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The fundamental question of how information spreads in closed quantum many-body systems is often
addressed through the lens of the bipartite entanglement entropy, a quantity that describes correlations in a
comprehensive (nonlocal) way. Among the most striking features of the entanglement entropy are its unbounded
linear growth in the thermodynamic limit, its asymptotic extensivity in finite-size systems, and the possibility of
measurement-induced phase transitions, all of which have no obvious classical counterpart. Here, we show how
these key qualitative features emerge naturally also in classical information spreading, as long as one treats the
classical many-body problem on par with the quantum one, that is, by explicitly accounting for the exponentially
large classical probability distribution. Our analysis is supported by extensive numerics on prototypical cellular
automata and Hamiltonian systems, for which we focus on the classical mutual information and also introduce
a “classical entanglement entropy.” Our study sheds light on the nature of information spreading in classical
and quantum systems, and opens avenues for quantum-inspired classical approaches across physics, information
theory, and statistics.
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I. INTRODUCTION

Many-body quantum systems display a huge variety of
physical phenomena and may carry a vast amount of in-
formation in the exponentially many components of their
wavefunction. Characterizing this information has become a
major goal of modern quantum science, of prime relevance
for quantum computing [1] and quantum simulation [2,3]. In
recent years the study of closed many-body quantum systems
has flourished in particular in the nonequilibrium regime, with
key questions revolving around the dynamics of equilibration
and information spreading [4,5]. These have become increas-
ingly relevant in light of the experimental advances with
nonequilibrium many-body systems kept in almost isolated
conditions, e.g., in Rydberg atom arrays [6] or cold atoms in
optical lattices [7].

One of the most prominent tools that has emerged from
this field is the bipartite entanglement entropy (EE). As it can
account for correlations in a comprehensive, nonlocal, mul-
tipoint way, the EE has been extensively adopted to monitor
the dynamical entangling of the system’s parts in pure quan-
tum systems [8–24]. Among the paradigms that have been
unearthed are the linear and logarithmic unbounded growth
of the EE in the thermodynamic limit for generic many-body
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systems [21] and in many-body localized (MBL) ones [12,25],
respectively, and its saturation to an extensive value for finite-
size systems at long times. More recently, it has been shown
that this extensivity allows for novel measurement-induced
phase transitions (MIPTs), whereby the rate of local random
measurements determines whether the asymptotic EE scales
proportional to the volume of the considered system’s parts
(“volume-law scaling”) or to the area of the boundary between
them (“area-law scaling”). Since its discovery three years ago
[26], the MIPT has received a remarkable amount of interest
[27–35].

An obvious and conceptually fundamental question is: To
what extent are these distinctive and celebrated many-body
features of quantum information spreading purely quantum?
One of the reasons why they have become well appreci-
ated in the quantum world is that state-of-the-art numerical
techniques can approximate [36] or even exactly describe
[37,38] the exponentially large many-body wavefunction. In
contrast, the probability distribution of classical nonequi-
librium many-body systems, while also being exponentially
large, is normally not explicitly accounted for. Rather, clas-
sical information spreading is mostly investigated in terms
of spatiotemporal correlations, transport properties, and the
spreading of perturbations [39–49], all of which are based
on the study of few-body observables that can be effectively
estimated à la Monte Carlo as averages over a handful of
trajectories. According to the paradigm of thermalization, the
expected value of these few-point observables reaches, at long
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TABLE I. Bridging the classical-quantum gap in many-body information spreading. We summarize the key differences and, mostly, close
analogies between classical and quantum information spreading. The setting we refer to is one in which initially local classical or quantum
fluctuations become nonlocal under some time-reversible and local dynamics. In this table note that, for pure states, one can replace “quantum
MI” by “quantum EE” because IA;B = 2Se. The substitution “classical MI” by “cEE” is also possible. The last column points to suitable
sections, figures, or references in which each comparison can be best appreciated.

Classical Quantum Ref.

Space phase space Hilbert space
N-Particle space size ∼eO(N ) ∼eO(N )

State of the system probability distribution p wavefunction |ψ〉
The nonseparability of a bipartition is measured by MI IA;B MI IA;B Sec. II

IA;B = 0 if pA,B = pA pB |ψ〉 = |ψA〉|ψB〉 Sec. II
Few-point observables becomea thermal thermal Sec. III
The MI can bea volume law volume law Secs. IV, VI
But the MI of a thermal ensemble is justa area law area law Ref. [50]
The probability and wavefunction becomea effectively randomized effectively randomized Sec. III
Origin of effective randomizationa chaos and incompressibility chaotic spectrum and dephasing Sec. III
The effective randomization underlinesa volume-law MI volume-law MI Ref. [51]
For N → ∞ the MI showsa unbounded linear growth unbounded linear growth Figs. 2, 6
Site j is measured according to the marginal probability pj the reduced density matrix ρ j Sec. V
Right after a measurement, site j is “factored out,” p = pj p\ j “factored out,” ρ = ρ jρ\ j Sec. V
Information spreading versus measurements can lead to MIPT MIPT Sec. V
Computing the MI classically requires exponentially large resources exponentially large resources Sec. VII
Extracting the MI experimentally requires exponentially many runs exponentially many runs Sec. VII

aValid under the general circumstances specified in the main text.

times and under general circumstances, the value predicted
by a thermal ensemble ∝ e−βH at suitable temperature β−1

[52]. But for instance, the bipartite mutual information (MI),
that is often regarded as the natural classical analog of the
bipartite EE, is many body in nature, requires the knowledge
of the system’s full probability distribution, and at long times
does not obviously reach the value predicted by a thermal
ensemble.

Here, we argue that this mismatch in the description of
quantum wavefunctions and classical probability distributions
has led to a gap between our understanding of classical and
quantum information spreading. We bridge this gap by (i)
accounting for the dynamics of the full many-body probability
distribution, thus treating the classical many-body problem
on par with the quantum one, and (ii) focusing on many-
body information measures akin to quantum EE, such as the
classical MI and the “classical EE” (cEE), a complementary
measure for classical nonseparability that we introduce. We
find that the qualitative features of quantum and classical in-
formation spreading are remarkably similar, and show the first
instances of asymptotic extensivity, unbounded linear growth,
and MIPT of MI and cEE in a classical setting. The analo-
gies between classical and quantum information spreading are
summarized in Table I.

The rest of the paper is structured as follows. In Sec. II
we introduce the main notation and definitions. In Sec. III
we review the idea of thermalization following a quench to
remark on the importance of retaining information on the
full and exponentially large state of the system, both in the
classical and quantum cases. In Sec. IV we show how the main
features of quantum information spreading naturally emerge
in classical cellular automata: the bipartite MI and cEE grow
linearly in time until saturating to an extensive value. Em-
phasis is put on the role that time reversibility plays in these

effects. Upon interleaving the automaton dynamics with lo-
cal measurements, we find and analyze a classical MIPT in
Sec. V. The discussion moves then to continuous Hamilto-
nian dynamics in Sec. VI, where with analytical arguments
and numerics we show the asymptotic MI to be generally
extensive, reducing to area law only for initial conditions at an
effective infinite temperature. We highlight a key difference
between the MI and the cEE, namely, that the cEE remains
asymptotically extensive even at infinite temperature, thus
further narrowing the classical-quantum gap. In Sec. VII we
argue that, beyond sharing the same phenomenology, classical
and quantum many-body information spreading also require
remarkably similar experimental and computational protocols
to be observed, involving in both cases either exponentially
large resources or exponentially many runs. We conclude in
Sec. VIII with a discussion of the results and an outlook.

