
PHYSICAL REVIEW B 106, 214304 (2022)

Purification and scrambling in a chaotic Hamiltonian dynamics with measurements
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Chaotic transverse-field Ising model with measurements exhibits interesting purification dynamics. An en-
semble of nonunitary dynamics of a chaotic many-body system with measurements exhibits a purification phase
transition. We numerically find that the law of the increase dynamics of the purity changes by projective
measurements in the model. In order to study this behavior in detail, we construct the formalism of the
tripartite mutual information (TMI) for a nonunitary time evolution operator by using the state-channel map.
The numerical result of the saturation value of the TMI indicates the existence of a measurement-induced phase
transition. This implies the existence of two distinct phases, a mixed phase and purified phase. Furthermore,
the real-space spread of the TMI is investigated to explore spatial patterns of information spreading. Even in
the purified phase, the spatial pattern of the light-cone spread of quantum information is not deformed, but its
density of information propagation is reduced on average by the projective measurements. We also find that this
spatial pattern of the TMI distinguishes the chaotic and integrable regimes of the system.
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I. INTRODUCTION

Quantum chaos and scrambling [1,2] are among the
most interesting topics in high-energy and condensed-matter
physics. In high-energy physics, the black hole is regarded
as one of the most efficient scramblers, and how black hole
makes quantum information scrambled has been extensively
studied [2–4]. On the condensed-matter side, similar interests
attract many researches, that is, how quantum information
spreads and entanglement entropy behaves in various many-
body systems. For example in a many-body system (hybrid
circuit models, etc.) coupled to environments such as dissi-
pation and measurements, a dynamical entanglement phase
transition induced by measurements has been extensively
studied [5–23]. In particular, Ref. [5] proposed a notion named
purification phase transition. There, the initial state is set in
a maximally mixed state and how the state is purified under
the time evolution has been investigated to find mixed and
pure phases. Distinction between these two phases is whether
the entropy of the entire system exhibits exponentially rapid
decays or not. This transition was observed in the conventional
random Clifford circuit first studied in Ref. [6].

From the results in [5], a natural question arises: Is
such a purification transition universal or ubiquitous in
nonequilibrium dynamics of many-body systems with mea-
surements? In particular, are there any typical chaotic
many-body Hamiltonian systems with measurements that ex-
hibit some measurement-induced phase transition? This work
gives a partial answer to this question by investigating be-
haviors of many-body Hamiltonian dynamics with projective
measurements. Our study on the time evolution operator of a
transverse-field Ising model tuned in a chaotic regime indi-

cates the existence of a measurement-induced transition, the
purification transition, as the measurement rate is increased.
Such a type of measurement-induced transition has been re-
ported only in a random Clifford model, where the initial state
is a maximum mixed state [5].

In this work, to capture the properties of the nonunitary
dynamical operator of the system, we extend the scheme of the
state-channel map called the doubled-Hilbert space formalism
proposed by Hosur et al. [24] to the nonunitary dynamics of
the system with measurements. In this formalism we make
use of the tripartite mutual information (TMI) defined on the
pure state obtained by the state-channel map. This TMI can
quantify the degree of the spread of quantum information
for nonunitary time evolution operators, that is, the ability of
scrambling of nonunitary dynamical operators. The negativity
of the TMI indicates the nonlocality of information, i.e., the
spread of information and scrambling across the entire system.

We show that the spread of information and scrambling in
the nonunitary time evolution operator can be well captured
by the TMI, and then the TMI is an efficient tool for a diag-
nostic of a measurement-induced transition. Note that such a
schema has been employed in unitary time evolution operators
of many-body Hamiltonians and has captured some interest-
ing dynamical behaviors [25–30]. By practical calculations,
we obtain a stable saturation behavior of the TMI as varying
the measurement rate and perform a scaling analysis for it. As
a result, we find a signature of the existence of a measurement-
induced phase transition in the chaotic transverse-field Ising
model with projective measurements, although system sizes
are rather small.

