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Eigenstate thermalization and disappearance of quantum many-body scar states
in weakly interacting fermion systems
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The recent discovery of quantum many-body scar states has revealed the possibility of having states with
low entanglement that violate the eigenstate thermalization hypothesis in nonintegrable systems. Eigenstates
with low entanglement entropy are rare but naturally exist in the integrable system of free fermions. Here, we
demonstrate analytically that these atypical states would always be eliminated when an arbitrary weak interaction
is introduced between the fermions. In particular, we show that the probability of having a many-body scar state
with entanglement entropy satisfying a subvolume scaling law decreases double exponentially as the system
size. Thus, our results provide a quantitative argument for the disappearance of scar states in interacting fermion
systems.
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I. INTRODUCTION

An important issue in statistical mechanics is its emergence
in isolated quantum systems. The eigenstate thermalization
hypothesis (ETH) conjectures that highly excited states are
thermal (in a sense to be discussed in more detail below) in
nonintegrable systems [1–6]. However, progress (especially
analytic) toward establishing ETH is very slow and difficult.

The recent discovery of many-body scar states has revealed
the possibility of violation of ETH. More specifically, some
systems do not achieve thermalization after a long period of
time when they were prepared in some special initial states.
Various specific models have been found to have many-body
scar states. A common diagnostic of these scar states is their
low entanglement entropy, which violates the usual volume
law [7] (for reviews, see [8–11] and the references therein).
We will only focus on this kind of scar states which pos-
sess subextensive entanglement entropy here, although recent
work has proposed the concept of “rainbow scars” that may
have extensive EE [12,13]. On the other hand, many-body scar
states are forbidden in the strong version of ETH [14–16].
Whether scar states exist or not in generic systems remains
a central problem in quantum statistical mechanics, that is of
foundational importance.

It is useful to compare the existence of scar states with
what happens in free fermion systems, which, while being
(trivially) integrable, provide surprising insights to the generic
situations, and lay the foundation for the results we report
in this paper on weakly interacting fermion systems. It was
demonstrated that the overwhelming majority of highly ex-
cited free fermion (Fock) states, which were termed typical
states, are thermal in the sense that the reduced density matrix
ρA of a small subsystem A is nothing but the thermal density
matrix that gives rise to the same energy and particle densities
of the parent state, a property termed eigenstate typicality [17].

An immediate consequence is that their entanglement entropy
is identical to the thermal entropy [18]. The same reference
also pointed out that this feature is violated in the so-called
atypical eigenstates, which have low entanglement entropy.
Our recent work further clarified that the ratio of atypical
to typical eigenstates is exponentially small in system size
[19]. Such atypical states can be viewed as the noninteracting
version of many-body scar states. By introducing interaction
between fermions, the integrability of the system is broken. A
simple perturbative argument for weakly interacting systems
suggests that a generic eigenstate is a mix between the free
fermion eigenstates with similar kinetic energies. Due to the
overwhelming majority of typical free fermion eigenstates,
it is conjectured that atypical ones will be washed out in
the mixing process [20], hence it is highly unlikely to have
scar states with low entanglement in the interacting fermion
system. As we will demonstrate below, this is indeed the
case, and the full knowledge of the free fermion eigenstates is
crucial for studying thermalization and many-body scar states
in the interacting system.

II. THERMALIZATION IN FERMION SYSTEMS
WITH TWO-BODY INTERACTION

We now review existing results on thermalization in
fermion systems with two-body interaction. Different from
previous literature which were mostly in the context of nuclear
physics, our summary below uses the convention in condensed
matter physics instead, in which the thermodynamic limit is
important.

We define the average energy spacing between single par-
ticle states as �. It is common to set � = 1 in nuclear physics
as the size of a nucleus with a fixed number of nucleons.
However, we do not follow this convention here since our
discussion will focus on the thermodynamic limit. This limit is
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defined as having both number of fermions n and the number
of single particle states N (proportional to the system size)
going to infinity, with the ratio ν = n/N fixed. As a result,
the scaling behaviors of physical quantities in N or n are
important. With this in mind, we keep � explicit in the follow-
ing discussion. This quantity is inversely proportional to the
volume of the system, i.e., � ∼ W/N where W is the (single
particle) band width. It provides a unit to measure different
energy scales in the system. Note that we use ∼ to denote
scaling behavior.

