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Signatures of interacting Floquet phases in shallow quantum circuits
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Many-body phenomena far from equilibrium present challenges beyond reach by classical computational
resources. Digital quantum computers provide a possible way forward but noise limits their use in the near term.
We propose a scheme to simulate and characterize many-body Floquet systems hosting a rich variety of phases
that operates with a shallow circuit, defined as a quantum circuit that does not scale with system sizes. Starting
from a periodic circuit that simulates the dynamical evolution of a Floquet system, we introduce quasiperiodicity
to the circuit parameters to prevent thermalization by introducing many-body localization. By inspecting the
time-averaged properties of the many-body integrals of motion, the phase structure can then be probed using
random measurements. This approach avoids the need to compute the ground state and operates at finite energy
density. We numerically demonstrate this scheme with a simulation of the Floquet Ising model of time crystals
and present results clearly distinguishing different Floquet phases that are protected by many-body localization.
Our results pave the way for mapping out phase diagrams of exotic systems on near-term quantum devices.
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I. INTRODUCTION

Numerical analysis of certain condensed matter problems
constitutes an important theme in condensed matter theory.
However it is well known that certain problems exceed the
computational power of classical computers. A faithful cal-
culation of the properties of certain states of matter requires
exponential computational resources, which inevitably fails
when we try to increase the system size. It is then no wonder
that condensed matter physicists become excited about the
advances made in quantum computation and the promise that
quantum computers could provide a way to overcome these
computational obstacles.

Some of the attempts to utilize quantum computational
powers include a variational determination of the ground
states of certain Hamiltonians. This direction is termed vari-
ational quantum eigensolver (VQE) and some progress has
already been made in this area [1,2]. Although very useful
for small sized systems, such schemes face difficulties when
increasing system sizes because it has been proven that many
classes of quantum Hamiltonians are Quantum Merlin Arthur
(QMA) complete [3]. Among these QMA-complete Hamilto-
nians are the Bose-Hubbard models [4], which are of great
interest to the condensed matter community. As a result, it is
unclear whether a protocol utilizing VQE to study condensed
matter systems beyond the reach of classical computers is
attainable.
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Contrary to the fact that VQE belongs to QMA-complete
problems, simulating local Hamiltonian evolution on a quan-
tum computer is known to be bounded-error quantum
polynomial time (BQP) complete [5,6]. An illustration of the
differences between these two classes of algorithms is given in
Fig. 1. Although this does not guarantee an efficient algorithm
to study the many-body problems, we do get some motivation
from this line of thinking, which leads us to consider whether
there exists an algorithm utilizing dynamical simulation on
quantum computers. From an experimental perspective, com-
pared to a thorough determination of the eigenstates, it seems
more feasible to compare data with dynamical simulations
of quantum systems obtained from quantum computers. With
the advances made in constructing quantum computing de-
vices and platforms, some of the near-term quantum devices
already provide a chance to approach the limit of classically
computational powers of certain problems. Most notably are
those using trapped ions [7,8], superconducting qubits [9,10],
and other experimental platforms such as optical lattices and
cold atoms. Quite a few simulation and detection schemes
have been proposed to construct and study certain interesting
many-body phases of matter [7,8].

In recent years a certain type of many-body systems has
attracted significant interest: periodically driven Floquet sys-
tems [11–13]. They are interesting because in many cases they
can exhibit certain properties, topological ones for example
[14], not previously seen in equilibrium systems. One class
of Floquet systems of particular interest might be the recently
proposed time crystals. In this paper we identify a scheme to
simulate Floquet quantum many-body phases using a noisy
intermediate scale quantum computer (NISQ, e.g., IBM-Q).
This scheme avoids thermalization of the system caused by
time evolving finite energy states and identifies ways to de-
tect the phase using measurement outcomes from a quantum
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computation procedure. We support this scheme with numeri-
cal results demonstrating its validity in a Floquet Ising model.

This paper is organized as follows: In Sec. II we present
the ideas underpinning the proposed scheme and explain how
we realize many-body localization to avoid thermalization.
In Sec. III we present the quantum circuits that simulate the
Floquet phases. In Sec. IV we present measurement protocols
that enable the identification of phases. Some of our numer-
ical results to demonstrate the validity of our approach are
presented in Sec. V. We conclude by identifying interesting
future directions including potential alternative schemes re-
lated to measurement induced dynamical phase transitions.