The rest of this paper is organized as follows. In Sec. II
we introduce a hybrid circuit model composed of unitary
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FIG. 1. (a) Schematic picture of a hybrid quantum circuit. The
blue block represents unitary time evolution driven by a many-body
Hamiltonian Ĥ with a time interval �t . The gray block represents a
projective measurement applied to a local site. (b) Schematic picture
of the setup for calculation of the TMI.

dynamics and projective measurements describing a time evo-
lution and explain the many-body Hamiltonian for unitary
time evolution. In Sec. III we construct the doubled-Hilbert
space formalism to investigate the property of the nonunitary
time evolution operator itself in the model with projective
measurements and also introduce the TMI based on the state-
channel map. In Sec. IV we show the dynamics of the purity
of a subsystem. We find a change of an increasing law of the
purity induced by varying the measurement rate. This can be
a signature of the existence of the measurement-induced tran-
sition. In Secs. IV and V, we study the TMI and perform its
scaling analysis implying the existence of the measurement-
induced phase transition. Then in Sec. VI we also observe
the spatial spread of quantum information under projective
measurements. Section VII is devoted to a conclusion.

II. HYBRID CIRCUIT AND UNITARY TIME EVOLUTION
OF CHAOTIC MANY-BODY HAMILTONIAN

We consider hybrid quantum circuit systems composed of
the unitary time evolution of a many-body Hamiltonian and
projective measurement blocks. In particular, we shall study
spin-1/2 systems with L sites in this work. The dimension
of the Hilbert space is ND = 2L. The schematics are shown
in Fig. 1(a). The overall time evolution is nonunitary, and its
time evolution operator is explicitly given by

K̃ (t�) = [M̃t� · Û (�t )]K̃ (t�−1). (1)

Here t� denotes the time step taking t� = ��t with the num-
ber of time step � = 1, . . . , Nt (we usually set Nt = 10L),
K̃ (t0) = Î , M̃t� is the projective measurement operator with
a normalization factor, and Û (�t ) = e−i�t Ĥ , where Ĥ is a
many-body Hamiltonian and �t is the time interval of the
unitary dynamics [31]. The explicit form of M̃t� is given by

M̃t� =
√

ND

‖K̂ (t�)‖F
M̂t� , (2)

K̂ (t�) ≡ M̂t�Û (�t )K̃ (t�−1), (3)

M̂t� ≡
L−1∏

j=0

q j
�P̂

α�
j

j , (4)

where
√

ND

‖K̂ (t� )‖F
is a factor depending on the time t� to keep

‖K̃ (t�)‖2
F = ND for the normalization of the density matrix

(‖ · ‖F denotes the Frobenius norm), P̂
α

j
�

j = [1 + α
j
�m̂ j]/2

with α
j
� = ±1 determined by equal probability and the

variable q j
� takes 0 or 1 with probability p and (1 − p), re-

spectively. Indeed, the measurement rate for each local site j
at every t� is determined by the probability p. We call p the
measurement rate. We set the measurement base for each site
to σ z

j , that is, m̂ j = σ z
j .

In this work, as a many-body Hamiltonian of the unitary
time evolution we focus on the transverse-field Ising model,
whose Hamiltonian is given as

Ĥ =
L−1∑

j=0

[
Jzzσ

z
j+1σ

z
j + hxσ

x
j + hzσ

z
j

]
, (5)

where Jzz, hx, and hz are Ising coupling, uniform magnetic
fields in the x and z directions, respectively. The study of the
dynamical properties of the model has a long history [32,33].
The integrability of the model depends on the parameters hx

and hz.
From the nonunitary time evolution operator K̃ (t�), a time

evolution of density matrix is formally written by

ρ(t�) = K̃ (t�)ρ(0)K̃†(t�). (6)

In this work we focus on the time evolution of the max-
imally mixed state with ρ(0), which is different from the
setup in the typical circuit model exhibiting the measurement-
induced phase transition [6,7]. Note that due to ‖K̃ (t�)‖2

F =
ND, the density matrix keeps a condition tr[ρ(t�)] =

1
ND

tr[K̃ (t�)K̃ (t�)†] = 1
ND

‖K̃ (t�)‖2
F = 1 for any �. In the fol-

lowing study, we consider two typical parameter sets: (I) a
nonintegrable parameter set, Jzz = −1, hx = 1.05, and hz =
−0.5 [34], where without measurements the model exhibits
strong chaotic (scrambling) behavior [24]; and (II) an inte-
grable parameter set, Jzz = −1, hx = −1, and hz = 0. The
nonintegrable case (I) is mainly focused on in this work. In
the practical calculation, we set �t = 1.

