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Reciprocity condition in synchronously time-periodic bianisotropic materials
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In this paper, a sufficient reciprocity condition for general time-periodic modulated bianisotropic media is
extracted from first principles. Reciprocity of various cases of significant importance, including stationary
bianisotropic media, time-varying (TV) isotropic media, TV anisotropic media, and TV bianisotropic media,
are investigated using this condition. We prove that synchronous time modulation of stationary bianisotropic
yet reciprocal media (chiral, pseudochiral, and achiral) does not lead to nonreciprocity, unless the modulation
function breaks time reversal symmetry. This is in contrast to recently published research. The theoretical results
are validated using in-house finite difference time domain simulations.
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I. INTRODUCTION

Reciprocity is an important principle in electromagnetics
which states that electromagnetic wave transmission between
source and observer is invariant if the location of the source
and observer are swapped [1,2]. Breaking reciprocity is a
crucial necessity in many microwave and optical systems to
realize nonreciprocal devices such as isolators, circulators,
and directional amplifiers applicable in full-duplex commu-
nications. Utilizing magneto-optical materials (e.g., ferrites)
to achieve nonreciprocity was the major viable option for
decades, where biasing the material with dc magnetic field
allows the nonreciprocity [3–7]. Though wide-spread for mi-
crowave communications, ferrite-based devices tend to be
in general bulky, lossy, and costly, and they are incom-
patible with integrated CMOS (complementary metal-oxide
semiconductor) compatible systems [8]. Recently, magnetless
approaches have been developed which yield nonreciproc-
ity. Nonlinear nonreciprocal systems exploit the difference of
field strength for opposite directions [9–13]. This approach
has some limitations, such as the need for signals with suf-
ficiently high intensity, the tradeoff between transmissions
in the forward direction, and the level of input intensity for
which large isolation can be achieved [14,15]. Nonreciprocal
acoustic devices use angular momentum biasing to produce
nonreciprocity [16,17]. But extending these mechanical mo-
tions to optical frequencies and for integrated devices can be
quite challenging. Nonreciprocity based on optomechanical
effects appears to be a promising approach to overcome these
challenges [18,19]. Although optomechanical nonreciprocal
devices provide large isolation and low loss and noise, their
bandwidth is limited [19,20].

Breaking reciprocity by introducing time variations to ma-
terial parameters of electromagnetic structures and circuits
[21–23] has gained much attention in recent years due to
its compatibility with integrated photonics [24–28]. Nonre-
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ciprocity by using linear time modulation is usually achieved
when either the time modulation is traveling and thus spa-
tiotemporal or is piecewise uniform with different phases at
space. In the traveling-wave modulation approach, the per-
mittivity of the structure, such as a waveguide or a ring
resonator, is modulated with the functionality cos(�t − κ · r)
[24,25,29–33], meaning every point of the medium exhibits
different time-variation profiles with respect to each other. In
piecewise uniform time-varying (TV) nonreciprocal devices,
the permittivities of different parts of the system are modu-
lated with the functionality cos(�t + φi ), in which the phase
φi is different between these parts [34–39]. Tandem phase
modulators [34] and isolators based on a sequence of two
direct photonic transitions separated by a waveguide [35] are
examples of this category.

The common feature in these structures is that all points
in space do not have the same temporal functionality for
permittivity. In other words the permittivity can not be split
into a product of a function of a single variable t (time) and
another function of a single variable r (position). We shall re-
fer to this type of modulation as asynchronous modulation. In
synchronous modulation, however, any time-modulated part
or point of the domain has exactly the same temporal variation
function, and thus the temporal variation can be factored out
as a common separable function. Synchronous modulation of
isotropic media is incapable of yielding nonreciprocity except
for cases in which time variation is irreversible [28].

Anisotropic and bianisotropic media with time modula-
tion are less investigated thus far. A curious question that
arises is whether synchronous time modulation of recipro-
cal bianisotropic materials, in particular their magnetoelectric
coupling terms, can lead to nonreciprocity. To great surprise
it was recently proposed that, starting with a reciprocal sta-
tionary bianisotropic medium, one can reach nonreciprocity
with a common temporal variation function (synchronous)
[40]. In [40] a bulk bianisotropic material with an antisym-
metric magnetoelectric coupling tensor (which is reciprocal
in the absence of temporal modulation) was analyzed, and it
was shown that the Green’s function of this material is not

2469-9950/2022/106(21)/214301(10) 214301-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6167-0740
https://orcid.org/0000-0002-7764-2437
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.214301&domain=pdf&date_stamp=2022-12-01
https://doi.org/10.1103/PhysRevB.106.214301


BOSHGAZI, MEMARIAN, MEHRANY, AND REJAEI PHYSICAL REVIEW B 106, 214301 (2022)

symmetric, leading to the conclusion that it must be nonre-
ciprocal. This peculiar concept is in conflict with the common
observation in typical time-modulated isotropic media which
require both time and space to achieve nonreciprocity.