II. NOTATION AND DEFINITIONS

Consider a bipartite system (A, B) consisting of either clas-
sical or quantum degrees of freedom. We are interested in
quantifying the amount of information that the parts A and B
carry on one another. The system is described by a probability
distribution p and by a density matrix ρ in the classical and
quantum cases, respectively. While we are here ultimately
interested in the study of classical systems, to most easily
appreciate the classical-quantum connections we will try to
develop the formalism in clear analogy with the quantum one.
Whether we are talking about a classical or a quantum system
should be clear from context and notation.

The part A itself is described by the marginal probability
distribution pA = TrB p = ∑

B pA,B or by the reduced density
matrix ρA = TrBρ, with TrB the partial trace over B. The
classical entropy reads S = −∑

A,B pA,B log pA,B, whereas the
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quantum (von Neumann) entropy yields S = −Tr[ρ log ρ].
Similarly, the marginal entropy associated with A reads SA =
−∑

A pA log pA or SA = −TrA[ρA log ρA], and analogously
for SB.

A central object in information theory, statistics, and sta-
tistical physics is the MI, quantifying by how much our
ignorance on B is reduced when observing A [53]. Among its
possible representations, one that holds for both the classical
and quantum cases is

IA;B = SA + SB − S. (1)

The MI is non-negative, and vanishes if and only if the state is
separable, that is, when pA,B = pA pB or ρ = ρA ⊗ ρB. Thus,
the MI unambiguously diagnoses any statistical interdepen-
dence between A and B, that is, their nonseparability.

Generally, the marginal entropies SA and SB are not repre-
sentative of the degree of interdependence of A and B, but just
of the degree of uncertainty on A and B themselves: SA and SB

can be positive while IA;B vanishes. Still, special cases exist in
which SA and SB are proportional to the MI. Most notably, for
pure quantum states (ρ = |ψ〉〈ψ |) one has S = 0, and thus
SA = SB = 1

2 I(A,B). Indeed, in this case SA is known as EE.
Since SA is defined for generic mixed states, but can only be
called EE when used on pure states, it is worth with a bit of
redundancy to introduce a new symbol Se for the EE, whose
explicit expression reads

Se = −TrA(ρA log ρA), ρA = TrB(|ψ〉〈ψ |). (2)

Because in a pure quantum system the MI coincides (up to
a factor of 2) with the EE, it is natural to take the classical
MI as a classical counterpart of the quantum EE. On top of
this well-established classical analog of the EE, we propose
an alternative and complementary one, the cEE. To define it,
we first introduce the “classical reduced density matrix” ρA as
the matrix with entries

(ρA)A′,A′′ =
∑

B

√
pA′,B pA′′,B. (3)

The diagonal elements of ρA yield the marginal probabil-
ity distribution, (ρA)A,A = pA, and so TrρA = 1. Since ρA is
positive semidefinite [54] and TrρA = 1, its eigenvalues {λn}
represent a valid (positive and normalized) probability distri-
bution, which we use to define the cEE as

Se = −Tr[ρA log ρA] = −
∑

n

λn log λn. (4)

Note that the cEE Se is nothing but the quantum EE associated
to the “classical wavefunction” [55,56] |ψ〉 with components

〈A, B|ψ〉 := √
pA,B, (5)

which is correctly normalized, 〈ψ |ψ〉 = ∑
A,B pA,B = 1, and

which lives in a fictitious Hilbert space generated by con-
sidering the configurations of (A, B) as a basis {|A, B〉}. By
construction, many properties of the cEE thus directly follow
from those of its quantum counterpart. Most importantly, Se �
0, and Se = 0 if and only if IA;B = 0, which makes the cEE a
good witness of statistical dependence between A and B, in
contrast to the marginal entropy SA (the latter is computed on
the diagonal of ρA rather than on its eigenvalues). Note that

quantum mechanics was helpful to come up with the defini-
tion of cEE above, but not necessary. Indeed, a scientist that
completely ignores the existence of quantum mechanics could
still compute the cEE, and interpret it as a measure of the
nonseparability of A and B. Moreover, we note that, while for
pure quantum states the MI and the EE coincide (up to a factor
of 2), the classical MI and cEE are generally different. Indeed,
while they both quantify statistical dependence between A and
B, the cEE features scaling behaviors that the MI lacks, and
that are crucial to connect to quantum information spreading.

As noted, the cEE in Eq. (4) coincides with the EE of a
special set of wavefunctions, those with positive real com-
ponents (for the chosen local basis). Indeed, the dynamics
of the cEE in a classical system can be understood as the
dynamics of the quantum EE in special quantum systems that
do not change the phases of the wavefunction’s components,
a setting studied, e.g., in Refs. [57–60], provided that the
initial wavefunction is itself real and positive. Despite this,
whether the general features of the EE in many-body quantum
dynamics should also apply to the small corner of real positive
wavefunctions is not obvious. Indeed, Fisher and Grover have
shown that, for the case of random wavefunctions, which in
the context of many-body dynamics considered here becomes
relevant at long times, whether a wavefunction is complex
or real can fundamentally affect its entanglement properties
[61]. In particular, the Rényi entropies of order n > 1 feature
volume- and area-law scaling for complex and real wavefunc-
tions, respectively, whereas they exhibit volume-law scaling
in both cases for n � 1. While the former case shows that an
extension quantum → classical cannot be taken for granted,
the latter opens the way to volume-law scaling of the cEE
(that is, the Rényi entropy of order n → 1), and thus to its
particularly rich physics.

III. A LESSON FROM QUANTUM MECHANICS:
THE IMPORTANCE OF TRACKING THE GLOBAL STATE

Touching upon a number of well-known ideas around the
concepts of thermalization and convergence of ensembles,
in this section we establish close parallels between classical
and quantum quench dynamics. This highlights the need to
account for the global state of the system when looking at the
MI, a key conceptual step necessary to correctly frame the
classical problem on par with the quantum one.

Consider a many-body system undergoing nondissipative
dynamics generated by the Hamiltonian H . The global state
of the system is described by a wavefunction |ψ〉 and by a
probability distribution p in the quantum and classical cases,
respectively [62]. The wavefunction is represented with re-
spect to a certain basis {|n〉} as |ψ〉 = ∑

n〈n|ψ〉|n〉, whereas
the probability distribution is represented with respect to a
certain set of coordinates x as p(x). We are interested in
the general scenario of local, many-body, and nonintegrable
Hamiltonians H .

We assume the standard situation in which fluctuations are
initially local, meaning that the various parts of the system are
statistically independent. Specifically, we consider a product
state |ψ (0)〉 = |ψA(0)〉 ⊗ |ψB(0)〉 and a disjoint probability
distribution p(0) = pA(0)pB(0) for a quantum and a classical
system, respectively, such that IA;B(0) = Se(0) = 0. The initial
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FIG. 1. Emergence of highly structured states in classical and quantum many-body dynamics. (a) Schematic representation of the evolution
of the probability mass in the classical phase space under Hamiltonian dynamics. Due to chaos and incompressibility, the probability mass
becomes more and more structured in phase space, with fine features of size ∼e−λt , with λ the Lyapunov exponent, effectively acquiring a
random character. (b) Schematic representation of the evolution of the wavefunction, represented with respect to a computational basis {|n〉}
sorted with respect to 〈n|H |n〉. The wavefunction becomes more and more structured due to the dephasing effects from an effectively random
spectrum. (c) The state of the system, whether in the form of a classical probability distribution or quantum wavefunction, is at long times very
highly structured in generic many-body dynamics, as pictorially represented on the left. By contrast, a thermal distribution ∝ e−βH washes out
much of this fine structure (right). If the system has thermalized, few-body observables such as order parameters or correlation functions are
correctly predicted by the thermal distribution ∝ e−βH (top), but multipoint information measures such as the MI are not (bottom). Specifically,
thermal states have area-law MI whereas the exact state at late times has volume law. It is thus necessary to keep track of the exact state of the
system to correctly account for information spreading, which is clear in the quantum setting, and which we here consider in the classical one.

quantum wavefunction (classical probability distribution) has
a simple aspect in the Hilbert (phase) space. Of course, the
shape depends on the specific choice of the basis (coordi-
nates), but can be pictured as something simple if the latter
is local, which we will assume [see left panels in Figs. 1(a)
and 1(b)].