III. DOUBLED-HILBERT SPACE FORMALISM
AND TRIPARTITE MUTUAL INFORMATION

WITH MEASUREMENTS

We investigate the properties of the density matrix ρ(t�)
generated by the nonunitary operator including the projective
measurements K̃ (t�). The state-channel map (Choi representa-
tion) by introducing the doubled-Hilbert space is an efficient
method. This formalism allows one to examine the property
of the operator K̃ (t�) itself [28,35]. Based on this formalism
the TMI is introduced [24], which measures entanglement
between in- and out-states. Note that the definition of the
TMI is different from that for the pure state as employed in
Refs. [5,15,20] but the same as those in Refs. [25–27]. The
practical application for unitary time evolution operators is
also summarized in detail [29]. In addition, the TMI is an
efficient tool to detect the presence of a phase transition, as
we show in later investigations.

Let us briefly explain the state-channel map. The nonuni-
tary time evolution operator K̃ (t�) can be treated as a pure state
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in the doubled-Hilbert space denoted by HD ≡ Hin ⊗ Hout

[24]. The density matrix at time t� is regarded as ρ(t�) =∑ND
ν=1 pνK̃ (t�)|ν〉〈ν|(K̃ (t�))†. Here {|ν〉} is a set of an orthog-

onal bases state (the set of bases of the spin-1/2 system with
size L), ND(= 2L) is the dimension of the Hilbert space in the
system, and an arbitrary input ensemble is tuned by parame-
ters {pν}. Then, by the state-channel map, ρ(t�) is mapped to
a state such as

ρ(t�) → |K (t�)〉 =
∑

ν

√
pν (Î ⊗ K̃ (t�))|ν〉in ⊗ |ν〉out

=
∑

ν,μ

√
pνKν,μ(t�)|ν〉in ⊗ |μ〉out, (7)

where Î is the identity operator, and {|ν〉in} and {|ν〉out} are
the same set of orthogonal bases state [36]; therefore, the
state is defined on the doubled-Hilbert space, HD, spanned
by {|ν〉in} ⊗ {|ν〉out}. The nonunitary time evolution operator
K̃ (t�) acts only on the out orthogonal states |ν〉out. In what
follows we focus on the infinite-temperature case, such as
pν = 1/ND. Then, for initial state at t = 0, the in-state and
out-state are maximally entangled. The set of the in-state
can be regarded as reference states. Note that ‖K̃ (t�)‖2

F = ND

gives the normalization condition of the pure state under the
measurements, i.e., |〈K (t�)|K (t�)〉| = 1

ND
‖K̃ (t�)‖2

F = 1 for any
t�. Hence the condition tr[ρ(t�)] = 1 corresponds to the nor-
malization condition |〈K (t�)|K (t�)〉| = 1 in the state-channel
map.

For the state |K (t�)〉, the TMI can be obtained by introduc-
ing a suitable spatial partitioning as shown in Fig. 1(b). The
t = t0 state [given by ρ(0)] is divided into two subsystems
A and B, and the state at time t = t� [given by ρ(t�)] is
divided into two subsystems C and D. We first employ the
partition with the equal length of A and B (C and D), i.e., L/2
subsystems, although some specific partitioning will be used
later on.

In this spatial partitioning, the density matrix of |K (t�)〉 ∈
HD is denoted by ρABCD(t�) = |K (t�)〉〈K (t�)|. From ρABCD(t�),
a reduced density matrix for a subsystem X is obtained by
tracing out the degrees of freedom in the complementary sub-
system of X denoted by X̄ , i.e., ρX (t�) = trX̄ ρABCD(t�). From
ρX (t�), the operator entanglement entropy [26,28,37] for the
subsystem X is obtained by SX = −tr[ρX log2 ρX ]. Then one
defines the mutual information between X and Y subsystems
(where X,Y are some elements of the set of the subsystems
{A, B,C, D}, and X 
= Y ):

I (X : Y ) = SX + SY − SXY .

This quantity quantifies the correlation between the subsys-
tems X and Y . Further, from the mutual information, the TMI
for the subsystems A, C, and D is given by

I3(A : C : D) = I (A : C) + I (A : D) − I (A : CD).