In order to investigate the preceding question, we look into
reciprocity for the most general bianisotropic time-periodic
modulated media and extract a criterion using the Lorentz
reciprocity theorem for investigating the reciprocity of time-
periodic modulated media in Sec. II. The Lorentz reciprocity
provides a sufficient condition for reciprocity, which helps us
to investigate the reciprocity of some important media, includ-
ing anisotropic, chiral, and bianisotropic modulated media.
We look into these cases by starting from reciprocal media
and adding synchronous time modulation, in Sec. III. We
investigate the reciprocity/nonreciprocity of some examples
of sinusoidal modulation and show that, despite what [40]
proposed, such media still remain reciprocal under any syn-
chronous sinusoidal time modulation. Also we show that in
synchronously time-periodic modulated bianisotropic media,
if the modulation function has generalized time reversal sym-
metry, the media remain reciprocal, even in those cases where
the time modulation is applied to the magnetoelectric coupling
terms. We find the most general synchronous modulation for
bianisotropic materials which does not result in nonrecipro-
cal response. Finally, we validate our analytical results for
some examples of sinusoidal time-modulated slabs by using
in-house finite difference time domain (FDTD) simulations in
Sec. IV.

II. RECIPROCITY THEOREM IN TIME-PERIODIC
BIANISOTROPIC MEDIA

We wish to investigate the reciprocity/nonreciprocity of
the most general linear, spatially local, dispersive, time-
periodic bianisotropic media. The constitutive relations for a
general linear spatially local dispersive time-varying medium
can be written in time and space domains as [41–43]

D (r, t ) =
∫ t

−∞
˜̄̄ε(r, t ; t − t ′) · E (r, t ′)dt ′

+
∫ t

−∞
˜̄̄
ζ (r, t ; t − t ′) · H (r, t ′)dt ′,

(1)

B(r, t ) =
∫ t

−∞
˜̄̄μ(r, t ; t − t ′) · H (r, t ′)dt ′

+
∫ t

−∞
˜̄̄
ξ (r, t ; t − t ′) · E (r, t ′)dt ′,

where ˜̄̄ε and ˜̄̄μ are permittivity and permeability tensors,

and ˜̄̄
ζ and ˜̄̄

ξ are magneto-electric coupling tensors. For
simplicity’s sake, we assume time-periodic media such
that ˜̄̄ε(r, t ; τ ) = ˜̄̄ε(r, t + 2π/�; τ ), ˜̄̄μ(r, t ; τ ) = ˜̄̄μ(r, t +
2π/�; τ ), ˜̄̄

ξ (r, t ; τ ) = ˜̄̄
ξ (r, t + 2π/�; τ ), ˜̄̄

ζ (r, t ; τ ) =
˜̄̄
ζ (r, t + 2π/�; τ ), where � is an arbitrary modulation
frequency, and τ = t − t ′. For convenience of writing,
the functionality of constitutive parameters is shown by a
function ˜̄̄ν(r, t ; τ ) = ˜̄̄ν(r, t + 2π/�; τ ), which can be each of

the parameters ˜̄̄ε, ˜̄̄μ,
˜̄̄
ξ,

˜̄̄
ζ . Because of time periodicity these

FIG. 1. Lorentz reciprocity theorem in inhomogeneous time-
periodic modulated bianisotropic media. The figure depicts gener-
alization of the Lorentz reciprocity theorem for time-periodic media
such that the constitutive parameters of parts of the medium (purple
region) are time modulated with a periodic function while some parts
may not be modulated (orange region).

parameters can be written in the form of Fourier components
˜̄̄νn(r; τ ).

In order to determine whether or not this medium is
reciprocal, we utilize the Lorentz reciprocity theorem by con-
sidering two problems with current sources J a and J b as
shown in Fig. 1. In such � time-periodic media, any source
with frequency ω0 will generate field harmonics at ωm =
ω0 + m�. Therefore we assume the sources exciting the prob-
lem are also � periodic and thus can be written as a Fourier
series, and represented with a vector of harmonics where
the amplitude of side harmonic ωm = ω0 + m� is shown
by Ja,b

m .
Under such circumstances, the Lorentz reciprocity condi-

tion for such time-periodic media in the frequency domain
is [2]

∫
V a

∑
m

Eb
m · Ja

m

ωm
dV a =

∫
V b

∑
m

Ea
m · Jb

m

ωm
dV b, (2)

in which Ea,b
m shows the field harmonic at frequency ωm.