Under the nondissipative dynamics, the spreading of cor-
relations breaks the local character of the wavefunction
(probability distribution), which in the local basis becomes
therefore more and more “structured.” In the quantum case,
this can be understood from the wavefunction amplitudes
|〈n|ψ (t )〉|2 = |∑E 〈n|E〉e−i Et

h̄ 〈E |ψ (0)〉|2 acquiring an effec-
tively random character due to the chaotic spectrum {E} of
many-body nonintegrable Hamiltonians [63–67]. Indeed, the
phases e−i Et

h̄ at long times t become effectively random, result-
ing in probabilities |〈n|ψ〉|2 that fluctuate in time and with no
clear dependence on n [see the rightmost panel of Fig. 1(b)].
In the classical case, the dynamical randomization of the prob-
ability is instead due to incompressibility and chaos, which
taken together imply the probability distribution to develop
finer and finer features [52], or more and more structure, as
time increases [see the leftmost panel of Fig. 1(a)].

It turns out that these fine features make only little dif-
ference for most observables of interest, according to the
paradigm of thermalization. The latter stipulates that, in the
time evolution after a quench, local few-point observables
equilibrate at long times to their thermal value, which de-
pends on the initial condition only through its energy. This
general idea has long been established in classical physics

in terms of chaos and ergodicity [52] and more recently for
closed quantum many-body systems in terms of the eigenstate
thermalization hypothesis (ETH) [63–66]. The concept of
thermalization is naturally associated with that of convergence
of ensembles [52], according to which we can think of the
distribution of the system (classical probability p or quantum
density matrix ρ = |ψ〉〈ψ |) as approaching the stationary
thermal one ∝ e−βH .

This point deserves much care, though. As a matter of
fact, the idea of convergence of the ensembles only holds
at the level of few-point observables, reduced density matri-
ces, and marginal probability distributions. But as described
above, the global state itself is far from stationary, let alone
thermal, and this can have deep consequences on many-point
observables. Most importantly, while the long-time value of
the quantum MI fulfills volume-law scaling [8,13], which is
rooted precisely in the effective randomness of the many-body
wavefunction [51], the MI of a thermal state fulfils area-law
scaling [50,68]. Indeed, a thermal distribution ρth washes out
the fine structure of the state, thus missing a large (extensive)
amount of MI, as pictorially illustrated in Fig. 1(c).

This example highlights the importance of keeping track
of the exponentially large state of the system for studying
many-body information spreading. While this is customary
for quantum theories, it is not for classical ones, that in-
stead either assume its convergence to a canonical ensemble
or focus on few-body observables within Monte Carlo sam-
pling. Individuating this difference as the main origin of the
gap between our understanding of classical and quantum
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FIG. 2. Many-body information spreading in classical cellular automata. (a) Rule 30 cellular automaton (top) and its (second-order)
reversible version Rule 30R (bottom). (b) Instances of the spacetime profiles of Rule 30 (left) and Rule 30R (right). (c) Graphical representation
of the subsystems A and B that are used to compute MI and cEE. The state of the system at time t is unambiguously defined by the state of
the bits at time t and at time t − 1. (d) Dynamics of MI and cEE for various system sizes N . In Rule 30 (left), the dynamics of MI and cEE
does not exhibit typical features of classical and quantum nondissipative dynamics. By contrast, Rule 30R captures features such as the initial
linear growth of entanglement ∼t and its eventual saturation to an extensive ∼N value (reached after a time t ∼ N). Indeed, this stresses that
key ingredients behind this phenomenology are locality, chaos, and time reversibility, the latter of which is featured by Rule 30R but not by
Rule 30. Here, we used q0 = 0.7.

information spreading is the main conceptual finding of our
work.

Before substantiating these ideas with numerics on Hamil-
tonian dynamics, which involves an extra phase-space dis-
cretization procedure and that we postpone to Sec. VI, let us
take a step back and start by considering the simpler case of
classical cellular automata.

IV. INFORMATION SPREADING IN CLASSICAL
CELLULAR AUTOMATA

In this section, we apply our probabilistic framework to
investigate information spreading in classical cellular au-
tomata. Imagine drawing an initial condition from a disjoint
(in A and B) initial probability distribution and to evolve
it “blindly,” meaning without looking at it. If at time t we
inspect the state of half of the system A, how much do we
learn about B? To address this question, we will consider
how the many-body probability distribution evolves under the
automaton dynamics and compute the MI and cEE. In addition
to offering a discrete setting convenient for implementation,
cellular automata help us to highlight the role played by time
reversibility in the dynamics of these quantities.

Consider a system made of N bits, s = (s1, s2, . . . , sN ) ∈
{0, 1}N . The bit string evolves in time under the action of
some update rule, s(t + 1) = Rule[s(t )], with discrete time
t = 0, 1, 2, . . . . For concreteness, we henceforth focus on
Wolfram’s Rule 30 [69]. This rule shares two key features
with the standard quantum settings for information spreading,
namely, chaos and locality, but lacks a third: time reversibility.

This ingredient is decisive, because it ensures information
to be preserved in time. In fact, of the 256 rules that can
be obtained from local updates involving only the nearest-
neighboring sites, none is both chaotic and time reversible
[69]. One way of recovering time reversibility from a given
rule, while preserving chaos, is to modify it as s(t + 1) =
Rule [s(t )]

⊗
s(t − 1), where

⊗
denotes a bitwise logical

XOR operation [69,70]. Such a modified rule, that we will call
Rule R, constitutes a “second-order” automaton, in which the
state of the system at time t + 1 does not just depend on the
state of the system at time t , but also on that at time t − 1. Put
differently, the reversibility of the automaton means that there
exists an injective map connecting s(1) and s(0) to s(t ) and
s(t − 1), and vice versa. Rule 30, Rule 30R, and two instances
of the spatiotemporal profiles that they generate are shown in
Figs. 2(a) and 2(b).

In the case of first-order automata like Rule 30, the full
information on the system is carried, at all times t , by a proba-
bility distribution p with support on the 2N possible bit-string
configurations. In the case of a second-order automaton like
Rule 30R, however, a similar distribution does not suffice.
Indeed, what matters in this case is not just the configuration
of the bit string at time t , but also that at time t − 1. Conse-
quently, to retain the full information on the system, one has
to define the possible states σ as the 2N bit strings composed
of the bits s(t ) and s(t − 1) [see Fig. 2(c)]. The probability
distribution p will correspondingly have 22N components [71].

