation,

i
∂ρ̂(k, t )

∂t
= [Ĥ (t ), ρ̂(k, t )], (7)

where ρ̂ will be evaluated in the VG via Ĥ (t ).
Usually, the Hamiltonian representation is defined by the

Bloch states for the laser-free Hamiltonian, Ĥ0. In the VG, the
Hamiltonian describing the laser-periodic crystalline interac-
tion reads

Ĥ (t ) = Ĥ0 + p̂ · A(t ) + A2(t )/2. (8)

However, the term proportional to A2(t ) is canceled by the
commutator in the Liouville-von Neumann equation given by
Eq. (3) [37]. Thus, the time evolution of the density matrix
elements in the VG reads

ρ̇mn(k, t ) = −i

[
εmn(k) − i

1 − δm,n

T2

]
ρmn(k, t )

− iA(t ) ·
∑

l

[Pml (k)ρln(k, t ) − Pln(k)ρml (k, t )].

(9)

Here εmn(k) is the energy difference between bands m and n,
with the phenomenological dephasing time given by T2.

The advantage of the VG is that every k-crystal momen-
tum channel is decoupled [30,31]. Therefore, the singularity
from discontinuous phase of Bloch function can be avoided.
Also, the VG SBEs does not have a Berry connection term,
which is another source of singularity. Furthermore, we can
quickly parallelize the implementation of the code for Eq. (9).
For example, we use the message passing interface (MPI) in
C + + and numerically solve Eq. (9) using the Runge-Kutta
fifth-order method.

B. Length gauge pictures

The evolution of the electronic density operator ˙̂ρ(k, t ) in
LG and the “Hamiltonian matter gauge” can be acquired in
a similar procedure as described in Refs. [14,30,31]. From

the Liouville-von Neumann equation given by Eq. (7), con-
sidering the interacting potential of Eq. (4) and the position
operator in the Bloch basis x̂ [38],

x̂mn = (−i∇k + ξm)δmn + dmn, (10)

˙̂ρ(k, t ) can be expressed as Eq. (2). This representation is sen-
sitive to the singularity of the topological states in topological
materials, as discussed above. The position operator indeed
contains intraband momentum terms, which are defined in
∇k. In a finite and discrete k-space grid, this means that
ρ̂(k, t ) depends on its k-space “numerical neighbor cell” and
the electric field strength. This is problematic in LG and in
its Hamiltonian representation. Even in the case that one can
express the time evolution of ρ̂(K, t ) in terms of the moving
frame k = K + A(t ) [14,22,39], the vector potential A(t ) will
force ˙̂ρ(K, t ) to travel throughout the singularity described in
Fig. 2(a) for topological materials.

The numerical solution to Eq. (2) requires continuous
quantities such as transition dipole matrix elements and Berry
connections. Unfortunately, this is not possible for topological
materials [14,16]. The Wannier representation [27] promises
to address this problem. From the application of Eq. (7),
considering TBA as a basis and Eq. (2), the equation of motion
of density matrix in the Wannier basis yields [27]

i
∂

∂t
ρ̂ (W)(K, t ) = [

Ĥ (W)
0 (K + A(t )), ρ̂ (W)(K, t )

]
+ E(t ) · [D(W)(K + A(t )), ρ̂ (W)(K, t )].

(11)

Here, Ĥ (W)
0 (k) is expressed in the TBA Hamiltonian.

D(W)(k) and ρ̂ (W)(k, t ) are dipole matrix and density matrix
in Wannier basis. D(W)(k) is calculated by

D(W)
nm (k) =

∑
R

eik·R 〈0n|r̂|Rm〉 . (12)

This exhibits continuous dipoles even in the case of topo-
logical materials. Furthermore, if we assume that D(W)(k) is
diagonal, for instance,

〈0n|r̂|Rm〉 = δ0Rδnm�n, (13)

one can treat D(W)(k) as a k-independent term [40]. Here
�n = 〈0n|r̂|0n〉 is the center of nth Wannier function or can be
understood as a position of the corresponding atomic orbital.