The system of fermions with two-body interaction is de-
scribed by the Hamiltonian

H = H0 + λ
∑

i< j,r<s
(r,s)�=(i, j)

〈r, s|V2|i, j〉 f †
s f †

r fi f j, (1)

where H0 = ∑
i εi f †

i fi is the free fermion Hamiltonian. All
subscripts i, j, r, s label the single particle states. Each of them
contains both orbital and spin indices, which are collectively
denoted by an index that can take value from 1 to N . The
second quantized fermionic operators satisfy { fi, f †

j } = δi j .
Furthermore, we assume the system preserves translational
symmetry, such that the single particle states are plane-wave
states labeled by momenta and spins. The many-body eigen-
states of H0, denoted collectively as |ψa〉, are given by the
M = N!/n!(N − n)! = 2Nh(ν) different Slater determinants of
the single particle states. Here,

h(ν) = −ν log2 ν − (1 − ν) log2(1 − ν). (2)

The residual two-body interaction (off-diagonal matrix ele-
ments) is denoted as λV2. Note that the interaction strength is
solely characterized by the dimensionful parameter λ, which
scales as U/N , where U is a Hubbard-like (local) interaction
strength. For the Hubbard model, the total spin of the system
is conserved. The matrix elements 〈r, s|V2|i, j〉 take O(1) val-
ues that are independent of the system size. As long as the
interaction is short-ranged, the details are irrelevant to our
discussions below. Using |ψa〉, a generic eigenstate of H can
be written as

|	α〉 =
M∑

a=1

cα
a |ψa〉. (3)

For real symmetric V2, all cα
a are real numbers.

In the leading-order contribution, V2 only couples |ψa〉 and
|ψb〉 that differ by at most two single particle states. For a
given |ψa〉, the number of nonzero matrix elements for V2 is

K2 = n(N − n) + n(n − 1)(N − n)(N − n − 1)

4
. (4)

In the thermodynamic limit, K2 ≈ n2N2/4 � M when ν is not
very close to zero or one. Therefore, V2 is a very sparse matrix
when it is embedded in the entire Hilbert space [21–25].
This feature suggests that the results from the usual random
matrix theory should not be naively generalized for describing
systems with two-body interaction.

For finite systems, increasing λ from zero would lead to
various crossovers in the distribution of eigenenergies and the
structure of eigenfunctions for the interacting fermion system

[24–38]. This can be understood by comparing different en-
ergy scales in the system.

Two states |ψa〉 and |ψb〉 that V2 can directly couple have
a maximum energy difference �2 ∼ N�. The typical density
of directly coupled states via V2 is estimated as ρ2 = K2/�2 ∼
n2N/�. The energy levels start to mix and avoid crossing each
other when λ becomes comparable to ρ−1

2 . Hence, the energy
level spacing obeys the Wigner-Dyson distribution when λ �
λc [33], where

λc ∼ ρ−1
2 ⇒ λc

�
∼ 1

n2N
. (5)

Instead of the Wigner-Dyson distribution in energy level
spacing, the structure of eigenfunctions plays a more im-
portant role in thermalization. More specifically, achieving
thermalization (or satisfying the ETH) requires the eigenstates
of the system to be sufficiently chaotic or delocalized in Fock
space. This is realized when the eigenstate can be viewed as
a random superposition of |ψa〉 in an energy shell depending
on V2 [37,39–42]. The delocalization of |	α〉 in the space of
basis states |ψa〉 can be studied from the following spreading
function,

Fα (E ) =
M∑

a=1

∣∣cα
a

∣∣2
δ(E − Ea). (6)

The shape of Fα (E ) is very similar to the shape of the strength
function, which is defined as [43]

Fa(E ) =
M∑

α=1

∣∣cα
a

∣∣2
δ(E − Eα ). (7)

Similar to the distribution of energy level spacing, both
Fα (E ) and Fa(E ) undergo crossovers when λ is increased
from zero. Since M is exponentially large in the system
size, the average energy spacing for the eigenstates of H0

is exponentially small. Hence, the strength function takes a
Lorentzian (or Breit-Wigner) distribution for an exponentially
small λ > λ0 [25]. By further increasing λ, the strength func-
tion changes from the Lorentizian to the Gaussian distribution
[24,27,29,32,44,45]. Previous work [25,44] suggested that
this crossover occurs when λ exceeds

λF

�
∼ 1√

N
. (8)

The critical values satisfy λ0 � λc < λF [46].
Beyond the Gaussian regime (i.e., λ > λF ), the strength

function takes the form

Fa(E ) = 1√
2πσa

exp

[
− (E − Ēa)2

2σ 2
a

]
. (9)

The variance σ 2
a is given by

σ 2
a = 〈ψa|H2|ψa〉 − (〈ψa|H |ψa〉)2. (10)