Initially, we take the bits {s j (t = 0)} and {s j (t = −1)}
to be independent and identically distributed (i.i.d.) random
variables, equal to 1 with probability q0 and to zero otherwise.
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That is, each of the 4N possible initial conditions σ0 has a
probability pσ0 (0) that reads

pσ0 (0) =
2N∏
j=1

[σ0, jq0 + (1 − σ0, j )(1 − q0)]. (6)

The evolution of the probability vector from one time to
the next is described by a map,

p(t + 1) = F [p(t )], (7)

which can be determined once and for all by checking how
each two-time microstate σ is evolved by one application
of the automaton. We note that, in the case of reversible
automata, like Rule 30R, the map F acts as a permutation of
the elements of p, because of injectivity. Indeed, in this case
the probability does not change when “sitting” on a discrete
trajectory σt starting in σ0. In a formula, pσt (t ) = pσ0 (0),
which we can view as the discrete version of the Liouville
theorem for Hamiltonian systems [52].

By iterating Eq. (7), we evolve the many-body probability
distribution p(t ) and investigate the corresponding MI and
cEE dynamics for various system sizes N in Fig. 2(d). In the
nonreversible case of Rule 30, we find that the MI and the
cEE generally grow until reaching a stationary value (except
in the case N = 6, which appears somewhat special and that
we attribute to particularly severe finite-size effects). The
key features characterizing quantum information spreading,
namely, linear growth and extensivity at short and long times,
respectively, are absent. In striking contrast, these instead
appear in the time-reversible automaton. In this case, we find
that both the MI and the cEE grow linearly in time, Se, IA;B ∝ t
until a time ∝ N , after which saturation to an extensive value
∝ N takes over. Since the cEE is the EE obtained by treating
the classical probability as a wavefunction [see Eq. (5)], we
understand that the extensivity of the asymptotic cEE is due
to an effective randomization of p, analogously to how in the
quantum case it emerges from the effective randomness of
the wavefunction [51,61]. Classical cellular automata there-
fore allow to appreciate time reversibility as a key ingredient
underpinning the distinctive features of both classical and
quantum information spreading.

V. MEASUREMENT-INDUCED TRANSITION

A natural question thus emerges from the previous section,
as it did in the quantum case: How does the tendency of
chaotic dynamics to build extensive MI and cEE compete with
the disentangling effect of local measurements? We turn to
this question now, and show a classical MIPT, in which the
rate of local measurements determines whether the asymptotic
MI and cEE fulfill volume- or area-law scaling, in close anal-
ogy to its quantum counterpart [26].

A. Protocol and classical measurements

Imagine as in Sec. IV to sample an initial condition σ0

and evolve it with the automaton. As long as we do not look
at it, the state of the automaton at time t is described by a
probability distribution p(t ), that starts from p(0) as in Eq. (6),
and evolves as p(t + 1) = F [p(t )] as in Eq. (7). Information

spreading generally builds MI between a given site j and the
rest of the system, meaning p �= pj p\ j and I j;\ j > 0, with
p j = Tr\ j p and p\ j = Tr j p the marginals of site j and of
the rest of the system, \ j, respectively. Now, imagine that
the “blind” evolution of the automaton is interleaved with
random local measurements: each spacetime point ( j, t ) can
be observed with probability pm [Fig. 3(a)]. Measuring the
state of site j at time t reduces our ignorance on the system
and conditions the probability distribution [53]

pσ (t+) =
{ pσ (t− )

p j (mj,t ,t− ) if σ j = mj,t

0 if σ j �= mj,t .
(8)

In Eqs. (8), t− and t+ refer to the instants before and after the
measurement, respectively; mj,t is the measurement outcome,
and p j (mj,t , t−) its a priori probability. Simply put, to obtain
p(t+), we remove all states incompatible with the measure-
ment outcome and normalize the distribution again. In this
process, the marginal of site j becomes pσ j (t

+) = δσ j ,mj,t ,
implying that the postmeasurement conditional many-body
probability factorizes, p(t+) = p j (t+)p\ j (t+), and that the MI
between site j and the rest of the system vanishes, I j;\ j = 0.

After many measurements, the suppression of probability
components in Eq. (8) would eventually lead at long times to
the collapse of the state of the system to a single microstate σ∗,
pσ → δσ,σ∗ , for which no information can spread at all. More
interesting is the situation in which the state of the system can
never be known with infinite precision. This scenario is for
instance natural when the classical bits are a toy model repre-
sentation of the microscopic world, for which the unavoidable
noise and limited measurement resolution make it impossible
to fully determine the state of the system. Irrespective of the
physical origin of the fluctuations, in our cellular automata
model we will simply attribute them to what we call a “faulty
measurement apparatus.” Specifically, we suppose that, after a
measurement has been performed, the measured bit randomly
flips with an error probability 1 − q, with 0 < q < 1. We use
t++ to refer to the time right after the possible mistake has
been introduced. We have that

pσ j (t
++) = qδσ j ,mj,t + (1 − q)δσ j ,1−mj,t . (9)

The many-body probability distribution is modified accord-
ingly: p(t++) = p j (t++)p\ j (t+).

The local measurement protocol is closely analogous to the
quantum case. There, the jth qubit is sampled according to its
reduced density matrix ρ ( j) = Tr\ jρ: the qubit takes value 1
with probability ρ

( j)
1,1, and value 0 with probability ρ

( j)
0,0. The

postmeasurement fluctuations at site j are intrinsic and due
to Heisenberg uncertainty. As in the classical case, the effect
of a quantum measurement is that of “factoring out” the state
of j from that of the rest of the system, meaning |ψ (t+)〉 =
|ψ j (t+)〉|ψ\ j (t+)〉 or equivalently ρ(t+) = ρ j (t+)ρ\ j (t+), all
of which are conditional on the measurement outcome.

The resulting evolution of the probability distribution can
be determined in a computer simulation according to the
procedure schematized in Fig. 3(b). To measure the proba-
bility distribution p from an experiment, a procedure as in
Fig. 3(c) is instead required, which unfolds as follows. An
ensemble of initial states σ0 is sampled from the distribution
p(0), and evolved under the automaton rules. For the first of
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FIG. 3. Classical automaton with measurements: a schematic protocol illustration. (a) Each spacetime point can be measured (green boxes)
with probability pm. (b) The corresponding evolution of the many-body probability dynamics p(t ) can be obtained in a computer simulation.
The probability is initialized as p(t ) = p(0), and evolved under the automaton dynamics according to the map p(t + 1) = F [p(t )] in Eq. (7).
Measuring site i at time t corresponds to (i) computing the marginal distribution of the site pi, (ii) drawing a measurement outcome according
to pi, (iii) conditioning the probability accordingly, and (iv) accounting for postmeasurement local fluctuations that flip the measured spin with
probability q. The last point is in practice achieved by transforming the postmeasurement marginal from pi(mi,t ) = 1 − pi(1 − mi,t ) = 1 to
pi(mi,t ) = q < 1, computing the marginal of the rest of the system p\i, and reconstructing the total distribution as p = pi p\i. (c) Alternatively,
the probability distribution could be obtained in a (numerical or actual) experiment by running the automaton on exponentially many initial
configurations σ0 sampled from p(0). The probability distribution p(t ) at later times is obtained as a histogram of the trajectories over the
exponentially many possible microstates σ. In the first run, measuring site i at time t consists of observing the state si,t of the measured bit and
storing it in the measurement variable mi,t . For all subsequent runs, the measurements are rather postselections: if si,t does not match the mi,t

measured in the first run, the trajectory is discarded. In any run, the postmeasurement local fluctuations are then accounted for by flipping the
state of the measured bit with probability 1 − q. Remarkably, as argued in Sec. VII, both the procedures in (b) and (c) are essentially identical
to those needed in the quantum setting.

these runs, measuring a site i at time t means taking note
of the state of si(t ) of the bit, and saving it as mi,t . The
measurement outcome mi,t is implicitly distributed accord-
ing to the marginal pi. The faulty measurement apparatus
then introduces fluctuations as in Eq. (9), by leaving the bit
si(t ) unchanged or inverted with probabilities q and 1 − q,
respectively. For all the subsequent runs, measurements al-
ways happen in the same spacetime locations, and are not
measurements but postselections. If si,t does not match the mi,t

measured in the first run, the trajectory is discarded, whereas
otherwise the trajectory is maintained. Remarkably, this pro-
cedure is in close analogy to the one that should be followed in
a quantum experiment, as we will argue in Sec. VII. Repeat-
ing this procedure exponentially many times, the probability
pσ (t ) is estimated as the fraction of trajectories found in σ

at time t and, in the limit of infinitely many runs, matches the
probability obtained from the procedure in Fig. 3(b) discussed
earlier.