III. NUMERICAL RESULTS AND VALIDATIONS

A. Nonlinear optical response in trivial materials:
The velocity gauge

Our VG SBEs are first validated in a topologically trivial
material. Subsequently, we extended the VG SBEs to the
paradigmatic Haldane model. In the case of trivial materials,
we calculated the HHG spectra using both the LG SBEs and
the TDDFT [41] for comparison with the results of the VG
SBEs. For a trivial material, we use a simplified three-band
TBA for monolayer MoS2 from the study of Liu et al. [42].
This model only uses Mo-dz2 , dxy, and dx2−y2 orbitals and
includes the interaction between Mo-d orbital and the S-p
orbital as an approximation. We simulate the HHG spectrum
using VG and LG via Eqs. (9) and (11), respectively.
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FIG. 3. Calculated HHG spectra from MoS2 by the SBEs in the
length gauge (orange line), velocity gauge (blue line) and TDDFT
(green line). Our laser parameters are h̄ω0 = 0.3626 eV, peak electric
field E0 = 0.01265 a.u. and time pulse duration at full width at half
maximum (FWHM) of 14 opt. cycles under a gaussian envelope,
with dephasing time T2 = 2.7 fs. We used the tight binding model
and parameters from the study of Liu et al. [42]. The red-dotted line
indicates the band gap of the MoS2, which is 1.8 eV.

Figure 3 shows HHG signals for both gauges in the trivial
material, MoS2. The spectrum produced by the VG SBEs
share essential features to the LG and the TDDFT calcu-
lations. For example, the plateau with even and odd HO
structures and the cutoff in the HHG spectra from the VG
SBEs are qualitatively in good agreement with the other two
methods. For better visualization, the TDDFT calculation is
normalized to have similar low-order harmonics yields.

The LG and VG will yield identical results [43], if and only
if the full eigenstates and eigenenergies of the Hamiltonian
H (W)

0 are considered in the simulation and the sum rule in
Appendix D is satisfied. Moreover, since we use TBA up to
three states and the third-nearest-neighbor hopping for the
Hamiltonian H (W)

0 , the HHG calculations can break the laser-
electromagnetic gauge symmetry.

The difference between both gauges compared to the
TDDFT result can be explained by several factors, such as the
incomplete sum rule between the position and the momentum
operator in Eq. (D1) of Appendix D. The incomplete basis set
of TBA breaks this commutation relation and therefore breaks
the electromagnetic gauge symmetry. For solids described in
plane-wave basis, it has been proven that the VG requires up
to the 30th band to obtain convergence [24], while the LG
needs up to the 2nd band for convergence. Another origin
of the difference between the VG and the LG results is the
action of the dephasing time T2 in ρ̂(k, t ). This phenomeno-
logical variable plays a different role in the two gauges (for
details, see Appendix C). However, it is worth noting that the
difference that comes from the sum rule is not dominant in
high-order terms. The error in VG can be written as additional
terms with the powers of A(t ) [37,44], and becomes negligible
in high order when a laser satisfies |A(t )| < 1 a.u.. There are
other papers that also observe big differences in low order but
smaller differences in high order [24,31]. Since our interest
is focused on the plateau region, we can expect qualitative
agreement even without the exact sum rule. As a result, our
HHG spectra show a similar trend in both gauges; for exam-
ple, the plateau structure and cutoff are similar in the VG and
LG SBEs (see Fig. 3).

FIG. 4. Calculated HHG spectra from Chern insulator in the
length and velocity gauges. Laser central frequency ω0 = 0.38 eV,
peak electric field E0 = 0.0045 a.u. and FWHM duration of 14 cycles
under a gaussian envelope are used. For dephasing time T2 = 5.3 fs
is used. The Chern insulator has M0 = 0.0635 a.u., t1 = 0.075 a.u.,
t2 = 0.025 a.u., and φ0 = 1.16 rad for Haldane model parameters.
The red dotted line indicates the band gap of material, which is
3.0 eV.