II. AVOIDING THERMALIZATION
THROUGH LOCALIZATION

One would think to start from a clean system and study
its dynamics on a quantum computer, since these systems
are the simplest in some sense. However when it comes to
simulating Floquet dynamics of a clean system there comes
a severe issue one must resolve to get sensible results—the
issue of thermalization [13]. Since we are seeking a general
algorithm, the systems we deal with then necessarily have
generic interactions, and are not integrable. Such systems are
believed to thermalize after a sufficient amount of evolution
time has passed (see Fig. 3). Many subtle quantum phases do
not persist to finite temperatures, so by only looking at the
long time results of evolution we lose signatures of the phase
diagrams.

A way to “protect” these quantum phases from thermal-
ization is proposed in [15] utilizing many-body localization.
Many-body localization is a generalization of the Anderson
localization [16]. When we induce certain degrees of disorder
into the system, the disjoint parts of the system will only
interact with each other weakly. Thus the local information
is largely preserved during the evolution. There are many
ways to devise this disorder, for example by random variables
or more recently proposed “Stark localization” [17]. In our
model design we use the quasiperiodicity setting merely for
simplicity. That is, we let our parameters t and θ have a pe-
riodicity not commensurate with the lattice. More specifically
the parameters have the following form:

t = t0 + t1 cos(2πki + φ), (1)

k =
√

5 − 1

2
(2)

where i is the position index of the gate. Remarkably, the
many-body localized systems have an extensive set of local
integrals of motion (LIOMs). Usually they are a dressed ver-
sion of some local products of Pauli operators denoted by τi

as compared to the original Pauli operators σi. We will see
below that these integrals of motion also play a crucial role in
our detection of specific phases of matter.

There is, however, no guarantee that there exists a simple
correspondence between the phases of an interacting many-
body localized system and that of its single particle relative.
It is also possible that the disorder does more than just protect
the many-body phases. For example, in certain models the
topological edge modes are actually suppressed by too strong

FIG. 1. Differences between the two classes of algorithms.
QMA-complete algorithms such as VQE might be suitable for small
system sizes, but become inefficient when system size grows large.
BQP-complete algorithms such as Hamiltonian simulation are effi-
cient with system size scaling (polynomial for example).

disorder [18,19]. The specific model system we use, on the
other hand, has the desired feature that the topological edge
modes predicted in the single particle clean system are also
present upon adding disorder in a finite range. It is then in
this range our method applies. A study of the generic question
of what types of topological edge modes are preserved in the
presence of disorder is interesting in its own right.

III. MODEL

To illustrate the applicability of our scheme we design a
Floquet quantum circuit to see if its phase structures can be
detected. A Floquet system, by its name, is just a periodically
driven system. The periodicity can easily be incorporated into
circuit arrangements. We can simply construct a group of
quantum gates of several layers. By repeatedly applying this
group of quantum gates we are then mimicking a periodic
evolution. More specifically our model is a circuit analogy of
the Floquet Ising model [11]. An illustration of the scheme is
shown in Fig. 2. The model we design is a variation of the

FIG. 2. An illustration of the circuit setup. The whole evolution
consists of identical groups of layers. Each group, or period, is made
up of three layers of quantum gates. The first layer is composed
of single qubit phase rotations, and the second and third layers are
composed of two qubit gates that simulate the two-body interactions.
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FIG. 3. Floquet nonintegrable systems are expected to thermalize
to infinite temperature after long time evolution [13]. Starting from a
product state representing two distinct phases, eventually the evolu-
tion will take the product states to highly entangled states in which
no signatures of the original phases can be traced out.

famous Floquet Ising model first discussed in [11]. Originally
proposed as a Floquet topological phase of matter, it has a
rich phase diagram containing phases not present in its equi-
librium cousins. Notably, other than the paramagnetic (PM)
and ferromagnetic (FM) phases, it hosts also the time crystal
phase (also called the π spin glass phase) and the other 0π

PM phase. We should mention that although this model is
interesting on its own, it mainly serves as a demonstration of
our methods here. The scheme we used can actually be applied
to more general models and settings.

The circuit we design to mimic the Floquet evolution con-
sists of three layers. In Hamiltonian language, it consists of
two different Hamiltonians acting consecutively in one period.
Namely, we have

H1 =
∑

i

θiσ
z
i , 2n � t � 2n + 1, (3)

H2 =
∑

i

tiσ
x
i σ x

i+1 + V σ z
i σ z

i+1, 2n + 1 < t < 2n + 2.