This relation states that in reciprocal media the interaction of
the field harmonics Ea

m on the normalized source harmonics
Jb

m/ωm is equal to the interaction of the field harmonics Eb
m

on the normalized source harmonics Ja
m/ωm [2]. We will show

that this expression is still not general enough as there exist
reciprocal structures in which Eq. (2) is not satisfied unless a
proper choice of time shift is applied.

The reciprocity condition for an arbitrary time-periodic
modulation should be investigated by calculating the volume
integrals in Eq. (2) and seeing if the equation holds, by solving
the fields in the problem domain. This of course is a cum-
bersome if not impossible task for an arbitrary scenario. It
would therefore be much more enticing to state the reciprocity
condition based on the material parameters and without the
need for the fields of the particular problem. In order to do so,
we utilize the constitutive relations, which can be now written
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for a fully time periodic set of fields as

Dm(r) =
∑

n

(
¯̄εn

m−n(r) · En(r) + ¯̄ζ n
m−n(r) · Hn(r)

)
,

Bm(r) =
∑

n

(
¯̄μn

m−n(r) · Hn(r) + ¯̄ξ n
m−n(r) · En(r)

)
, (3)

in which ¯̄νn
m−n is the Fourier transform of (m − n)th series

component at frequency ωn, where ¯̄ν shows each of the pa-
rameters ¯̄ε, ¯̄μ, ¯̄ξ, ¯̄ζ . The details of calculation are presented in
Appendix A.

By considering two � periodic current sources a and b with
current densities J a,b = ∑

m Ja,b
m e j(ω0+m�)t and substituting

Eqs. (3) into Maxwell’s equations, we obtain two sets of
Maxwell’s equations,

∇ × Ea,b
m (r)

= − jωm

∑
n

(
¯̄μn

m−n(r) · Ha,b
n (r) + ¯̄ξ n

m−n(r) · Ea,b
n (r)

)
,

∇ × Ha,b
m (r) = Ja,b

m (r)

+ jωm

∑ (
¯̄εn

m−n(r) · Ea,b
n (r) + ¯̄ζ n

m−n(r) · Ha,b
n (r)

)
. (4)

Using the identity ∇ · (A × B) = B · (∇ × A) − A · (∇ × B)
and Maxwell’s equations (4), we arrive at∫

V a

∑
m

Eb
m · Ja

m

jωm
dV a −

∫
V b

∑
m

Ea
m · Jb

m

jωm
dV b

=
∫

V

[∑
m,n

Hb
m · (

¯̄μn
m−n(r) − ¯̄μm

n−m
T (r)

) · Ha
n

+Ea
m · (

¯̄εn
m−n(r) − ¯̄εm

n−m
T (r)

) · Eb
n

+Hb
m · ( ¯̄ξ n

m−n(r) + ¯̄ζ m
n−m

T (r)
) · Ea

n

−Eb
m · ( ¯̄ζ n

m−n(r) + ¯̄ξm
n−m

T (r)
) · Ha

n

]
dV. (5)

The necessary and sufficient condition for satisfying the
definition in Eq. (2), requires left-hand side of Eq. (5) to be
zero, and thus the right side of Eq. (5) equals zero. One ob-
vious way to ensure the satisfaction of the preceding integral
equation is to make its integrand zero, which is further guar-
anteed when each summand of the summation over harmonics
m and n in the integrand is zero. Therefore, it can be easily
seen that if the following conditions are met, reciprocity is
guaranteed:

¯̄μn
m−n(r) = ¯̄μm

n−m
T (r), ¯̄εn

m−n(r) = ¯̄εm
n−m

T (r),

¯̄ξ n
m−n(r) = − ¯̄ζ m

n−m

T
(r). (6)

Examination of this condition does not require electromag-
netic field calculation and obviates the need for numerical
simulations of time-periodic structures under study. How-
ever, the condition (6) is merely a sufficient condition for
reciprocity and there are conceivable reciprocal scenarios in
which condition (6) is not held. A simple isotropic medium
which is modulated sinusoidally with a global nonzero con-
stant phase is an example which, despite being reciprocal,
does not satisfy the reciprocity condition of (6). In these cases

the summands of the summation in Eq. (5) are not zero, but
the summation on m and n is zero.