In the middle of the many-body energy spectrum, σ 2
a is inde-

pendent of a [25]. It is entirely determined by the off-diagonal
matrix elements of H , namely the residual two-body interac-
tion λV2. Different results for σ 2

a were reported in previous
literature [25,32], but their asymptotic forms agree in the
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thermodynamic limit

σ 2
a ≈ λ2

4
n2N2

(
1 − n

N

)2
. (11)

Although |	α〉 contains a large number of basis states, |ψa〉
when λ > λF , the eigenstates actually do not delocalize in the
entire M-dimensional Hilbert space [39–42]. Instead, the basis
states contained in |	α〉 span an energy shell that is deter-
mined by the effective bandwidth σa. Within this energy shell,
the number of many-body basis states is roughly estimated as

M ′ ≈ M

�n
σa ∼ Mλ

�
∼ M

(
U

W

)
. (12)

Here, �n ∼ n(N − n)� is the bandwidth of the many-body
energy spectrum. From Eq. (12), one has 1 � M ′ � M for
a weak interaction λ � �. In the thermodynamic limit, |	α〉
only delocalizes in a restricted Hilbert space which is a frac-
tion of the entire Hilbert space. Now, |	α〉 has real random
coefficients cα

a along the basis states |ψa〉 restricted in the
energy shell [37].

In the thermodynamic limit, the above discussion indicates
that an arbitrary small but nonzero interaction between the
fermions always leads to an energy shell, in which |	α〉 is a
random superposition of |ψa〉. From this, one may argue that
thermalization is achieved in the thermodynamic limit, based
on the notion of canonical typicality [47,48]. The canoni-
cal typicality states that the reduced density matrix ρA of
a small subsystem A generated from |	α〉 approaches that
generated from the microcanonical ensemble with probability
one (more details in later discussion). This is quite similar to
eigenstate typicality [17], and corresponds to the local version
of ETH termed subsystem ETH [49,50]. However, canonical
typicality does not eliminate the possibility of having scar
states in the system. As we mentioned before, the strong
version of ETH is a much stronger statement that forbids the
existence of any many-body scar state in the nonintegrable
system, and their existence impedes thermalization of certain
specially prepared initial states. Thus, to fully understand ther-
malization of weakly interacting fermion systems, especially
whether the (strong version of) ETH holds or not, require us to
go beyond the existing results and study if scar states (which
can be viewed as the interacting or nonintegrable version of
atypical free fermion states) survive weak interaction.

III. ELIMINATION OF MANY-BODY SCAR STATES
VIA TYPICALITIES

In this section, we study the following question. What
is the probability for a random eigenstate |	α〉 to have its
entanglement entropy violating the usual volume law? It is
important to emphasize that the entanglement entropy of the
eigenstate |	α〉 is not necessarily larger than the entanglement
entropy of any one of the basis states |ψa〉 [51,52]. Therefore,
eigenstate typicality in free fermion systems does not immedi-
ately eliminate the possibility of having many-body scar states
in the interacting system. Instead, it is necessary to study the
reduced density matrix,

TrBρ	 = TrB(|	α〉〈	α|), (13)

and its corresponding von Neumann entropy. We define states
whose entanglement entropy has sub volume-law scaling as a
scar state [8–11]. As a result, the aforementioned probability
tells us the expected number of scar states in a particular
system.

The whole system without any restriction from symmetry
can be decomposed into two subsystems A and B, which have
their respective Hilbert spaces HA and HB. Here, HF = HA ⊗
HB, where HF stands for the entire Fock space of fermions
that has the dimension MF = 2N . In addition, MA = 2NA and
MB = 2NB are the dimensions of HA and HB, respectively. We
fix the size of subsystem A, whereas the size of subsystem B
goes to infinity in the thermodynamic limit. Thus, 1 � MA �
MB. We further restrict the allowed states of the system to
the subspace HR ⊂ HF , where HR is spanned by the M ′ free
fermion eigenstates in the energy shell. Hence, its dimension
satisfies 1 � M ′ � M < MF . It is emphasized that |	α〉 can
be defined as a random pure state in HR, but not in HF or H
which has the dimension M.