B. Nonlinear optical response in topological materials:
The velocity gauge

Next, we applied the VG SBEs to topological materials.
The Haldane model belongs to the first class of topologi-
cal Chern insulators (CIs). We used the topological Haldane
model to study nonlinear optical emissions and charge cur-
rents induced by the laser-CI interactions. This prototype of
CI will test our VG SBEs in topological materials by compar-
ing our HHG simulations in the VG with those in the LG.

The total HHG spectra produced by a linearly polarized
MIR laser for the LG and VG SBEs are shown in Fig. 4. We
find qualitatively a good agreement between the HHG spec-
trum produced by the VG and LG SBEs. Surprisingly, the VG
SBEs can reproduce the key features of HHG in topological
materials even in this two-band toy model. In particular, the
selection rules produced by the VG SBEs for the HOs in (i)
the perturbative region (low HOs of the HHG-spectra), (ii)
the plateau (middle part of the HHG spectra), and (iii) the
cutoff (HO beyond which the intensities of subsequent HO
drastically decrease) show good agreement with results from
the LG [see Figs. 5(a) and 5(b)].

In Fig. 5, a detailed comparison is made between the HHG
spectra in the VG and LG SBEs. Since both time-reversal
symmetry and inversion symmetry are broken in the Haldane
model, both even harmonics and odd harmonics can be seen
in the HHG spectrum [19] along directions both perpendicular
and parallel to laser polarization. This result is gauge symmet-
ric, appearing both in the LG and the VG SBEs, as can be seen
in Figs. 5(a) and 5(b).

Another interesting test for the VG SBEs is the calculation
of the circular dichroism (CD). Reference [14] demonstrated
that CD is a direct clue for the topological invariant as it
changes with Chern number. We define the circular dichroism
(CD) at HO l as the normalized intensity difference between
HO l from the left circularly polarized laser (LCP) and the
right circularly polarized laser (RCP),

CDl = I l
RCP − I l

LCP

I l
RCP + I l

LCP

. (14)
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FIG. 5. Selection rules of the HHG spectra for the VG and LG in Chern insulators. [(a),(b)] Calculated HHG spectrums using linearly-
polarized laser along �-K direction. Harmonic spectra along parallel or perpendicular direction relative to laser polarization are illustrated.
[(c),(d)] Total harmonic spectras, IHHG(ω) = ω(|Jx (ω)|2 + |Jy(ω)|2), produced by circularly-polarized lasers. Results from the right-hand/left-
hand circularly-polarized laser (RCP/LCP) are shown. [(e),(f)] Circular dichroisms of the HHG spectra for each harmonic orders. Results
from topologically trivial (C = 0) and nontrivial (C = ±1) are shown for each gauge. We use laser parameters of central frequency h̄ω0 =
0.38 eV, peak electric field E0 = 0.0045 a.u. and duration of 14 opt. cycles (in full width at half maximum) under a gaussian envelope.
T2 = 5.3 fs dephasing time is used. The cutoffs of the HHG spectra are on green shadows. The black dots indicate co-rotating harmonics for
the calculation of CD. The vertical dashed lines show the bandgap of the topological material.

Figures 5(c) and 5(d) show the HHG spectra produced by
the VG and LG SBEs. The co-rotating HOs, l = 3n + 1,
produced by LCP are much larger than the corotating HOs
produced by the RCP driver. We observe that for all corotat-
ing HOs, the CD = −1, for Haldane model parameters with
ν = −1. The correspondence between CD and Chern number
is more obvious in Figs. 5(e)–5(f). The CDs of corotating
orders are plotted for topological nontrivial material (C = ±1,
Haldane model) and trivial material (C = 0). Apparently, CD
follows the Chern number of the material and acts as a clue
of the topological invariance. This is observed for both the
VG and LG pictures, and is consistent with the previous
report [14].

We now check whether the cutoff linear scaling law of
the HHG spectrum can be verified within the VG SBEs
[28]. The HHG spectra as a function of the electric field
peak strength are shown in Fig. 6. Both the VG and
LG show a similar linear cutoff law: the cutoff of HHG
spectra increases linearly as the electric field strength E0

increases with a similar slope. Finally, we show how the

occupation of the conduction band changes in time in Fig. 7
around ky = 0.