(4)

The parameters θis and tis are given in Eqs. (1) and (2). The
role of V is to break integrability and is taken as 0.1 hereafter.
The first layer is a single phase rotation on each qubit. The
second and third layers are two qubit gates acting on nearest
neighbors. The phase rotation is analogous to the transverse
field, while the two qubit gates incorporate both the magnetic
nearest neighbor interactions and other interactions that make
the system a nonintegrable many-body system. The exact
phase boundaries are certainly different from the original sin-
gle particle phase diagram due to an interplay of interaction
and disorder. But in a sense to be explained below, the phase
structure of our circuits should be similar to the phase diagram
(Fig. 4).

IV. MEASUREMENT PROTOCOLS

Now, even if we realized a stable phase of matter in our
Floquet dynamics simulation of an Ising-like model, what are
the probes or measurements we could use to discuss properties
of its phases? The notion of an order parameter certainly exists
in equilibrium states of matter, but whether the same logic
could be applied to Floquet simulations is not so clear. In

FIG. 4. Phase diagram of the original model [11]. The two axes
are phase rotation angle and hopping strength, respectively. The
phase diagram is symmetric around θ = π/2 and t = π/2. The red
arrow depicts our scanning scheme detailed in the results section.

the following we describe methods we use to resolve these
problems.

A. Order parameter dynamics

For parameters falling in different phase regimes, their
LIOMs often take different forms. For example, in the param-
agnetic phase the LIOMs are dressed versions of the Pauli-Z
operators while in the ferromagnetic phase the LIOMs are
dressed versions of the Pauli-XX operators. It would seem that
the LIOMs are related to order parameters.

However, knowing the connection from LIOMs to order
parameters does not readily give us a way to tell, after a
simulation, what LIOMs we actually have in the experiment.
To accomplish a detection, we utilize the fact that the LIOMs
are invariant upon time evolution. If we pick some operator
sufficiently close to the LIOMs, then most of its informa-
tion gets preserved during the evolution. By this we simply
mean that the original operators can be decomposed into a
main operator and a few other operators that have relatively
smaller sizes. For example, when we are in the paramagnetic
phase, most of the information of the Pauli-Z operators will
be preserved while most of the information of the Pauli-X
operators is lost. So if we start with a Pauli-X operator, in
the Heisenberg representation the operator always changes
rapidly. By doing a proper time averaging, those fast changing
parts vanish while those constant parts remain.

A more precise notion of this can be phrased in the follow-
ing way. We can define the following quantity to quantify how
close is the evolution of the order parameter to being locally
conserved:∣∣σ x

i σ x
j (nT )

∣∣ = Tr
{[

σ x
i (nT )σ x

j (nT )
]2

avg

}
/2N (5)

with the time average of an operator defined by

Ôavg(nT ) = 1

n

n∑
j=1

Ô( jT ). (6)

In other words, it is the size of the time-averaged order param-
eter. The operators are in the Heisenberg representation, and
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FIG. 5. Effects of LIOMs on the evolution of physical observ-
ables. In the Heisenberg picture those LIOMs preserve their initial
values while operators other than the LIOMs oscillate rapidly. Under
time average only information of the LIOMs is preserved.

being averaged with respect to different time steps. Physically
this measures how close is the operator under consideration to
the real local integrals of motion. Since the real local integrals
of motion are invariant under time evolution, the time average
just gives back the original operators. On the other hand, the
parts different from LIOMs are changing rapidly and vanish
upon being averaged. An illustration of this is presented in
Fig. 5.

We can estimate how the circuit depth scales with the
system size. All we need is to evolve enough time steps so that
the components in the original order parameter get “smeared
out” under time averages. Since the order parameters are quite
local, the time scale associated with this is equivalent to the
relaxation time, which only depends on the support range of
the operator in a power-law fashion [20,21]. Since the support
range of the operator is roughly fixed with increasing size for a
given parameter point in the phase diagram, we estimate that
the circuit depth does not scale with system size. However,
since close to the critical point the support range of the local
integrals of motion will tend to become the size of the system,
we expect the depth of the circuit to increase significantly
close to the critical point.

B. Random measurements

The size of an operator is not an easy one to obtain with
traditional qubit measurements. Here we employ a method
inspired by [22] to take advantage of the so-called random
measurements. We note here that the full derivation of the
formulas used here and a detailed description of the setup
can be found in the original paper. Here the only difference
is that we will be interested in time-averaged quantities, and
this extra subtlety is resolved at the end of this subsection.