As the reciprocity condition in Eqs. (6) is based on the
time Fourier components, it is affected by the choice of
the time origin. Yet, obviously, the physical properties of a
time-varying medium must not be affected by this choice.
Therefore, the violation of Eqs. (6) and (2) does not neces-
sarily imply nonreciprocity simply because these expressions
do not take account of the arbitrariness of the time origin. The
latter is not reflected in the mathematical expression of the
reciprocity theorem in stationary media but leads to a subtle
nuance in analysis of TV media for which the mathematical
expression of the reciprocity theorem in the frequency domain
depends on the choice of the time origin. Given that the choice
of the time origin is arbitrary for temporally periodic media,
we can apply a time translation t → t − �T to the previous
analysis and define the new constitutive parameters ˜̄̄ν ′

n as
˜̄̄ν ′

n = ˜̄̄νn(r; τ )e− jn��T . By applying this time translation, the
integrands of the integral in Eq. (5) change. It can be shown
that if there exists a time shift that satisfies the condition

¯̄μn
m−n

′(r) = ¯̄μm
n−m

′T (r), ¯̄εn
m−n

′(r) = ¯̄εm
n−m

′T (r),

¯̄ξ n
m−n

′
(r) = − ¯̄ζ m

n−m

′T
(r), (7)

the TV media is reciprocal (see Appendix B). Consequently,
the statement of the reciprocity theorem, Eq. (2), will change
and the generalized reciprocity theorem can be expressed as∫

V a

∑
m

Eb
m · Ja

m

ωm
e−2 jωm�T dV a

=
∫

V b

∑
m

Ea
m · Jb

m

ωm
e−2 jωm�T dV b, (8)

which states that if there exists a time shift �T in which the
fields satisfy Eq. (8), the media is reciprocal. This form of
reciprocity means that if the frequency of two sources Ja and
Jb is the same, the reciprocity condition, Eq. (2), is satisfied
for any time shift, as in static media. However, if the two
sources have different frequency components, the generalized
reciprocity theorem of Eq. (8) must be used.

Accordingly, the condition in Eqs. (7) is a rather gener-
alized sufficient condition for investigating the reciprocity in
dispersive time-periodic modulated bianisotropic media. It is
worth noting that there are many reciprocal examples in which
Eqs. (6) do not hold but Eqs. (7) do. Still, the condition in
Eqs. (7) remains a sufficient (and not necessary) condition. In
other words, the reciprocity/nonreciprocity question is incon-
clusive whenever Eqs. (7) are violated. However, we do not
have any reciprocal example in which the condition (7) is not
satisfied.

For time-periodic modulated media, investigating the reci-
procity condition, Eqs. (6) and (7), requires knowing the
response of the media, that is, knowing ˜̄̄ε(r, t ; τ ), ˜̄̄μ(r, t ; τ ),
˜̄̄
ξ (r, t ; τ ), and ˜̄̄

ζ (r, t ; τ ). We usually do not have this in-
formation. However, a practical simplifying assumption is
that the modulation frequency, �, is much lower than the
source frequency, ω0, and the dispersion can be ignored in the
frequency range, which is logical for problems with nearly
monochromatic electromagnetic source. This assumption is
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henceforward applied throughout the paper. In this case,
the constitutive parameters can be written as ˜̄̄ν(r, t ; ω0) (see
Appendix C). By applying this assumption, Eqs. (6) can also
be revised as

¯̄μm−n(r, ω0) = ¯̄μn−m
T (r, ω0),

¯̄εm−n(r, ω0) = ¯̄εn−m
T (r, ω0),

¯̄ξm−n(r, ω0) = − ¯̄ζn−m
T

(r, ω0), (9)

and the generalized reciprocity condition will be revised as

¯̄μm−n
′(r, ω0) = ¯̄μn−m

′T (r, ω0),

¯̄εm−n
′(r, ω0) = ¯̄εn−m

′T (r, ω0),

¯̄ξm−n
′
(r, ω0) = − ¯̄ζn−m

′T
(r, ω0). (10)

These two conditions (9) and (10) are special cases
of conditions (6) and (7). Every isotropic time-periodic
medium which satisfies Eqs. (10) has generalized time re-
versal symmetry, that is, ν̃(r, t − �T ) = ν̃(r,−t − �T ) [28]
[or satisfying Eqs. (10) in isotropic media is equal to hav-
ing generalized time reversal symmetry]. This can easily be
demonstrated by writing the generalized time reversal sym-
metry relation according to its harmonic components, that is,
νn(r)e− jn��T = ν−n(r)e jn��T , which satisfies the reciprocity
condition (10).