Intuitively, this quantifies how initial information residing in
subsystem A spreads into both subsystems C and D in the
output state under time evolution. If the information in A
spreads into the entire system at a time t�, I3(t�) becomes
negative [24]. That is, the negativity of I3 quantifies the spread
of information and scrambling. Practically, I3 is zero at the
beginning of the time evolution, since |K (0)〉 is the product

p
u
ri
ty

(a)

(b)

p
FIG. 2. (a) Purity dynamics. We plot the mean value of the pu-

rity averaged over 100 different measurement patterns and the most
optimal fitting lines for some p’s. The fitting lines are assumed by
ln〈trρ2

CD〉 = α ln(t�) + β. (b) Coefficient of determination R2 of the
log-log form.

state of the EPR pair at each lattice site. A further explanation
of the practical calculation is given in Appendix A.

IV. PURIFICATION DYNAMICS

Let us observe the dynamical property of the state |K (t�)〉.
Initially, the state |K (t�)〉 of Eq. (7) is set to be maximally en-
tangled to the reference state (in-state) in the doubled-Hilbert
space formalism. Here we focus on the nonintegrable case
and observe how the out-state gets purified under the time
evolution depending on the measurement rate p.

In the practical calculation, we can iteratively create K̃ (t�)
in |K (t�)〉, where the time evolution operator Û (�t = 1) for
Ĥ and the projective measurement operator M̃t� are efficiently
constructed by employing QuSpin package [38]. This calcu-
lation method is also employed in the numerical calculations
in Secs. V and VI. For physical quantities obtained from
K̃ (t�), shown later, we take the ensemble average over dif-
ferent measurement patterns. (See additional explanation of
the averaging method for different measurement patterns in
Appendix B.)

To capture the behavior of the state, the purity of the
reduced density matrix for the subsystem CD (out-state),
trρ2

CD(t�), is a good measure. Note that without measurements,
trρ2

CD(t�) is time independent, similarly to the entanglement
entropy SCD = L [24], but the measurements in the nonunitary
dynamics vary their values. We also comment that the target
system CD can be regarded as an infinite-temperature system
coupled with environments as discussed in [5].

In practical calculation, ρCD(t�) is obtained from the ma-
trix K̃ (t�). The averaged purity is denoted by 〈trρ2

CD(t�)〉. We
observe a time interval 0 � t� � 50.

In general, the purity exhibits monotonically increasing
behavior for any finite p and eventually it reaches unity,
trρ2

CD(∞) = 1. However, the temporal increasing law of the
purity can depend on the measurement rate p. Figure 2(a)
displays numerical results of the averaged purity for various
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p’s for L = 10. In fact, we find that with increasing the
measurement rate p, the increase of 〈trρ2

CD(t�)〉 approaches a
log-log-like behavior as ln〈trρ2

CD(t�)〉 = α ln(t�) + β, where α

and β are nonuniversal coefficients.
The numerical data in Fig. 2(a) are estimated by a fitting

analysis. We assume fitting functions of a log-log form such
as ln〈trρ2

CD(t�)〉 = α ln(t�) + β, and determine the optimal co-
efficients α and β from the data of 〈trρ2

CD(t�)〉 by measuring
the value of R2, which estimates how accurately the data of
the purity is fitted by a log-log function. The result is shown
in Fig. 2(b), where we also plot the L = 8 case. This result
indicates that the properties of the reduced density matrix
ρCD(t�) qualitatively changes by increasing the measurement
rate p. For p � 0.08, the value of R2 saturates nearly to unity.
This fact indicates that the behavior of the time evolution of
ρCD changes qualitatively at a finite threshold p = pc � 0.08,
i.e., the system with p > pc exhibits rapid purification.

Here we would like comment on the dynamical purifi-
cation transition suggested in [5]. There the entropy of the
out-coming state SCD was focused, particularly its temporal
behavior. The authors studied the random Clifford model with
measurements and observed the scaling law of the decreasing
function SCD(t ) to find that the law changes from a slow
exponential decrease to a rapid exponential decrease as p
is increased. We also investigated the temporal behavior of
SCD(t ) of the present model in a similar manner. For the
model, however, our numerical calculation is difficult to cap-
ture any clear changes in SCD(t ) as a function of t as p is
increased. We expect that the most probable cause for this
discrepancy between the temporal behavior of SCD(t ) and the
purity observed in the above comes from small system sizes
in our numerics.