Following the original work on canonical typicality
[47,48], we start by studying the trace distance between TrBρ	

and another reduced density matrix TrBρd . Here,

ρd = 1

M ′ IM ′×M ′ = 1

M ′

M ′∑
a=1

|ψa〉〈ψa|. (14)

The notation IM ′×M ′ stands for the M ′ × M ′ identity matrix
in HR [53]. The trace distance between TrBρ	 and TrBρd is
defined as [54,55]

T (TrBρ	, TrBρd )

= 1

2
TrA[

√
(TrBρ	 − TrBρd )†(TrBρ	 − TrBρd )]. (15)

Now, consider a function f (x), where x is a point chosen
uniformly at random from the unit hypersphere Sd . Here d
needs to be large. Then, Levy’s lemma states that

P (| f (x) − 〈 f 〉| � ε) � 2 exp

[
− (d + 1)ε2

9π3η2

]
. (16)

The symbol η denotes the Lipschitz constant of the function
f , which is defined as η = sup |∇ f |. The lemma states that
the probability for f (x) to deviate from its expectation value
by a large amount is exponentially small.

For the function f = T (TrBρ	, TrBρd ), η � 1 was found
in [47]. In the present case, we have d = M ′ − 1. Following
the approach in Ref. [47], one obtains

P

(
T (TrBρ	, TrBρd ) � ε + 1

2

√
MA

MB,eff

)
� 2e−M ′ε2/9π3

.

(17)

Note that 〈 f 〉 = (1/2)
√

MA/MB,eff in the present case. Also,
MB,eff = 1/TrB[(TrAρ	 )2] � M ′/MA is the effective dimen-
sion of the subsystem B. If one takes MB,eff = M ′/MA, then
Eq. (17) becomes

P

(
T (TrBρ	, TrBρd ) � ε + MA

2
√

M ′

)
� 1 − 2e−M ′ε2/9π3

.

(18)
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In the thermodynamic limit we have MA/
√

M ′ → 0 and
can take ε � 1 � M ′ε2, to find the probability for
T (TrBρ	, TrBρd ) below a vanishing upper bound tending to
one. Note that M ′ ∼ M(λ/�) → ∞ in the thermodynamic
limit. Equation (18) is the mathematical statement of canoni-
cal typicality [48].

Since TrBρ	 and TrBρd have a small trace distance,
it is expected that the difference between their von Neu-
mann entropy, �S = |S(TrBρ	 ) − S(TrBρd )|, is also small.
Mathematically, this is guaranteed by the Fannes-Audenaert
inequality [55]:

�S � T (TrBρ	, TrBρd ) log2 (MA − 1) + C. (19)

We d efine C = h(T (TrBρ	, TrBρd )), which satisfies C � 1.
From Eqs. (18) and (19), we obtain

P

[
�S <

(
ε + MA

2
√

M ′

)
log2 MA + C

]
� 1 − 2e−M ′ε2/9π3

.

(20)

For a fixed value of λ/�, Eq. (12) suggests that M ′ should
also grow exponentially in the system size. Since the size of
subsystem A is fixed, and being much smaller than the size of
the entire system, one has MA log2 MA � √

M ′. Then, Eq. (20)
is reduced to

P (�S < εNA + C) � 1 − 2 exp

(
−M ′ε2

9π3

)
. (21)

When ε → 0, the entanglement entropy of the system be-
comes arbitrarily close to S(TrBρd ), within a constant term
C � 1.

The above discussion highlights the importance of study-
ing the term S(TrBρd ) in greater detail. From Eq. (14) and
the concavity of von Neumann entropy, S(TrBρd ) satisfies the
following inequality [54]:

S

⎡
⎣ 1

M ′

M ′∑
a=1

TrB(|ψa〉〈ψa|)
⎤
⎦ � 1

M ′

M ′∑
a=1

S[TrB(|ψa〉〈ψa|)].

(22)

Notice that S[TrB(|ψa〉〈ψa|)] is precisely the bipartite entan-
glement entropy of |ψa〉 in position space. For eigenstates of
a free fermion system (i.e., λ = 0 in the present work) with
translational symmetry, Refs. [17,19] demonstrated that most
of the |ψa〉 have their entanglement entropy identical to the
thermal entropy. The volume law S[TrB(|ψa〉〈ψa|)] ∼ NA is
typically satisfied. Therefore,

S(TrBρd ) � 1

M ′

M ′∑
a=1

S[TrB(|ψa〉〈ψa|)] = κNA, (23)

where κ � 1 is a proportionality constant which does not scale
with the system size.