IV. CONCLUSIONS

We discussed the laser-electromagnetic VG approach to
overcome the singularity encountered in HHG calculation in
topological materials. Using a two-band Haldane model, we
show that the VG approach can qualitatively capture the main
feature of charge current and the HHG spectra without any
artificial noise introduced by the singularity of the dipole
transition matrix elements, or Berry connection.

Additionally, we compare the HHG spectra in the VG
approach with those produced by the LG in the maximally
localized Wannier basis in terms of (1) the HHG spectra
produced from linearly and circularly polarized lasers, (2)
the circular dichroism, and (3) the linear cutoff law. In both
trivial and topological materials, a good qualitative agreement
was observed in the HHG spectrum between the VG and LG
results. The lack of quantitative agreement between the two
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FIG. 6. Cutoff law for Chern insulators in both velocity and
length gauges. Total HHG emissions, IHHG(ω) = ω(|Jx (ω)|2 +
|Jy(ω)|2) as a function of electric field peak strength E0 for (a) VG
and (b) LG for linearly polarized light. Other laser parameters are
the same as in Fig. 5. Both velocity and length gauges show linear
scaling of the high harmonic cutoff with peak electric field.

approaches is partly due to the limited number of bands and
the tight-binding approximation, which we used as a proof of
concept.

In conclusion, we demonstrated that the VG approach can
successfully integrate the numerical singularity in the Berry
connection of topological materials and reproduce key fea-
tures of the HHG spectrum in trivial materials as well as
in nontrivial materials. We expect the VG approach to be
more rigorous for topological materials, since it treats the
numerical singularity present within the LG approach. Hence,
the VG approach presented here introduces theoretical tools
for investigating the highly nonlinear optical emission from
topological materials.
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APPENDIX A: THE HALDANE MODEL

The Haldane model [13] is the first model representing
the quantum anomalous Hall effect (QAHE) introducing local
magnetic flux. This model is a minimum of a two-band toy
model but captures the most relevant physics of the Chern
insulator. The Haldane model considers a TBA Hamiltonian
in a hexagonal lattice and hopping parameters up to the next-
nearest neighborhood (NNN).

This model can be a Chern insulator or a trivial insulator,
depending on its parameter.

1. Haldane’s Hamiltonian

The Haldane model is a two-band approximation obtained
from a hexagonal lattice of two sublattices with atoms A
and B. Thus, after applying the TBA for on-site potentials,
the nearest-neighbor (NN) and the next-to-nearest-neighbor
(NNN) interaction, and changing the Hamiltonian elements
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FIG. 8. Topological phase diagram for the Haldane model. The
diagram shows three different topological phases ν = {0, ±1}, where
ν = 0 indicates topologically trivial state and ν = ±1 represents
Chern insulator.

from Wannier function to Bloch basis, we find

H0(k) = B0(k)I + B(k) · σ, (A1)

where I is the identity matrix and σ = {σx, σy, σz} are Pauli
matrices. Additionally, the B(k) = {B1(k), B2(k), B3(k)} is
known as pseudomagnetic field. Each vector is

B0(k) = 2t2 cos φ0

3∑
i=1

cos(k · bi ), (A2)

B1(k) = t1

3∑
i=1

cos(k · ai ), (A3)

B2(k) = t1

3∑
i=1

sin(k · ai ), (A4)

B3(k) = M0 − 2t2 sin φ0

3∑
i=1

sin(k · bi ), (A5)

where t1 is the NN hopping parameter and t2 is the NNN
hopping parameter. M0 is on-site potential that breaks the
inversion symmetry and φ0 the local magnetic flux, which
breaks the time-reversal symmetry. ai are the NN vectors, and
bi the NNN vectors.