B. Numerical results

The above protocol is implemented in Fig. 4. In Fig. 4(a)
we plot the dynamics of MI and cEE for various measurement
rates pm. After an initial transient, whose duration is larger
for smaller pm and that is partially cut by the chosen axes
limits, the MI and the cEE reach a stationary value, up to
finite-size temporal fluctuations. Asymptotic values for the
MI and cEE are obtained as time averages and plotted in

Fig. 4(b) versus the measurement rate pm, and for various
system sizes N . Strikingly, for small pm, the asymptotic values
of MI and cEE scale with the system size N , whereas they
do not for large pm. To make the last statement quantitative,
we use a linear fit to extract the scaling coefficients αMI

and αEE , with IA;B(∞) ≈ αMI N and Se(∞) ≈ αEE N , and plot
them versus pm in Fig. 4(c). Indeed, these exhibit a transition
from finite value to zero at pm ≈ 0.6, thus showing the first
classical MIPT between area- and volume-law cEE and MI.
These quantities closely follow the qualitative behavior of the
quantum EE (see, e.g., Fig. 13 in Ref. [26]). In our simulations
we take q = 0.75 and q0 = 0.8 but the key qualitative features
are not contingent on this choice. Generally, we do not expect
the asymptotic MI and cEE (and, thus, the MIPT) to depend
on the initial distribution.

In this section, we considered the most natural classical
measurement procedure, that conditions the many-body prob-
ability distribution depending on the measurement outcome.
We stress that similar results can be obtained for other local
protocols that have the ability to decouple local fluctuations,
that is, to suppress the mutual information between a local
degree of freedom and the rest of the system, which can be
achieved in many ways in both the classical and quantum
settings. For instance, one could consider simple resettings,
in which the measured bit is set to 1 with probability q
and to 0 with probability 1 − q. Away from the probabilistic
framework adopted here, we also note that the idea of MIPT
can be generalized to even simpler measurement protocols,
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FIG. 4. Classical measurement-induced phase transition. (a) MI and cEE dynamics for various measurement rates pm and system sizes N .
After a very quick transient (partially cut), the MI and cEE saturate to a stationary value, up to temporal fluctuations due to finite-size effects.
Crucially, the stationary value increases with N if pm is small enough, and is insensitive of N otherwise. (b) The long-time asymptotic values
IA;B(t = ∞) and Se(t = ∞) are obtained by averaging the results in (a) over the second half of the shown time interval, and plotted versus pm for
various system sizes N . The MI and cEE decay with pm, reaching zero at pm = 1. (c) The scaling coefficients α, such that IA;B(t = ∞) ≈ αMI N
and Se(∞) ≈ αEE N , are obtained through linear fits for and highlight an entangling-disentangling MIPT (the fitting excludes N = 4 and 6
to reduce finite-size effects). For pm � 0.5 the scaling coefficients are finite, indicating extensivity of the asymptotic MI and cEE and thus
unbounded growth in the thermodynamic limit. By contrast, for pm � 0.5 the long-time values of MI and cEE become insensitive to system
size N . Here, we used q0 = 0.8, q = 0.75, and R = 100.

e.g., defined as locally projecting two trajectories on one an-
other [72].

VI. INFORMATION SPREADING IN MANY-BODY
HAMILTONIAN DYNAMICS

Thanks to their discrete nature, cellular automata have
proven particularly convenient for numerical implementation.
But let us now go back to the case of Hamiltonian dynamics,
which we have already considered in Sec. III as a motivation
for keeping track of the full many-body probability. Going be-
yond the result for area-law MI in a thermal ensemble [50], in
this section we find a simple expression for the asymptotic MI
in Hamiltonian dynamics. We find it to be generally volume
law, reducing to area law only at an infinite effective tem-
perature, unlike the cEE. Introducing a careful phase-space
discretization procedure we then numerically investigate in-
formation spreading in an interacting classical spin chain.
We recover the salient features of information spreading in
quantum quenches, and highlight a key difference between MI
and cEE.

A. Asymptotic mutual information in Hamiltonian dynamics

First, we provide a heuristic expression for the asymptotic
long-time MI in many-body Hamiltonian dynamics. First of
all, Hamiltonian dynamics involves continuous variables, and
thus a continuous probability density p over the phase space.
The first point to clarify is therefore how to make sense of the
definitions in Sec. II, that are for discrete distributions instead.
A discretization of the phase space can be performed divid-
ing it into little volumes 	. In the continuous limit 	 → 0,

it is straightforward to show that S ≈ S − log 	, with S =∫
dx p(x) log(p(x)) the differential entropy, for which we use

a calligraphic notation and involve integration over the whole
many-body phase space [53]. Contrary to what one might
naively expect, the differential entropy S is therefore not the
continuous limit of the discrete entropy S, which diverges
as log 	 instead. Fortunately, this divergence does not affect
the MI, which instead does have a well-defined continuous
limit [53]. Indeed, in the expression of the MI in terms of the
entropies, Eq. (1), the diverging terms of the entropies cancel,
meaning that one can equivalently write IA;B = SA + SB − S
or IA;B = SA + SB − S, in the limit 	 → 0.

This remark being made, we can now find an expression
for the long-time asymptotic value of the MI in Hamilto-
nian dynamics. Due to Liouville’s theorem, the integral of
any function of p over the whole phase space is constant,
d
dt

∫
dx f (p(x)) = 0. In particular, the differential entropy is

conserved, S (t ) = S (0). While, strictly speaking, the total
probability distribution does not thermalize due to chaos and
incompressibility (see Sec. III); we expect the marginals to do
so [73]. As a result, we can assume at sufficiently long times
t that SA(t ) + SB(t ) ≈ Sβ + sal , where Sβ denotes the entropy
of a thermal ensemble, whereas sal is an area-law correction.
The inverse temperature β is found from the usual consis-
tency condition 〈H〉0 = 〈H〉β , that is,

∫
dx p(t = 0, x)H (x) =∫

dx z−1e−βH (x)H (x), with z = ∫
dxe−βH (x) the partition func-

tion. From Eq. (1) we thus obtain that the MI at sufficiently
long times reaches the asymptotic value

IA;B(∞) ≈ Sβ − S (0) + sal . (10)

Equation (10) states that the asymptotic MI between two
halves A and B of a many-body Hamiltonian system is equal
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to the difference between the initial entropy and a thermal
entropy at temperature β−1 set by the initial state p(0), up to a
boundary correction sal . Note that the entropies in Eq. (10) can
equivalently be meant as differential entropies or as discrete
entropies in the continuous limit, since the diverging terms
cancel anyway, as discussed above.