Generally there are two random measurement protocols
that can achieve such measurements, one based on global
random states and the other based on locally random states.
Since the generation of global random states with quantum
circuits requires comparatively more layers and is yet another
independent direction in quantum computations, we will re-
strict ourselves to the protocol based on local random states.
Basically it goes like this: we prepare a product state but each
qubit is randomized independently. This state then undergoes
a time evolution after which the measurement of the desired
operator is taken. The size of the operator can be extracted
from the statistical correlations of these different results when

FIG. 6. The setup of random measurements. The initial state is
drawn from an ensemble which is independently Haar random on
each spin. A Floquet circuit is then applied to this random state
and normal measurements are taken. By averaging the square of the
measurement outcomes with respect to the random state ensemble,
for example, one can get information regarding the size of the mea-
surement operator in the Heisenberg picture.

different initial states are prepared (the statistical correlations
have nothing to do with probabilistic outcomes due to uncer-
tainty principles). An illustration is presented in Fig. 6.

More specifically, we prepare a product state in the com-
putational basis with all qubits set to zero. We will denote
this state as |k0〉. We then form an ensemble of states by
flipping a total of m qubits, which consists of 2m different
states. Sampling now the local random gates and denoting this
specific instance of random circuits as u, we then calculate the
quantity

〈Ô(nT )〉u〈Ô(nT )〉u. (7)

We now need to do a weighted sum over all the 2m states in
the ensemble, with weights (−1/2)no. of flipped qubits. Then we
sample other local random circuits and repeat this process.
Eventually this gives the equality

〈Ô〉u〈Ô〉u = 1

3L

(
3

4

)n(1

2

)L−n

Tr

{∏
j�n

Swap j (Ô j ⊗ Ô j )

×
∏
k>n

[Ôk ⊗ Ôk + Swapk (Ôk ⊗ Ôk )]

}
. (8)

It important to note that the general operator Ô is represented
in a matrix product form. Different Ô js should be understood
as having two extra legs contracted with Ô j−1 and Ô j+1. The
swap operator, after acting on the tensor product and being
traced over, gives contraction of Ôk and Ôk .

The rather complicated expression of Eq. (8) will look very
simple and ideal for our case if we take m to be L, in which
case the right hand side of the equation is just proportional
to Tr(Ô2). So one can view the m parameter as the level of
approximation. However, the quantity we aim to include in
the expression is Ôavg(nT ), which according to the properties
of LIOMs should be a local operator. Thus we should need a
relatively small m to still give good enough results, in other
words the results converge rapidly with increasing m.

Some may wonder if this is readily applicable to our
scheme since what appears in the dynamics of order param-
eters is not a genuine operator but a time average of it. In fact,
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applying to our scheme requires one to evaluate

〈Ôavg(nT )〉 = 1

n

n∑
j=1

〈Ô( jT )〉. (9)

A convenient way would be to record the measurement
results for each time step. One then needs to square the
time-averaged measurement results to proceed with what we
described above. We should note that in our classical simu-
lations we do not take into account finite m effects and the
statistical error of sampling random unitaries. Classical simu-
lation is able to directly compute the size of the time-averaged
order parameters since we study a small system.

Our method is readily generalizable to probe the other
phases in the phase diagram, and also a class of models
introduced in [12]. For example, the time crystal phase can
be probed by measuring 〈σ z

i σ z
i (nT )〉 using random measure-

ments and observing the 2T periodicity in time. For the
more general class of models that completely breaks an on-
site symmetry group G, the Floquet phases are classified by
Z (G). Taking Zn as an example, one can similarly measure
〈gig

†
i (nT )〉, g being the symmetry generator of Zn and using

the phase jump per period to determine the corresponding
phase.

V. RESULTS

We now present our results. Our first result is the order
parameter dynamics for different parameters. All the results
below are obtained with exact diagonalizing the Hamiltonian
with quasiperiodicity. The phase factor φ in the quasiperiod-
icity function does not affect the results significantly so we
randomly choose 100 different φs and average the physical
quantities over these samples just to make the results smooth.
More specifically, we choose two points in the parameter
space, one with t = 0.2, θ = 0.8 (PM phase) and another with
t = 0.8, θ = 0.2 (FM phase), and see how the dynamics of
the order parameter behaves for these two circuits individu-
ally. We can see that for the Pauli-XX order parameter, the
value of the order parameter dropped close to zero with finite
time steps in the paramagnetic phase, while remaining finite
throughout the time steps we take in the ferromagnetic phase
(see Fig. 7). This is consistent with the intuition that the FM
phase has a XX -like order.