The displacement vectors are given by a1 = (0, a0), a2 =
1
2 (−√

3,−1)a0, a3 = 1
2 (

√
3,−1)a0, b1 = (

√
3, 0)a0, b2 =

1
2 (−√

3,+3)a0, and b3 = 1
2 (−√

3,−3)a0.
Figure 8 shows the topological phase diagram of Haldane

model. The Haldane model yields a gapless band structure,
where the topological phase transition occurs, with the condi-
tion M0/t2 = ±3

√
3 sin φ0.

Haldane model can have three topological invariants
or Chern numbers or topological phases ν = {−1, 0, +1},
where ν = 0 is a trivial insulator (or “Dirac semimetal”) and
ν = ±1 is a topological nontrivial phase.

As shown in Fig. 8, the topological phase is determined
by φ0 and M0/t2. t1 affects band structure but does not affect
the topological phase. By controlling these parameters, we
can adjust the bandgap and topological phase to mimic a
topological CI.

FIG. 9. Energy dispersion for the model used in calculation.
Band gap (eV) for (a) a Chern insulator from the Haldane model and
(b) a trivial material, MoS2. As time-reversal symmetry is broken,
(a) shows different bandgap in the K ′ and K point while (b) has the
same bandgap.

2. Dipoles, Berry connection, Berry curvature
and Chern number

Fortunately, we can solve the 2x2 Hamiltonian analytically.
The energy dispersion of the Haldane model reads

εc/v (k) = B0(k) ± |B(k)|. (A6)

The band gap for Haldane model is shown in Fig. 9. In
Fig. 9(a) we show that band gap at K and K ′ is different for
Chern insulator. In contrast, there is no difference between
band gap at K and K ′ for MoS2 as shown in Fig 9(b). Here
we use parameters M0 = 0.0635 a.u., t1 = 0.075 a.u., t2 =
0.025 a.u., and φ0 = 1.16 rad for topological material. For
trivial material, MoS2, M0 = 0.9 eV = 0.0331 a.u., t1 = 0.4 eV
= 0.0147 a.u., t2 = 0.667 eV = 0.0245 a.u., and φ0 = 0 are
used.
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To investigate topological aspects of materials, it is re-
quired to calculate the dipole matrix elements,

dm′m(k) = i〈um′,k|∇k|um,k〉, (A7)

where |umk〉 is the periodic part of a Bloch state. Usually,
people distinguish diagonal and off-diagonal components in
Eq. (A7) and call diagonal components Berry connections,

ξm(k) = dmm(k)

= i〈um,k|∇k|um,k〉. (A8)

The Berry connection and the dipole matrix elements are
plotted in Figs. 2 and 10. The dipole matrix element shows
an interesting vortex structure in topological phases, which
might lead to a totally different coupling with the linearly
and elliptically polarized lasers [see K ′ points in Fig. 10(a)
vs Fig. 10(b)].

The Berry connection has singularity while the off-
diagonal dipole “only has discontinuity” [see Fig. 2(a)].
Moreover, the dipole absolute value is gauge invariant and
has no discontinuity [see Fig. 10(a)]. Although the Berry
connection is wavefunction gauge dependent, the curl of the
Berry connection, named the Berry curvature,

�m(k) = ∇k × ξm(k) (A9)

is gauge invariant. The integration of the Berry curvature over
the Brillouin zone,

νm := 1
2π

∫
BZ

�m(k)·d2k, (A10)

is a topological invariant of the system, called Chern number,
which is shown in Fig. 8.

APPENDIX B: HHG SPECTRA WITHOUT
INTEGRATING SINGULARITY

In Fig. 11, we show the HHG spectra from the Chern insu-
lator with a linearly-polarized laser along the � − K direction.
Calculation is done by the LG SBEs without singularity
treatment, the VG SBEs, and the LG SBEs with Wannier
representation. The data for noisy LG HHG spectra are taken
from previous paper [14]. The LG SBEs result without singu-
larity treatment shows a noisy spectrum and a wrong cutoff,
while the other two results match qualitatively.

APPENDIX C: EFFECTS OF DEPHASING IN LENGTH
AND VELOCITY GAUGES

This Appendix numerically studies the effects of the de-
phasing T2 on the HHG process for our topological Chern
insulator.