Applying the reciprocity condition given in (9) or (10)
for stationary bianisotropic unbounded media results in the
conventional reciprocity condition ¯̄ε = ¯̄εT , ¯̄μ = ¯̄μT , and ¯̄ζ =
− ¯̄ξT . Therefore, a chiral medium with ¯̄ζ = − ¯̄ξ = jκ0

¯̄I is
reciprocal and a Tellegen medium with ¯̄ζ = ¯̄ξ = ζ0

¯̄I is
nonreciprocal. In the next section, several examples of
time-periodic bianisotropic media are presented and the
reciprocity/nonreciprocity conditions of these examples are
investigated using the reciprocity conditions (9) and (10).

III. SYNCHRONOUS MODULATION
IN DIFFERENT MEDIA

In this section, we consider a general bianisotropic medium
with synchronous modulation with the following constitutive
parameters:

¯̄ν(r, t, ω0) = ¯̄νst (r, ω0) + ¯̄Mν (r) f (t ), (11)

where ¯̄ν = ¯̄ε, ¯̄μ, ¯̄ξ, ¯̄ζ and ¯̄νst shows the static constitutive
parameters and f (t ) is any periodic function. Synchronous
modulation means that all points in a medium are modu-
lated with the same function. This modulation function can
be applied to all points of a medium with the same strength
(constant ¯̄M), which we call global synchronous modulation,
or it can be applied to points with different amplitudes [ ¯̄M(r)],
which we call local synchronous modulation. It is noteworthy
that global modulation is a special case of synchronous mod-
ulation.

Now, we look into an unbounded isotropic material with
synchronous sinusoidal modulation which has a time depen-
dence of

˜̄̄ε(r, t, ω0) = εst (r, ω0) ¯̄I + Mε
¯̄I cos(�t + φ),

¯̄μ = μ0
¯̄I, ¯̄ζ = ¯̄ξ = 0, (12)

where εst (r, ω0) is the static permittivity, Mε is the modulation
strength function, and � is the modulation frequency. The
Fourier components of constitutive parameters in this media
are

ε0 = εst (r, ω0), ε−1 = Mε

2
e− jφ, ε+1 = Mε

2
e jφ, (13)

and the condition (9) is not met. However, if we change the
time t to t − �T with �T = φ/�, the condition (10) will be
met and the media is in fact found to be reciprocal, which is
an expected result [38]. It should be noted that this result is
not attainable with the sufficient condition (9) but is deducible
from Eq. (10). For this reason, the condition (9) is not a
general sufficient condition as mentioned before. It should
be noted that according to (9) a sinusoidally time-modulated
isotropic slab having a modulation strength Mε(r) is also
reciprocal. Therefore, synchronous sinusoidal modulation in
isotropic media cannot result in nonreciprocity.

A. Synchronous sinusoidal time modulation
in bianisotropic media

Now, we assume an unbounded bianisotropic reciprocal
material in which ¯̄ξ = − ¯̄ζ T . An arbitrary tensor ¯̄ξ can be
decomposed into a linear combination of three basic tensors
as follows:

¯̄ξ = T ¯̄I +
3∑

i=1

Piaiai + A(b × ¯̄I ), (14)

where T , Pi, and A are complex amplitudes, ¯̄I is the unit
dyadic, and ai and bi are unit vectors [44]. Each of these
amplitudes defines a special behavior of the material. It repre-
sents reciprocal bianisotropic materials which can be divided
into three main categories: Chiral, pseudochiral, and uniaxial
omega, based on which of these amplitudes is nonzero. In the
following Secs. III A 1 to III A 3, we will apply synchronous
time modulation to these three categories which are reciprocal
in the absence of time modulation, and investigate whether or
not time modulation in anisotropy and bianisotropy results in
nonreciprocity.