An important observation is that, by definition, the thermal
distribution is the one that maximizes the entropy at a given
temperature, and so Sβ � S (0), which is consistent with the
positivity of the MI and in which the equality holds only
for initial states with infinite temperature, for which β = 0

and 〈H (x)〉0 =
∫

dx H (x)∫
dx , or for thermal initial distributions.

Here, we use the term “infinite-temperature state” in reference
not to the infinite-temperature thermal distribution, but to
any probability distribution whose expected energy coincides
with the one that the infinite-temperature thermal distribution
would predict. From Eq. (10) we can thus conclude that initial
nonthermal distributions p(0) corresponding to a finite effec-
tive temperature 0 < β < ∞ generally lead to a volume-law
asymptotic MI, IA;B(∞) ≈ Sβ − S (0) = O(N ), whereas ini-
tial distributions p(0) that are either thermal or at an effective
infinite temperature β = 0 result in an area-law asymptotic
MI, IA;B(∞) ≈ sal � N .

Further, to estimate the latter, we can compute the MI
associated to a random probability distribution, in the same
spirit of the calculation of the EE for a random wavefunction
[51]. Let us assume that the components of the probability
pσ are i.i.d. random numbers with average 〈pσ〉 = [

∑
σ 1]−1

[74]. For large N and by virtue of the central limit theorem,
the total entropy reads S ≈ −〈pσ log pσ 〉

〈pσ 〉 . The marginals become
instead uniform, pσA → 〈pσA〉 and pσB → 〈pσB〉, for which
the marginal entropies are maximal, SA + SB ≈ − log〈pσ〉.
Plugging these results into Eq. (1) quickly leads to the MI at
infinite time and effective temperature:

I∞
A;B ≈

〈
pσ

〈pσ〉 log
pσ

〈pσ〉
〉
. (11)

Equation (10), Eq. (11), and the prediction of volume- and
area-law scaling of the asymptotic MI in many-body Hamilto-
nian systems at finite and infinite effective temperature initial
conditions, respectively, are among the major findings of this
work, which we now verify numerically.

B. Case study: Heisenberg chain in a magnetic field

We numerically exemplify the above ideas for a paradig-
matic model in the context of chaos, information spreading,
and transport: the Heisenberg chain in a magnetic field. Con-
sider N classical spins S j = (Sx

j , Sy
j , Sz

j ) with unitary modulus
|S j |2 = 1 and j = 1, 2, . . . , N , and with Hamiltonian

H =
N∑

j=1

(
S j · S j+1 + h jS

z
j

)
, (12)

containing an isotropic nearest-neighbor interaction and a
disordered magnetic field along z, the coefficients {h j}
being independent random numbers drawn uniformly in
[−W,W ]. The system undergoes Hamiltonian dynamics,
Ṡα

i = {Sα
i , H}, where {· · · } denotes Poisson brackets and

{Sα
i , Sβ

j } = δi, jεα,β,γ Sγ
i , with δi, j the Kronecker delta, εα,β,γ

the Levi-Civita antisymmetric symbol, and α, β, and γ

in {x, y, z}. Periodic boundary conditions are assumed, and
results can be averaged over R independent disorder realiza-
tions, as relevant. Again, the bipartition (A, B) is chosen to
correspond to the left and right halves of the chain (N is
assumed even with no loss of generality).

The phase space of the system is that parametrized by 2N
angles, two per spin, and is continuous as in any Hamilto-
nian system. As such, it requires discretization, which we
perform in the minimal nontrivial way, that is, by split-
ting each solid angle in M = 2 hemispheres as illustrated
Fig. 5(a). Two points that can be taken as representative
for these hemispheres are the poles, which we may call
“single-body reference points” and which we tag with a dis-
crete variable σ j taking M values, say, σ j = ±1 for the ±x
hemispheres, respectively. The many-body phase space is cor-
respondingly divided into MN “pockets,” each of which is
represented by a many-body reference point (in which the
spins point either towards +x or towards −x), and tagged by
a bit string σ = (σ1, σ2, . . . , σN ) [see Fig. 5(b)]. Explicitly,
the σth pocket contains all the spin configurations such that
sign(Sx

1, Sx
2, . . . , Sx

N ) = σ.
Our goal is to find the dynamics of the discrete probability

distribution pσ (t ). The idea is the following. First, we consider
the MN many-body reference points as possible initial con-
ditions. Specifically, we consider each spin to initially point
either along +x or along −x, with probability q0 and 1 − q0,
respectively, so that an initial configuration tagged σ0 has
probability

pσ0 =
N∏

j=1

[σ0, jq0 + (1 − σ0, j )(1 − q0)]. (13)

Again, the initial factorizability of the probability distribution
makes our stochastic initial condition the one-to-one corre-
spondent of quantum product states, and implies IA;B(0) =
Se(0) = 0. Second, we evolve the MN trajectories integrating
the ordinary differential equations (ODEs) of Hamiltonian
dynamics with an ODE solver, which necessarily makes
them depart from the reference points they started from,
and explore the continuous phase space. Third, each tra-
jectory is projected onto the discrete space to define σt =
sign[Sx

1(t ), Sx
2(t ), . . . , Sx

N (t )] at time t . Fourth, the probability
pσ (t ) is obtained as

pσ (t ) =
∑

σ0:σt =σ

pσ0 (0), (14)

that is, as the sum of the initial probabilities pσ0 (0) of those
states σ0 that, at a time t , are found in the σth pocket of the
phase space. Fifth and final, the thus-obtained vector of
discretized probabilities p is used to compute quantities of
interest, including the MI and cEE.

For the trivial points q0 = 0, 1 the spins are all initially
perfectly polarized along either −x or +x, respectively, and
remain so at all times, with no dynamics happening, no
spreading of correlations, p(t ) = p(0), and IA;B = Se = 0. On
the other hand, the value q0 = 0.5 corresponds to an infinite-
temperature state, 〈H〉0 = 0 = 〈H〉β=0.
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FIG. 5. Phase-space discretization for Hamiltonian dynamics. (a) Discretization of the single-body phase space of a classical spin. The
sphere is divided into two hemispheres, each identified by a reference point (at the pole, in red). (b) Discretization of the many-body phase
space, that is divided into MN pockets, each of which is identified by a many-body reference point (red dots). A schematic trajectory starting
from a reference point (larger red dot) is shown in blue. (c) Protocol for obtaining the dynamics of the discrete probability, in the illustrative
case of N = 4 spins. As initial conditions, we consider the 2N possible spin states in which each spin is either aligned or antialigned along x
[corresponding to the reference points in (b)]. Initial states are labeled with a bit string σ and their associated probability pσ0 factorizes. The
trajectories are evolved under Hamiltonian dynamics, and their coordinates in the reduced phase space, obtained as σt = sign(Sx

1, . . . , Sx
N ), are

used to compute the probability distribution pσ (t ). (d) The ensemble averages of few-point observables, such as magnetization m, correlation
c, and one-site marginal distribution pσ1 (t ), equilibrate in time to the thermal value, up to temporal fluctuations that decrease with the system
size N . By contrast, the many-body probability pσ (t ) itself does not equilibrate, independent of N . Here, we considered the spin model in
Eq. (12), with parameters J = 1, W = 2, R = 1, and q0 = 0.7.