The phenomenological dephasing time T2 can be consid-
ered as an external term related to the scattering and thermal
processes in a medium, and therefore gives the same effect on
the LG and VG. However, from a numerical point of view,
T2 acts differently in both electromagnetic gauges [24,45].
This is the primary source of discrepancies in breaking laser-
electromagnetic gauge symmetry. To avoid this T2 effect, one
can apply T2 only in the LG picture even if we use the VG
SBEs. This can be done as follows: convert the VG density
matrix to the LG density matrix, apply the dephasing time, and

FIG. 10. Dipole matrix element for topological materials. Abso-
lute value of the dipole matrix element for (a) a Chern insulators
defined in the topological Haldane model and (b) a topologically triv-
ial material, i.e., MoS2. The vectorial field indicates real components
of the dipole matrix element. The upper panels show it cut along the
orange line, i.e., the real value of dipole is plotted along the orange
line with small ky offsets. The absolute value of the dipole is smooth
for both cases, but the nontrivial topological case (a) has a vortex
while (b) has no discontinuity.

return to the VG density matrix [24]. However, this procedure
slows down the calculation speed of the HHG spectra in VG.
Therefore, we do not use this transformation and show that
important features are preserved even without additional treat-
ment for T2. We get an increased number of computational
operations and the longer time spent on this calculation. For
this case, the VG SBEs can be even slower than the LG SBEs.
Nevertheless, when the VG SBEs is compared to Wannier
basis SBEs, VG still has its advantage since Wannier LG also
needs transformation to apply T2.
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FIG. 11. Calculated HHG spectra from Chern insulator in the
velocity gauge, length gauge with or without integrating singularity.
Noisy spectrum data comes from previous paper [14]. Parameters are
the same as Fig. 3.

In Figs. 12(a) and 12(b) we represent the HHG spectra
with different dephasing times T2 for a topological Chern
insulator (CI). In the perturbative region of the HHG spec-
tra ([1st, 6th]), HOs show different tendencies between two
gauges. Significantly, in the LG SBEs, the harmonic yield
increases while the T2 decreases for low HOs [22]. In contrast,
we find that the VG SBEs provides a behavior opposite to that
of the LG SBEs for low orders as a function of T2.

For the plateau and cutoff regions of the HHG spectra,
the dephasing time T2 also induces a symmetry gauge break

FIG. 12. Effect of T2 for Chern insulator in LG and VG. HHG
calculation results for (a) VG and (b) LG. The laser is linearly
polarized along the � − K direction, and the laser parameters of
Fig. 5 are used.

FIG. 13. Effect of T2 for Chern insulator in length gauge and
velocity gauge in current. Total current for (a) velocity gauge and
(b) length gauge. All the parameters are the same as Fig. 12.

in the HHG spectrum. Nevertheless, it is difficult to quantify
the difference between two gauges in Fig. 12, since T2 reduce
the noise in the both gauges. It is more obvious to observe the
differences through current.

Figure 13 illustrates the effect of T2 on currents as a func-
tion of time. For the VG, they act like a window function
that removes the contribution from the later time domain. For
the LG, the effect is more complex and global. The noise
at T2 = ∞ is filtered, and the shape of the envelope is also
changed.

1. Computational complexities

We give a brief illustration of the computational cost for
each method. In the case of LG SBEs, there are several choices
like a gradient or moving frame, but here we only mention the
moving frame with a tight-binding model. For both LG and
VG SBEs, they have to calculate SBEs by matrix multipli-
cation and addition, and it costs about fSBEs = O(NkN3

b ) by
setting matrix multiplication cost as O(N3

b ). Here, Nk is the
total number of k-space grids and Nb is the number of bands.
LG SBEs have to calculate matrix elements at K + A(t ) for
each time step. Then it needs fGenMatrix = O(NkN2

b ) order to
generate appropriate matrices when we assume that the run
time for calculating each component is O(1). Then the com-
putation complexity for LG and VG SBEs without dephasing
time is

fLG = fSBEs + fGenMatrix, (C1)

f nodeph
VG = fSBEs. (C2)