1. Chiral media

First, assume an example of unbounded chiral material
which is modulated sinusoidally as follows:

˜̄̄ε(r, t, ω0) = ¯̄εst (r, ω0) + ¯̄Mε cos(�t ),

˜̄̄μ(r, t, ω0) = ¯̄μst (r, ω0) + ¯̄Mμ cos(�t ),
(15)

˜̄̄
ζ (r, t, ω0) = ¯̄ζ st (r, ω0) + Mc

¯̄I cos(�t ),

˜̄̄
ξ (r, t, ω0) = ¯̄ξ st (r, ω0) − Mc

¯̄I cos(�t ),

where ¯̄I is the unit dyadic, and ¯̄εst = ¯̄εst
T , ¯̄μst = ¯̄μst

T , ¯̄ζ st =
− ¯̄ξ st

T
, and ¯̄Mε,μ = ¯̄Mε,μ

T
. Here, Fourier components of con-

stitutive parameters are

¯̄ε0 = ¯̄εst (r, ω0), ¯̄ε+1 = ¯̄ε−1 =
¯̄Mε

2
,
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¯̄μ0 = ¯̄μst (r, ω0), ¯̄μ+1 = ¯̄μ−1 =
¯̄Mμ

2
,

¯̄ζ0 = ¯̄ζ st (r, ω0), ¯̄ζ+1 = ¯̄ζ−1 = Mc

2
¯̄I,

¯̄ξ0 = ¯̄ξ st (r, ω0), ¯̄ξ+1 = ¯̄ξ−1 = −Mc

2
¯̄I. (16)

Therefore, ¯̄ε+1 = ¯̄εT
−1, ¯̄μ+1 = ¯̄μT

−1, ¯̄ζ+1/−1 = Mc
2

¯̄I =
− ¯̄ξT

−1/+1 = Mc
2

¯̄I
T

and the condition (9) is satisfied. As a
result, the chiral material with synchronous sinusoidal time
modulation is reciprocal. Note that, as mentioned before,
if the cosine function has an arbitrary global phase, the
condition (10) is satisfied and the medium remains reciprocal.

2. Pseudochiral media

As the second case, we look into a pseudochiral material
with the following constitutive parameters:

˜̄̄ε(r, t, ω0) = ¯̄εst (r, ω0) + ¯̄Mε cos(�t ),

˜̄̄μ(r, t, ω0) = ¯̄μst (r, ω0) + ¯̄Mμ cos(�t ),
(17)

˜̄̄
ζ (r, t, ω0) = ¯̄ζ st (r, ω0) + Mp

¯̄U cos(�t ),

˜̄̄
ξ (r, t, ω0) = ¯̄ξ st (r, ω0) − Mp

¯̄U cos(�t ),

where ¯̄U = ¯̄U T is a symmetric matrix, and ¯̄εst = ¯̄εst
T , ¯̄μst =

¯̄μst
T , ¯̄ζ st = − ¯̄ξ st

T
. Like the previous example, the reciprocity

conditions for ¯̄ε and ¯̄μ are satisfied. The Fourier components
of magneto-electric coupling parameters are

¯̄ζ0 = ¯̄ζ st (r, ω0), ¯̄ζ+1 = ¯̄ζ−1 = Mp

2
¯̄U,

¯̄ξ0 = ¯̄ξ st (r), ¯̄ξ+1 = ¯̄ξ−1 = −Mp

2
¯̄U . (18)

Therefore, ¯̄ζ+1/−1 = Mp

2
¯̄U = − ¯̄ξT

−1/+1 = Mp

2
¯̄U

T
, and syn-

chronous sinusoidal time modulation of magneto-electric
coupling tensors in pseudochiral material does not result in
nonreciprocity.

3. Uniaxial omega media

Now, consider a unbounded uniaxial omega material with

˜̄̄ε(r, t, ω0) = ¯̄εst (r, ω0) + ¯̄Mε cos(�t ),

˜̄̄μ(r, t, ω0) = ¯̄μst (r, ω0) + ¯̄Mμ cos(�t ),
(19)

˜̄̄
ζ (r, t, ω0) = ¯̄ζ st (r, ω0) + M�

¯̄J cos(�t ),

˜̄̄
ξ (r, t, ω0) = ¯̄ξ st (r, ω0) + M�

¯̄J cos(�t ),

where ¯̄J = ẑ × ¯̄I is the transverse vector product dyadic, and
¯̄εst = ¯̄εst

T , ¯̄μst = ¯̄μst
T , ¯̄ζ st = − ¯̄ξ st

T
. Similarly to previous ex-

amples, Fourier components of constitutive parameters can

be written as ¯̄ζ+1/−1 = M�

2
¯̄J = − ¯̄ξT

−1/+1 = −M�

2
¯̄J
T

, and, in
contrast to what [40] proposed, nonreciprocity can not be
achieved in bianisotropic bulk material with synchronous
sinusoidally time-modulated antisymmetric magnetoelectric
coupling tensors. The reciprocity in [40] is investigated using

FIG. 2. Two different modulation functions. The right function
satisfies the generalized time reversal symmetry but the left one does
not.

the reciprocity condition on the Green’s operator of the media.
But due to a sign error in the derivation of the transpose of
the Green’s operator, an incorrect conclusion is obtained. In
order to validate the analytical results, several examples are
demonstrated in Sec. IV.