V. DYNAMICS OF TMI AND A SIGNATURE
OF PURIFICATION TRANSITION

In this section we move on to observe the dynamics of the
TMI as varying the measurement rate p. In the calculation of
the TMI, we employ a normalized TMI, Ĩ3(t�) ≡ I3(t�)/|IH

3 |
[25,27]. Here, IH

3 is a value of TMI obtained from the Haar
random unitary [39], which is a ND × ND random unitary
matrix sampled from the Haar measure, as a reference. The
maximum value of Ĩ3 is −1. We numerically calculate Ĩ3

for different samples of the measurement pattern, average
over them, and obtain the mean value 〈Ĩ3〉 [40]. The periodic
boundary condition is employed.

We first consider the chaotic case mentioned above, Jzz =
−1, hx = 1.05, and hz = −0.5. The dynamical behavior of Ĩ3

for various p’s are shown in Fig. 3. For all data, Ĩ3 saturates
quickly and takes negative values. For small p’s, since the
chaotic unitary dynamics is dominant, the negativity of the
saturation value is large. On the other hand, for larger p’s,
the negativity of the saturation value is suppressed since the
measurements break the maximal entanglement existing in
the initial state and correlations induced by the unitary time
evolution of the chaotic Hamiltonian are hindered by them.
Secondly, we study the integrable case of the transverse-field
Ising model, Jzz = −1, hx = −1, and hz = 0, as to examine
the difference between the chaotic and integrable systems
is quite interesting and important. Before going into the

FIG. 3. Dynamics of the TMI for the nonintegrable case (Jzz =
−1, hx = 1.05, and hz = −0.5). L = 10, �t = 1, and averaging over
140 different measurement patterns. Four subsystems A, B,C, and D
have the same subsystem size L/2.

practical calculation, we comment that there exists a signif-
icant difference in the TMI between the open and periodic
boundary systems in the integrable case. That is, in the open
boundary system without measurements, the negativity of the
TMI is suppressed as observed in [24], while the periodic
boundary system is not (we have verified this but not shown
it). Hence, we here investigate the open boundary system in
detail.

Calculations of Ĩ3 for various p’s are shown in Fig. 4(a),
which exhibit a quite peculiar behavior. For the p = 0 case,
the result is consistent with that obtained in [24]. But interest-
ingly enough, for tiny p such as p = 0.0025, the behavior of
the TMI is unstable. The negativity of the TMI is enhanced,
indicating a slow saturation, but even at t� = 10L, the value
of the TMI does not saturate. For larger p’s, the behavior is
similar to that of the chaotic case. The value of the TMI at
t� = 10L with various p’s is shown in Fig. 4(b). We observe
that for the small p’s, the negativity TMI is surely enhanced.

(a)

(b)

p

FIG. 4. (a) Dynamics of the TMI for the integrable case (Jzz =
−1, hx = −1, hz = 0). L = 10, �t = 1, and averaging over 100
different measurement patterns. Four subsystems A, B, C, and D
have the same subsystem size L/2. (b) Values of the averaged TMI
at t� = 10L. The orange-colored data points represent nonsaturation
value.
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We expect that the reason for this unexpected behavior of
the TMI for the small p’s is the following: for the integrable
case, the conserved quantities (the integrals of motion) are the
number operators of Bogoliubov quasiparticle. These opera-
tors are obtained through Jordan-Wigner transformation and
Bogoliubov transformation from the original spin operators,
and therefore they are highly nonlocal and very complicated,
even if the number operators would be written by spin op-
erators explicitly. Hence, we expect the measurement bases
σ z

j do not commute with many of the conserved quantities
due to the nonlocality. It indeed may induce frustration [18].
As a result, the measurements stir the system to increase its
entanglement entropy. This phenomenon is also reminiscent
of the effect of incompatibility between the local integrals of
motion and measurement bases suggested in the many-body
localized system with measurements in [15].

On the other hand, as a comparison, we can consider
a “trivial integrable case” with Jzz = 1, hx = 0, hz = finite.
There the local conserved quantities are {σ z

j } for any j. They
trivially commute with the measurement bases σ z

j and thus the
measurement does not stir the system.

In Sec. VI we shall reexamine the above behavior of the
TMI for small p. In the integrable systems, in particular,
the transverse-field Ising model, a picture of quasiparticles
emerges, and quantum information spreads by ballistic mo-
tions of the quasiparticles and the quasiparticles do not
spread.