If we include the dephasing time, LG SBEs have almost no
additional cost, but Wannier LG SBEs and VG have a con-
version cost of about fdephasing = O(NkN3

b ), which includes
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generating an eigenvector matrix and multiplying this. The
direct cost of the dephasing time in VG and Wannier LG is
slightly different, but the difference is small enough to be
ignored. Then the computational cost for Wannier or VG is

f (W )
LG = fSBEs + fGenMatrix + fdephasing, (C3)

fVG = fSBEs + fdephasing. (C4)

As an example, in the calculation of Fig. 4, VG uses
around 17 hours of CPU time, while Wannier needs about 64
hours. There might be an additional source of computational
time difference, such as cache-miss. This kind of optimization
problem affects LG mainly, since the implementation of VG
is more straightforward.

APPENDIX D: GAUGE COVARIANCE

1. Sum rule for gauge covariance

It is well known that VG needs more bands to get
convergence with LG. The main problem is the canonical
commutation relation

[x̂α, p̂β ] = iδαβ, (D1)

where {α, β} = {x, y, z}, is generally not valid when we have
finite bands [29–31,37].

In the plane-wave basis, we can numerically satisfy this
relation by increasing the number of bands up to the conver-
gence, but it needs a large number of bands. For example,
in the case of hBN, VG needs up to 30 bands to match the
LG calculation of 2 bands [24]. However, in TBA, situation
is more complex that we cannot state that more bands always
give better results given for the given constraint of Eq. (D1).

With the quantum Liouville equation, a velocity operator
can be expressed as v̂ = −i[x̂, Ĥ ]. A position operator in
Bloch-like basis is written as x̂ = i ∂

∂k + D̂ [37,38]. Then, the
momentum matrix reads

P̂ = ∂Ĥ0

∂k
− i[D̂, Ĥ0]. (D2)

If we use the Hamiltonian gauge, H0 becomes a diagonal
matrix of energy dispersion [40,46]. Then, Eq. (D2) becomes
the well-known formula [37,40]

Pmn =
{

∂
∂k εm if m = n,

i(εm − εn)dmn if m �= n

}
, (D3)

in which the first term is the intraband component, and other
terms define the interband currents.

In the Wannier representation, H0 is modeled by the TBA,
which implies

P = ∂H0

∂k
− i[D(W)(k), H0(k)]. (D4)

Using Eq. (D4), Eq. (D1) becomes the sum rule,

iδαβI = i
∂2Ĥ0

∂kα∂kβ

+ ∂

∂kα

[D̂β, Ĥ0]

+
[

D̂α,
∂Ĥ0

∂kβ

]
+ i[[D̂β, Ĥ0], D̂α]. (D5)

If we use the condition D(W)(k) = 0 [which is just another
representation of Eq. (13) with basis transformation], the sum
rule in Wannier representation becomes

δαβI = ∂2H0

∂kα∂kβ

, (D6)

which is only valid when Hmn ≈ 1
2 k2δmn + O(k). In plane-

wave basis, we can reach the numerical convergence by
increasing the number of bands since the central equation of
the Bloch function in plane-wave basis naturally satisfies the
above condition. However, in TBA, it is almost impossible to
match such a condition. This shows that the diagonal approx-
imation in Eq. (13) is not sufficient to match the sum rule.

2. Conversion between electromagnetic gauges

We can convert the operators between two gauges as [37]

Ô(VG)(k) = Ô(LG)(k + A(t )). (D7)

However, the form of the operator Ô(VG)(k) is straightfor-
ward; the matrix form of the relationship between the density
matrices of the VG and LG is complicated [24,45].

Ô(LG)(k + A) = R(k, A)Ô(VG)(k)R†(k, A), (D8a)

Rmn(k, A) ≡ 〈umk+A|unk〉 . (D8b)

In TBA, Eq. (D8) can be calculated by

Rk,A = Û k+A†Û k, (D9)

where Û k is the unitary eigenvector matrix of the unperturbed
Hamiltonian Ĥ0.
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