Therefore, it is impossible to achieve nonreciprocity in
statically reciprocal bianisotropic media insofar as the time
modulation is sinusoidal in accordance with Eqs. (10).
However, introducing phase difference between modulation
functionality of different parts of magneto-electric tensors
(14) may result in nonreciprocal response.

A special case of bianisotropic materials is anisotropic
media in which ¯̄ξ = ¯̄ζ = 0. Therefore, statically recipro-
cal anisotropic media are also reciprocal under synchronous
sinusoidal modulation. Another important note is that in
an anisotropic medium, if the diagonal elements of the
matrix ¯̄ε or ¯̄μ are modulated with different phases, the
material is reciprocal in the absence of modulation but
the reciprocity condition (9) and also (10) are not met in
the presence of modulation and we should investigate its
reciprocity/nonreciprocity using another approach.

B. Synchronous time-periodic modulation
in bianisotropic media

According to the reciprocity condition (10), reciprocity
is by no means limited to sinusoidal modulation and many
other examples of f (t ) will result in reciprocal response.
It can be easily proved that in synchronously time-periodic
bianisotropic media illuminated by a nearly monochromatic
source the medium is reciprocal if the modulation function
satisfies the generalized time reversal symmetry. Two different
functions are shown in Fig. 2. The left one does not satisfy
the generalized time reversal symmetry but the right one is an
even function with a time translation t → t − �T .

Therefore, the constitutive parameters for the most general
synchronous time-periodic bianisotropic medium which is re-
ciprocal in the absence of modulation and also reciprocal after
adding time modulation can be written as follows:

¯̄ν(r, t, ω0) = ¯̄νst (r, ω0) + ¯̄Mν (r) f (t ),

f (t ) =
∞∑

n=0

an cos(n�t + nφ), (20)
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FIG. 3. Normal incidence on a time-periodic on-dimensional
slab. The slab is infinite in y and z directions. A single harmonic
field excites the slab from the left side and multiple harmonics at
frequencies ωn = ω0 + n� are scattered.

which satisfies reciprocity condition (10), and also the gen-
eralized time reversal symmetry is satisfied for the function
f (t ).

IV. NUMERICAL EXAMPLES

We have looked into media with globally synchronous time
modulation in the examples so far. Here, we consider two ex-
amples with local synchronous sinusoidal modulation: Single
time modulated slab and two cascaded slabs. To analyze these
structures, we use in-house FDTD simulation, and the results
are shown in the following subsections.

A. Single bianisotropic time-varying slab

As the first example, we consider a one-dimensional sin-
gle bianisotropic slab whose constitutive parameters change
periodically with time (Fig. 3). The time dependency of con-
stitutive parameters of this media is as in Eq. (11), where the
functionality of M(r) is a step function. The theoretical condi-
tion (9) in this slab holds and now we want to check the FDTD
simulation results. To investigate the nonreciprocity of this
structure using simulation, as Fig. 3 shows, we excite it with
an incident field at frequency fs once from the right and again
from the left, and the harmonics of transmitted and reflected
electromagnetic fields have been calculated. According to the
reciprocity condition (2), the difference between amplitudes
of the harmonics at the incident frequency in two forward
and backward problems is considered as the nonreciprocity
criterion. We consider a bianisotropic slab of length 0.1 μm
whose relative permittivity tensor is ¯̄εr = 3 ¯̄I and relative per-
meability and magnetoelectric coupling tensors are ¯̄μr = ¯̄I ,
¯̄ζ = ¯̄ξ = 0.5/c0

¯̄J , which is reciprocal in the absence of time
variation. We modulate these parameters using a sinusoidal
temporal dependency as in Eqs. (19) whose parameters are
¯̄Mε = 0.2 ¯̄I , ¯̄Mμ = 0, M� = 0.2/c0, ωm = 0.2ωs. According

to Sec. III A 3, this media is reciprocal in the presence of
time variation. We excite this slab with a plane wave with
frequency fs = 3000 THz normally impinging the slab. The
left-to-right and right-to-left spectra of the transmitted and
reflected fields versus frequencies can be seen in Fig. 4. The

FIG. 4. FDTD numerical simulation of scattering from a sinu-
soidal globally time modulated bianisotropic slab in the forward
and backward problems. (a) Comparison of transmitted electric field
harmonics in forward and backward problems. (b) Comparison of
reflected electric field harmonics in forward and backward problems.

same results for these two problems validate the reciprocity
of the synchronously sinusoidal time modulated bianisotropic
slab.