We now denote the entanglement entropy of |	α〉 as
E (	α ). From Eqs. (21)–(23), we obtain

P [E (	α ) � (κ − ε)NA − C] � 1 − 2 exp

(
−M ′ε2

9π3

)
. (24)

This is the main result in the present work. To violate the vol-
ume law in E (	α ), it requires ε = κ − o(1). The upper bound

for the corresponding probability vanishes as exp (−cM ′),
with c = ε2/9π3 ≈ κ2/9π3 being a positive coefficient that is
independent of system size. A rough estimate for the expected
number of many-body scar states in the energy shell scales
as M ′ exp (−cM ′). This goes to zero when M ′ → ∞ in the
thermodynamic limit. The above result suggests that an ar-
bitrary small but nonzero two-body interaction will basically
eliminate all states with low entanglement. In combination
with the arbitrary closeness between TrBρ	 and TrBρd , our
result provides a quantitative support for the strong version of
ETH in the weakly interacting fermion system.

Although our result looks similar to Theorem III.3 in
Ref. [56], the theorem there was derived for random pure
states in a Hilbert space that has a tensor product structure.
This structure is absent in HR. Thus, the theorem does not
apply here. Also, HR is determined precisely by the con-
straints in the problem, so the generic result on entanglement
in random subspaces is irrelevant. The above comparison
clarifies the originality of our work, and further emphasizes
the importance of both canonical and eigenstate typicalities in
deriving our result.

Furthermore, we should clarify that our discussion has
ignored the constraints imposed by the conservation of to-
tal momentum and spin in the system. When this issue is
taken into account, the eigenstate |	α〉 should be a random
superposition of free fermion eigenstates with the same total
momentum and spin that are also within the energy shell de-
termined by λV2. The number of these basis states still scales
exponentially as the system size in the thermodynamic limit.
Note that canonical typicality in a translationally invariant
system was discussed in [57]. From both canonical typicality
and eigenstate typicality, all (in the probabilistic sense) many-
body scar states will be still eliminated in the thermodynamic
limit.

One may wonder how these highly unlikely scar states can
exist if the above argument looks so general. Suppose the
system has an extra symmetry, such as a spectrum generating
algebra or Krylov subspaces. Then there exists a specific set
of eigenstates which are not given by random superpositions
of |ψa〉 in the restricted energy shell. Consequently, canonical
typicality is violated in these rare scar states, so that their
entanglement entropy needs not be bounded from below by
Eq. (24). This leads to the possibility of having states with low
entanglement (or scar states) in the system, hence a violation
of the strong version of ETH [14–16,58,59].

IV. CONCLUSION AND DISCUSSION

To summarize, we have studied quantitatively the absence
of many-body scar states with subextensive bipartite entan-
glement entropy in the weakly interacting fermion system.
We show that the probability of having these states vanishes
double exponentially in the system size. Therefore, the ex-
pected number of such a kind of scar states goes to zero in the
thermodynamic limit, albeit the exponentially large number
of eigenstates in the system. This occurs whenever there is an
arbitrary weak but nonzero interaction between the fermions.
On one hand, our work is reminiscent of previous work on
integrability breaking [60–64] and the stability of quantum
many-body scars under perturbation [65–70]. On the other
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hand, we have studied directly the common feature of bipartite
entanglement entropy of the interacting fermion eigenstates,
thus the result in Eq. (24) is general, an d provides quantita-
tive support for the strong version of ETH in the interacting
fermion system.

An important starting point of our work is that a generic
eigenstate of the system is a random superposition of Fock
states within a small energy shell. We did not take this for
granted by assuming the Hamiltonian is a random matrix (as
in the usual justification of ETH), which, as discussed earlier,
is highly unphysical. Instead, we justified our assumption by
extrapolating the existing results in embedded random matrix
theory to the thermodynamic limit. By doing so, we can
properly identify the energy shell, in which the eigenstates are
truly delocalized. This represents an important advancement
in justifying ETH.

Last but not least, our work suggests that the absence
of scar states relies on both canonical typicality and eigen-
state typicality of the free fermion (Fock) basis states, as the
entanglement entropy for the interacting eigenstates cannot
be deduced from the former alone. This is because the en-
tanglement entropy depends on not only the random nature,
but also the properties of the basis states that contribute to
the superposition that make up the eigenstates of the inter-
acting system. This highlights the importance of studying

entanglement properties of the basis states. However, not
many analytical results have been achieved in this direction.
The free fermion system provides a good example, in which
eigenstate typicality has been clearly demonstrated [17]. Al-
though the free fermion system appears very simple and is
trivially integrable, it does have nontrivial entanglement, and
provides a good starting point for exploring different ques-
tions in quantum statistical mechanics in weakly interacting
systems. Our results can be generalized to other weakly per-
turbed intergrable systems, which satisfy both canonical and
eigenstate typicalities. This leads us to the conjecture: The
strong version of ETH holds in generic interacting systems,
unless the system possesses any extra symmetry such as a
spectrum generating algebra or Krylov subspaces [8–11].
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