First and foremost, we aim at verifying that the discretiza-
tion protocol that we proposed leads to the desired key
features of many-body dynamics, and in particular to the
contrast between the equilibration of few-point observables
and the nonequilibration of the probability itself, à la Liou-
ville. In Fig. 5(c) we show, for increasing system sizes N , the
dynamics of the magnetization m(t ) = 1

N

∑
σ pσ (t )

∑N
j=1 σ j ,

of a correlator c(t ) = 1
N

∑
σ pσ (t )

∑N
j=1 σ jσ j+1, of a marginal

probability pσ1=1(t ), and of the whole many-body proba-
bility pσ (t ) for some randomly chosen discretized states
σ. Few-point observables and marginal probabilities quickly
equilibrate, with asymptotic temporal fluctuations as a finite-
size result and decreasing with system size N (even at a fixed
and minimal discretization resolution M = 2), whereas the
many-body probability itself maintains (up to a factor of 2N ,
due to normalization) chaotic fluctuations in time, without
clear dependence on the state index σ.

These key features being verified, we are now in the posi-
tion to finally investigate information spreading in many-body
Hamiltonian dynamics through the lens of MI and cEE, whose
time traces we plot in Fig. 6 for various system sizes N and
initial single-spin probability q0. Initially vanishing, both the
MI and cEE grow linearly in time, signaling the ballistic
spreading of correlations, before saturating to an asymptotic
value.

Let us first focus on the MI. At infinite temperature (q0 =
0.5), we find that the asymptotic value of the MI becomes

insensitive of N for N � 10 [see Fig. 6(a)]. The infinite-
temperature asymptotic value of the MI is understood from
Eq. (11). Assuming that any of the 2N trajectories can be
found in any of the 2N pockets of the phase space with
equal likelihood, we have that pσ = 2−N xσ , with xσ a random
variable with binomial distribution of parameters 2N and 2−N .
This converges, for N → ∞, to a Poisson distribution of pa-
rameter λ = 1, i.e., xσ = k with probability 1

ek! . From Eq. (11),
we thus get that the asymptotic MI at infinite effective temper-
ature is

I∞
A;B ≈

∞∑
k=1

log(k + 1)

ek!
≈ 0.5734, (15)

that perfectly matches the numerics in Fig. 6(a). By contrast,
at finite temperature (q0 = 0.7) the asymptotic MI is propor-
tional to N , i.e., extensive [see Fig. 6(b)]. Our numerics thus
confirms the analytical prediction in Eq. (10): the asymptotic
MI fulfills area- and volume-law scaling at infinite and finite
temperature, respectively.

As for the cEE, we instead find that both at finite and
infinite temperature the asymptotic value fulfills volume-law
scaling [see Figs. 6(c) and 6(d)]. Indeed, extensivity of the
cEE is understood not dissimilarly from the quantum case: a
wavefunction with randomized components (in the computa-
tional basis) leads to an extensive cEE [51,61]. In the classical
case, the randomness of the classical wavefunction, in Eq. (5),
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FIG. 6. Information dynamics in Hamiltonian many-body sys-
tem. The MI (top) and the cEE (bottom) are plotted versus time
for various system sizes N . Two representative single-spin initial
probabilities are considered, q0 = 0.5 (left) and q0 = 0.7 (right), cor-
responding to infinite and finite effective temperatures, respectively.
In all the considered cases, the quantities of interest initially grow
linearly in time, signaling the ballistic spreading of correlations. At
sufficiently long times, saturation to an asymptotic value sets in.
(a) At infinite temperature, the asymptotic MI becomes insensitive to
N for N � 10, reaching the value predicted in Eq. (15) and fulfilling
area-law scaling, while (b) at finite temperature it fulfills a volume-
law scaling instead. [(c), (d)] On the other hand, the asymptotic
cEE is extensive both at finite and infinite temperature. Here, we
considered the Heisenberg chain in Eq. (12) for J = 1, W = 3, and
R = 50.

ultimately emerges as a result of chaos and incompressibility,
which render the probability distribution highly structured,
unlike a thermal one.

The different scaling of the asymptotic value of the MI and
the cEE with system size at an infinite effective temperature is
a major difference that we find between the two information
measures. In fact, in the analog quantum case, pure states at an
infinite effective temperature do result in volume-law scaling
asymptotic EE [51], which highlights the necessity for the
cEE to be introduced as the close classical counterpart of the
EE, able to capture features that the classical MI misses.

We perform a more in-depth scaling analysis in Fig. 7.
In Fig. 7(a) we plot IA;B(t = ∞) and Se(t = ∞) versus the
single-spin initial probability q0. As expected, in the triv-
ial limits q0 = 0, 1, corresponding to initially fully polarized
spins and no dynamics, the MI and cEE remain zero at all
times. For any other values of q0, nontrivial dynamics occurs,
information spreads, and the asymptotic MI and cEE take a
finite value. However, while volume-law scaling is observed
for the cEE at any 0 < q0 < 1, the MI is extensive only for
q0 �= 0, 0.5, 1, whereas it fulfills area-law scaling at infinite
temperature for q0 = 0.5. Figure 7(b) helps to better appreci-
ate the specific analytic form of the scaling, which is linear
in system size N . With a linear fit we can extract the scaling
coefficient α, which we plot in Fig. 7(c) versus the single-spin
initial probability q0, providing a comprehensive confirmation
of our assessments concerning the scaling of MI and cEE.

VII. MANY-BODY INFORMATION IN PRACTICE:
BRIDGING THE PROCEDURAL GAP

As we have shown, many of the key features of many-body
information spreading are remarkably similar in the quantum
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FIG. 7. Long-time scaling analysis in many-body Hamiltonian dynamics. (a) The asymptotic MI IA;B(t = ∞) and cEE Se(t = ∞) are
plotted versus the single-spin initial probability q0 for various system sizes N . Solid lines and shaded bands represent mean and uncertainty
(over the late time range 20 < t < 30 and disorder realizations). At q0 = 0, 1 the dynamics freezes and no information spreads, leaving
IA;B = Se = 0. At infinite temperature, q0 = 0.5, the asymptotic MI and cEE present local minima, but with a key difference: the former
becomes independent of N for N � 10, whereas the latter grows with N . For other values of q0, both the asymptotic MI and cEE scale with N .
(b) The scaling is better characterized for representative values of q0, and found to be linear at large N , ∼αN . The infinite-temperature value
of the MI predicted in Eq. (15) is reported for comparison. (c) The ultimate appreciation of the scaling properties is achieved by plotting the
scaling coefficient α versus the initial probability q0, as obtained from a linear fit (of the three largest values of N only, to reduce small-size
effects). Finite and vanishing values of α denote volume- and area-law scaling, respectively. The latter occurs at the trivial points q0 = 0, 1
and, only for the MI, at infinite temperature q0 = 0.5. Here, we used J = 1, W = 3, and R = 50.
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and classical settings. The two, however, are fundamentally
different because the many-body wavefunction |ψ〉 can be
encoded in a physical system, whereas the classical many-
body probability distribution cannot [75]. However, we argue
here that this difference is of limited practical relevance when
measuring or computing the EE, cEE, or MI.

To obtain the quantum EE, two routes can be taken. The
first is to evolve the wavefunction on a classical computer,
and use it to compute the EE. This requires exponentially
large computational resources (memory and time). The sec-
ond is to evolve the wavefunction on a physical quantum
system, e.g., a quantum computer, which does not require
exponentially large resources. However, computing the EE
requires full tomography of the system and thus exponentially
many runs [1]. Furthermore, once reconstructed, the wave-
function should again be stored on a classical computer, where
with exponentially large resources one can then compute
the EE.