In the previous section we observed that the purity in the
nonintegrable system exhibits some qualitative changes of the
reduced density matrix ρCD(t�) as increasing the measurement
rate p. This seems to indicate a measurement-induced phase
transition. To see if a similar indication is obtained from the
TMI, we move to the investigation on the saturation values
for various p’s in the nonintegrable case. We plot the values
of 〈Ĩ3〉 at t� = 10L for various system sizes L, where each
dynamic of the TMI exhibits saturation. The result is shown
in Fig. 5(a). The data for different system sizes seem to cross
with each other in a narrow regime p ∼ 0.08. This numer-
ical result implies the existence of a measurement-induced
transition. To elucidate the existence of the transition and
estimate the transition rate p = pc, we carry out the finite-size
scaling (FSS) analysis for 〈Ĩ3〉. Here we assume a scaling
function of the following form, which is employed quite
often:

−〈Ĩ3〉(p, L) = 	[(p − pc)Lν],

where ν is the critical exponent. We determine the scaling
function 	 by using the fitting methods of the FSS. Prac-
tically, the fitting curve for the scaling function is set to a
fifth-order polynomial function with the best optimal coeffi-
cients of the polynomial for various values of pc and ν, and
then the coefficient of determination R2 is estimated. The R2

quantifies the extent to which the values of the TMI with
different system sizes collapse to a single curve. A similar
procedure was used to identify a transition rate in the random
circuit model, obtaining reliable results [20].

From the distribution of R2 in Fig. 5(b), the anal-
ysis predicts the best parameter candidate, (pc, ν) =
[0.0809(9), 2.02(0)] with R2 = 0.994(2), and the optimal fit-
ting result is shown in Fig. 5(c). From the results in Fig. 5, we

pc

(a) (b)

(c)

p

FIG. 5. Numerical analysis of the saturation values of −〈Ĩ3〉
where the Hamiltonian of the time evolution operator is set on the
chaotic (nonintegrable) case (Jzz = −1, hx = 1.05, and hz = −0.5).
The values of −〈Ĩ3〉 are at t� = 10L. (a) The p dependence of the
saturation values of Ĩ3 for different system size L. The 〈Ĩ3〉’s are
obtained by averaging over 500, 400, 300, 160, and 100 samples for
L = 4, 6, 8, 10, and 12. The saturation value is taken at Nt = 10L.
(b) The distribution of R2 in the fitting parameter space pc and ν.
The best-fit result is for (pc, ν ) = [0.0809(9), 2.02(0)] with R2 =
0.994(2). (c) The scaled data and the scaling function. The orange
dashed line is an optimized fifth-order polynomial function.

also expect that the transition separates the mixed and pure
phases, as first suggested in [5].

Note that the estimated pc is smaller than that of the typical
purification transition in the random Clifford circuit in [5], and
the value ν is much closer to those estimated in Refs. [7,17],
where bipartite entanglement was used for the analysis. So far,
the previous studies [8,13,20] predicted that the critical prop-
erty of typical purification and entanglement phase transitions
is close to that of the 2D percolation with ν = 4/3. In our
numerical calculations (for small system size data, though),
the obtained value from the TMI scaling, ν ∼ 2, is different
from the result of the percolation at least. The case of our
result might be rather close to the cases in [7,17], insisting
that the transition criticality does not belong to the universality
class of the 2D percolation.

We further notice an interesting fact. Our estimated tran-
sition point pc = 0.0809 is correlated to the behavior of the
purity in the time evolution. That is, at around p ∼ pc, the
increase in the time evolution of the purity approaches a linear
scaling in the log-log plot as shown in Fig. 2. This relationship
strongly suggests the existence of the measurement-induced
phase transition in the system.

Here we would like to remark the utility of the normal-
ization of the TMI. In the previous study, the application of
the normalized TMI has succeeded to detect a transition point
for many-body localized systems [27]. The TMI of the Haar
random unitary plays a role of a good reference. By using the
normalization with it, the system size dependence of the Ĩ3

tends to be small, in particular, we also expect that the Ĩ3 can
keep a finite value at the phase transition point. It is beneficial
to employ the Ĩ3 to identify a phase transition as an “order
parameter.”
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FIG. 6. (a) The setup of partition for observing spread of quan-
tum information from subsystem A to subsystem D with distance r
along the time evolution. The TMI distributions are shown for the
chaotic (nonintegrable) case (Jzz = −1, hx = 1.05, and hz = −0.5)
in time step t� vs r for p = 0.04 (b), 0.082 (c), and 0.2 (d), where
r = 0, 1, . . . , L − 4.