We then obtain results by scanning through a range of
parameter values that cross the phase boundary. Ideally one
could wait long enough to see the “true” saturation value of
the order parameters. In our simulation we treat 1000 time
steps as more than enough to produce reliable results. In this
case one can see that the saturated value of the order parameter
starts to deviate from zero at certain values of t . In simulations
on NISQ devices, one certainly has no access to this amount
of time steps due to noise limitations that restrict the circuit’s
gate depth. So we also plot results we obtain by restricting to
30 time steps, a fair amount for a near-term quantum com-
puter. By utilizing the previous time steps, we extend beyond
30 time steps by fitting them to a power-law decay. This
heuristic approach seems a stronger indicator of our known
long time results than just by looking at the 30 time steps
alone. So either with 1000 time steps or 30 time steps we find

FIG. 7. Behaviors of the order parameter dynamics in two differ-
ent phases (V = 0.1). The order parameter is chosen as σ x

i σ x
j which

is the order parameter for the FM phase. In the PM phase this order
parameter dropped to zero in a finite number of steps. However, in
the FM phase the order parameter stays finite within the time steps
taken.

signatures of the phases of matter in our time-and-ensemble
averaged order parameters.

VI. CONCLUSION AND OUTLOOKS

To summarize, in this paper we proposed a scheme to
stabilize and dynamically detect Floquet phases of matter on a
near-term quantum computer. The central concept we seek to
utilize is many-body localization, which prevents our circuits
from thermalizing and rendering a featureless phase diagram.
Instead, with many-body localization the circuits in different
phases show distinct behaviors even after undergoing signif-
icantly long times. The distinction between different phases
is encoded in the LIOM of the circuit, which is detected by
measuring time-and-ensemble averaged order parameters.

A crude estimate for the quantum volume (the number of
qubits times the gate depth accessible to a quantum infor-
mation processor) required to exceed the classical simulation
power of this problem for a quantum computer would be
approximately 30 × 20. We expect this scheme could be de-
ployed on the IBM Q quantum computing platform upon
adaptation in the near term, especially on their recently an-
nounced 127-quantum bit (qubit) “Eagle” [23].

Some future directions to look into would be to include
noise expected in a quantum computer into our scheme and
assess how the noise changes the validity of our proposal.
Specifically how does noise alter the behaviors of LIOMs in
the presence of localization? It is also worth noting that the
random measurement schemes proposed in this paper seem
natural fits to explore more about the local integrals of motion
in many-body localized systems, which are crucial for under-
standing many-body localized phases. Also, in our approach
to study the phase diagram of a model, we effectively take
the clean model and insert randomizing gates that randomize
the parameters. Other interesting schemes certainly exist. For
example, by setting up a ramping protocol and inspecting the
dynamics of certain order parameters, one could pinpoint the
phase boundary of the system in equilibrium [24]. An alter-
native approach could be to insert random measurements and
drive the clean model through a measurement induced phase
transition to an area law entanglement phase [25–27]. At some
level, this alternative approach is a space-time rotation of the
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FIG. 8. A simulation of scanning through the phase boundaries
(V = 0.1). An illustration of the scanning trajectory is depicted as
the red arrow in Fig. 4. The extrapolated results for 30 time steps
agree qualitatively with the ideal case (n = 1000).

approach discussed in this paper [28] and may similarly allow
the computation of phase diagrams.
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APPENDIX: FINITE SIZE EFFECT

We report our results on the finite size effect of our method
below. In the main text we chose the system size to be L = 10.
In a realistic quantum device the system size could be larger
than that; we show evidence that such an increase of system
size improves the sharpness of our results. We again scan
through the phase boundaries as we did in Fig. 8 but with
system size L = 8, 10, and 12, respectively. The results are
shown in the lower panel of Fig. 9. To get consistent results we
define a “normalized order parameter.” Namely, we note that
throughout the phase region we scanned the order parameter
always acquires a minimum value in the disordered phase,
and we normalize the order parameter for different system

FIG. 9. A simulation of scanning through the phase boundaries
(V = 0.1). An illustration of the scanning trajectory is depicted as
the red arrow in Fig. 4. The extrapolated results for 30 time steps
agree qualitatively with the ideal case (n = 1000).

sizes by dividing the order parameter by this minimum. We
denote the normalized order parameter by |Ô|N . A comparison
of this normalized order parameter is shown in the upper
panel of Fig. 9. As one can see by increasing the system size
this normalized order parameter shows a sharper signature of
phase transition.
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