The classical scenario is completely analogous, to the
point that we can almost duplicate the previous paragraph:
In the classical case, two routes can be taken to compute
the dynamics of the MI (or cEE). The first is to evolve
the probability distribution on a classical computer through
Eq. (7), and use it to compute the MI (or cEE). This route
requires exponentially large computational resources (mem-
ory and time). The second is to run the actual classical
dynamics itself on a physical implementation of a cellular
automaton. Extracting the many-body probability distribu-
tion requires configuration statistics over exponentially many
runs. Furthermore, once reconstructed, the probability dis-
tribution should again be stored on a computer, where with
exponentially large resources one can then compute the MI
(or cEE).

This remarkably close procedural classical-quantum anal-
ogy continues when introducing measurements as in Sec. V,
which again requires one of the two routes above. In particu-
lar, to obtain the EE in an experiment, the following would
be necessary. A first run of the experiment would return a
list of measurement outcomes {mj (t )} and a physical state
encoding the many-body wavefunction. To access the lat-
ter and compute the EE, however, one would need to run
the experiments exponentially many times, making sure that
the final to-be-measured wavefunction is always the same.
That is, in the following runs one should not only repeat
the measurements at the same spacetime locations, but also
make sure that their outcome matches that of the first run,
{mj (t )}, which requires postselection. Indeed, this procedure
perfectly matches the classical one described in Sec. V and
Fig. 3(c).

VIII. DISCUSSION AND CONCLUSION

In this work, we have shown that many of the celebrated
features of quantum many-body information spreading can
also appear in a classical setting, provided that one explicitly
accounts for the whole exponentially large probability distri-
bution, without making any assumption on its equilibration.
Within this framework, we have shown that key phenomenol-
ogy of quantum EE dynamics, namely, linear growth until
saturation to an extensive value, also occurs in both the clas-

sical MI and the “classical EE” (cEE) defined above. These
quantities both unambiguously quantify nonseparability, as
they both vanish if and only if the two halves of the system
A and B are statistically independent. The MI is a natural and
widely recognized classical analog of the EE, whereas the
cEE is a new and more original quantity that we introduce
to measure nonseparability in the form of an entropy. We have
studied the dynamics of both these objects in cellular automata
and Hamiltonian systems. For the former, we highlighted time
reversibility to play a key role in information spreading, and
found the first instance of a classical MIPT, in direct corre-
spondence with its quantum counterpart. As for Hamiltonian
dynamics, we instead provided a simple expression for the
asymptotic MI, which yields volume- and area-law scaling for
states at an effective finite and infinite temperature, respec-
tively. We verified this prediction numerically in the case of
the Heisenberg chain, and showed it is in contrast to the cEE,
whose asymptotic value is extensive even at infinite effective
temperature, like in the quantum case. Finally, we argued
that the study of classical and quantum information spreading
requires in practice analogous procedures, involving exponen-
tially large resources in both cases.

Since the EE is defined for quantum systems, one may
naively assume that effects that are described or measured
through it are also purely quantum. Of course, the interplay of
carefully engineered interference effects and many-body en-
tanglement can lead to striking quantum effects, for instance
enabling quantum computing [1]. By contrast, the entangle-
ment generated in the chaotic dynamics relevant in the context
of thermalization is generally “uncontrolled.” Rather than
allowing to efficiently perform a computational task, such
entanglement requires exponentially large resources or many
runs for its characterization, effectively resulting in physics
that is much more classical than one could have expected.
Indeed, here we have shown that a whole range of dynamical
behaviors of the EE also emerges in the context of classical
correlation spreading.

The idea of sampling and evolving many classical initial
conditions adopted here is reminiscent of phase-space meth-
ods like the truncated Wigner approximation (TWA) [76–80].
The mission of the latter is to efficiently simulate the dynamics
of quantum many-body systems by evolving an ensemble of
classical trajectories, for which the sampling of the initial
conditions is constructed to most faithfully mimic quantum
fluctuations. A classical-quantum link for EE has also been
established for quantum systems with a well-defined classical
limit, for which the EE dynamics can be understood in re-
lation to the presence (or lack) of underlying classical chaos
[81].

The philosophy of our work contrasts with that mission:
while we got inspired by the machinery of quantum mechan-
ics to frame the classical problem on par with the quantum
one, our goal was not to construct a classical model that
could quantitatively emulate quantum physics, nor to link
the classical and quantum descriptions in the semiclassical
limit. Instead, we aimed at showing that the main qualitative
features of many-body information spreading are analogous
in the classical and quantum settings. If the classical-quantum
quantitative agreement of few-point observables in the TWA
is by construction, in the sense that it requires devising
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a classical protocol that emulates the quantum one, the
classical-quantum qualitative agreement of multipoint infor-
mation measures in this work is intrinsic, in the sense that
it just happens, from the most natural setting of initially
independent local fluctuations that become nonlocally cor-
related through dynamics. In light of this philosophy, our
classical treatment did not aim at being a simple and effi-
cient approximation of quantum mechanics, but conversely at
showing that classical and quantum information spreading can
be equally complex and rich.

Looking forward, our work opens a broad spectrum of
research questions. Indeed, within the framework and with
the tools that we have outlined here, the study of classical
information spreading could be as fruitful as it has been in
the quantum case. For instance, a very interesting question
regards the role of strong disorder in classical information
spreading. In the quantum case, disorder can lead to MBL,
which is characterized by a peculiar slow growth ∼ log t of
the EE, until reaching asymptotic extensivity [12]. In the
classical case MBL is not possible but transport is nonetheless
strongly suppressed [82], and a slow growth of the cEE is
expected. The precise characterization of the functional form
of such a growth is certainly worth studying. On a related line,
further research should investigate what role the counterparts
of integrability [83,84] and conserved quantities [49] play in
classical information spreading. The cEE could then shed new
light on classical prethermalization [85–88] and prethermal
discrete-time crystals [89–91]. As well, it is now natural to
expect that the research thread on quantum MIPT [26–35]
would carry over to the classical realm, in which the study of
different kinds of automata, initial conditions, and measure-
ment protocols would be worthwhile.

The cEE introduced here is the EE associated to the clas-
sical wavefunction |ψ〉 in Eq. (5). As a result, there exists a
quantum monitored circuit that is equivalent to the quantum
circuit we have studied (this is true for any discrete reversible
Markov chain). It is therefore natural to ask about other Rényi
entropies. Interestingly, those behave markedly differently for
complex and real wavefunctions [61], which suggests clear
limits to the analogy between quantum and classical infor-

mation spreading. Delineating this further would be a fruitful
topic for future research.

The many-body probabilistic framework that we estab-
lished could then be used to firmly address the question of
what the strict classical counterparts of other information-
related quantities from current quantum research are. For
instance, it could be used to define a classical out-of-time
order correlator (OTOC) going beyond the decorrelator in
Refs. [43,47] (based on just two copies of the system, rather
than on a probability distribution over exponentially many of
them).

Finally, on a higher and open-ended level, our work opens
the way to quantum-inspired advances in physics, informa-
tion theory, and statistics. Indeed, while quantum EE can
only be applied to pure quantum systems, the cEE that we
introduced in Eq. (4) has potentially a very broad range of
applicability. Beyond the information spreading considered
here, it is suited for any probability distribution. Indeed, the
cEE can capture some features that the MI misses (e.g., here,
extensivity at infinite temperature), and could, thus, prove a
powerful quantum-inspired tool to characterize new aspects
of classical correlations.
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