VI. SPATIAL SPREAD OF QUANTUM INFORMATION
WITH MEASUREMENTS

The previous works [26,27,29] showed that by changing
the spatial partitioning of the subsystems A, B, C, and D, the
TMI works as an efficient tool for observing spatial spread of
quantum information, just like the out-of-time-order correla-
tor (OTOC) [3,4,41–48]. The TMI in that setup can observe
the linear light-cone spread of information [29] and also the
loglike propagation in many-body localized systems [26,27].

We apply this scheme to the nonunitary dynamics and
investigate how the spatial spread of information is affected
by projective measurements. We change the partitioning of
the four subsystems A, B, C, and D as shown in Fig. 6(a).
Both A and D subsystems have two-site and the other B and C
subsystems have (L − 2) sites; the position of the A subsystem
is fixed and the position of the D subsystem is varied; and we
calculate the TMI by varying the distance between A and D
subsystems in the system with open boundary conditions [49].
This setup gives qualitative insights as to how the subsystems
A and D separated with distance r get correlated (entangled)
with each other and how quantum information located in sub-
system A propagates into subsystem D under the nonunitary
time evolution. As we calculate the averaged TMI 〈Ĩ3〉 as
a function of the distance r, we denote it 〈Ĩ3〉(t�, r), where
0 � r � L − 4. We mostly focus on a short time interval such
as 0 � t� � 10. We first observe the chaotic (nonintegrable)
case. The heat map results for some typical measurement rates
are shown in Figs. 6(b)–6(d). The result for p = 0.04 (in the

(a) (b)

(c) (d)

r r

r r

FIG. 7. The mean TMI distributions for the integrable case (Jzz =
−1, hx = −1, hz = 0) in time step t� vs r for p = 0 (a), 0.0025 (b),
0.02 (c), and 0.2 (d). We set a critical transverse-field Ising model
with an integrable parameter set (Jzz = −1, hx = −1, hz = 0), L =
10. r = 0, 1, . . . , L − 4. We averaged over 100 samples, except for
the p = 0 case.

mixed phase) indicates the linear light-cone spatial spread-
ing survives even in the case of a finite p. Furthermore, as
shown in Figs. 6(c) and 6(d), even for larger values p = 0.082
(near the transition point) and 0.2 (deep pure phase), the
linear light-cone spreading pattern remains. More precisely,
the pattern of the information spreading is not affected by the
projective measurements on average, although some samples
of measurement pattern are deformed by the measurements
and therefore the strength of the information spreading is
weakened. That is, the negative value of the averaged TMI 〈Ĩ3〉
is only partially suppressed by them. This behavior is different
from that of a disordered integrable system and also many-
body-localized systems, the behavior of which is reported in
[26,27]. In summary, as a result of sampling different mea-
surement patterns, the projective measurements do not destroy
all the information propagation, but as an averaged image,
they weaken the scrambling via the unitary time evolution by
the chaotic Hamiltonian (nonintegrable case).

Finally, we study the integrable case with open boundary
conditions. Figure 7 is the result of the case. Interestingly, for
the p = 0 case in Fig. 7(a), we observe the linear light-cone
propagation of spatially localized quasiparticles, and these
quasiparticles do not spread into the entire system. This is
reason why the suppression of the negativity of the TMI takes
place as we observed in the above. Next, we observe the case
of a tiny measurement rate such as p = 0.0025 in Fig. 7(b),

214304-6



PURIFICATION AND SCRAMBLING IN A CHAOTIC … PHYSICAL REVIEW B 106, 214304 (2022)

and we find that the picture of the quasiparticle propagation
survives. Then, we observe the p = 0.02 case in Fig. 7(c).
The tendency of the propagation of the genuine quasiparticles
is getting weak under the time evolution, and the relatively
large negative value of 〈Ĩ3〉(t�, r) appears in the entire system.
For larger p, see the p = 0.2 case in Fig. 7(d). We find that this
behavior is similar to that in the nonintegrable case. This result
implies that for large p, the spatial spreading of the TMI is no
longer related to the integrability of many-body Hamiltonian.

VII. CONCLUSION

We studied the hybrid quantum circuit composed of the
unitary dynamics of the transverse-field Ising model and pro-
jective measurements. We extended the doubled-Hilbert space
formalism to nonunitary dynamics and reformulate the TMI
to investigate the property of the nonunitary time evolution
operator describing the hybrid quantum circuit.

As the numerical results show, the dynamics with measure-
ments is significantly changed by increasing the measurement
rate p. We first found that the increase of the purity sig-
nificantly changes by the measurement rate p. Then we
numerically investigated the postmeasurement TMI averaged
over different measurement patterns and its saturation value.
By using the FSS for the saturation data of the TMI, we
estimated the critical transition point and critical exponent.
Even in the small system sizes, we obtained rather satisfactory
results. These results imply the existence of the measurement-
induced phase transition, which is nothing but the purification
phase transition recently proposed in [5]. We expect that from
the practical investigation of the typical spin models in this
work, a purification phase transition occurs in broad models
with measurements beyond the random Clifford circuit mod-
els studied recently [5].

Nevertheless, we use caution regarding the universal valid-
ity of conclusions obtained from our numerical observations,
especially the scaling results of the purification transition,
because our numerical results are limited, that is, far from
the thermodynamic limit. The study of the TMI for larger
system sizes by alternative numerical schemes will be one of
the focuses of the future work.

The application of the scheme (doubled-Hilbert space for-
malism) in this work is broad. It is interesting to detect
whether a purification transition occurs for various models
coupled to environments (open quantum systems). We com-
ment that a similar framework of the TMI used in this work
was recently applied to black-hole dynamics in the context
of the Hayden-Preskill protocol [50]. In passing, within the
theoretical framework of this study, constructing a diagnostic
scheme for the chaotic behavior of quantum information from
the measurement record itself [51] is also an interesting future
area of study.
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APPENDIX A: NUMERICAL CALCULATION OF THE TMI

We briefly explain the practical numerical calculation of
the TMI. The numerical cost for the straightforward manipu-
lation of the density matrix ρ̂ABCD is quite high. Instead, we
make use of the singular value decomposition (SVD) to the
pure state |K (t�)〉. For a certain partitioning X and X̄ , the pure
state is written as

|K (t�)〉 = 1√
ND

∑

ν

(Î ⊗ K̃ (t�))|ν〉in|ν〉out

= 1√
ND

∑

kX ,�X̄

KkX ,�X̄
|kX 〉X |�X̄ 〉X̄

SV D=
∑

r

λX,X̄
r |r〉X |r〉X̄ . (A1)

Here, in the second line, the input and output basis states
are reassembled into basis vectors {|kX 〉X } and {|�X̄ 〉X̄ }, cor-
responding to the spatial partition X and X̄ , and then a
concrete matrix representation of the operator (Î ⊗ K̃ (t )) is
obtained. In the third line we simply employ the SVD to
obtain singular values, λX,X̄

r , and the operator entanglement
entropy for the subsystem X is straightforwardly obtained
by SX = −∑

r (λX,X̄
r )2 log2(λX,X̄

r )2. Hence, from the operator
entanglement entropy, we evaluate the TMI, I3.

In addition, we mention our recent work on quantum spin
models with topological order [30]. There we found that re-
sults obtained by calculating the TMI are quite stable and
reliable compared with those by the quench EE. Therefore
we can regard the TMI as a benchmark for observation of the
scrambling.

APPENDIX B: SAMPLING OF MEASUREMENT PATTERN

We briefly explain the method of sampling for various
measurement patterns (including outcomes) and how to obtain
entanglement entropy, SX . For a certain single measurement
pattern in the entire circuit generated by the probability rule
mentioned in Sec. II, we get the corresponding matrix Kμ,ν

for that measurement pattern. We obtain the singular values
λX,X̄

r from the matrix Kμ,ν for the desired partition of the
system X and X̄ . Then we calculate the purity or SX ’s for
that single measurement pattern. We repeat this process for
many measurement patterns. Specifically, the averaged entan-
glement entropy 〈SX (t�)〉 is given by

〈SX (t�)〉 = 1

Ns

Ns∑

s=1

Ss
X (t�),

where the label s represents a single measurement pattern in
the entire circuit and Ns is the total number of sampling. We
can also obtain the averaged TMI and the averaged purity in
a similar way. Note that we do NOT calculate the averages
of the matrix Kμ,ν or its corresponding density matrix ρ. This
point is definitely mentioned in [22].
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