Now, we assume a traveling-wave modulation profile, i.e.,
¯̄ν = ¯̄νst + ¯̄Mν cos(�t − kx), where ¯̄ν = ¯̄ε, ¯̄μ, ¯̄ζ , ¯̄ξ and ¯̄Mε =
0.2 ¯̄I, ¯̄Mμ = 0, ¯̄Mξ,ζ = 0.2/c0

¯̄J , and the speed of modulation
is vm = �/k = c0/

√
3. Based on the relations (10), the reci-

procity condition does not hold in this structure, but since
the condition (10) is a sufficient condition for reciprocity,
it cannot be said that this structure is nonreciprocal. The
left-to-right and right-to-left spectra of the transmitted and
reflected fields are demonstrated in Fig. 5. The difference
between amplitudes at the main harmonic in the two forward
and backward problems shows that the space-time modulated
bianisotropic slab is nonreciprocal.

FIG. 5. FDTD numerical simulation of scattering from a sinu-
soidal space-time modulated bianisotropic slab in the forward and
backward problems. (a) Comparison of transmitted electric field
harmonics in forward and backward problems. (b) Comparison of
reflected electric field harmonics in forward and backward problems.
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FIG. 6. FDTD numerical simulation of scattering from two cas-
caded sinusoidal time modulated bianisotropic slabs in the forward
and backward problems. (a) Comparison of transmitted electric field
harmonics in forward and backward problems. (b) Comparison of
reflected electric field harmonics in forward and backward problems.

B. Two cascaded bianisotropic time-varying slabs

Another example of locally synchronous time modulation
is a structure that consists of two slab resonators. Here, we
consider two cascaded time-varying slabs whose constitutive
parameters are modulated. In the first case, these two slabs are
modulated synchronously with each other, i.e., in such a way
that there is not any phase difference between the modulation
profiles of the two slabs. In the second case, there is a phase
difference φ between the modulation profiles of the two slabs,
or, in other words, there are at least two points in space which
change with a phase difference with each other with time.

1. Locally synchronous time modulation

Here, we assume two cascaded bianisotropic slabs with
the same thickness L = 0.1 μm at a distance d = 0.1 μm
from each other. We consider the constitutive parameters of
these two slabs to be the same as synchronous modulation
in Sec. IV A. The left-to-right and right-to-left spectra of the
transmitted and reflected fields versus frequency can be seen
in Fig. 6. This figure shows that the amplitudes of different
harmonics in forward and backward problems are the same
and therefore this structure is reciprocal, which is compatible
with the results shown in Sec. III A 3.

2. Locally asynchronous time modulation

If we choose a phase difference φ = 90◦ between two
slabs, we have the results shown in Fig. 7. This figure shows
that the amplitudes of reflection/transmission field harmonics
at incident frequency are different in the two forward and
backward problems which shows that the structure is nonre-
ciprocal. This nonreciprocal behavior also can be observed in
two slabs of isotropic media which are modulated sinusoidally
with a phase difference equal to 90◦, as represented in [38].

FIG. 7. FDTD numerical simulation of scattering from two cas-
caded sinusoidal time modulated bianisotropic slabs which have
phase difference φ = 90◦ in the forward and backward problems.
(a) Comparison of transmitted electric field harmonics in forward
and backward problems. (b) Comparison of reflected electric field
harmonics in forward and backward problems.

V. CONCLUSION

In this paper, the reciprocity condition for general lin-
ear time-periodic bianisotropic media is extracted. It was
demonstrated that achieving nonreciprocity from a linear stat-
ically reciprocal bianisotropic material whose permittivity,
permeability, and magnetoelectric couplings are modulated
synchronously in time using a sinusoidal time dependency is
impossible. Also, we find the general time modulation func-
tion which does not result in nonreciprocity and we prove that
every bianisotropic medium with synchronous time depen-
dency which satisfies the generalized time reversal symmetry
is reciprocal. Our analytical results were validated using in-
house FDTD simulation for a synchronously sinusoidal time
modulated slab of bianisotropic media and also two cascaded
synchronous slabs. Similarly, multiple time-varying slabs
whose constitutive parameters are modulated sinusoidally in
time with the same phase have reciprocal response.

APPENDIX A: CALCULATION OF SIDE
HARMONICS Dm AND Bm

The constitutive parameters in a time-periodic bian-
isotropic medium with modulation frequency � can be written
using Fourier series as follows:

˜̄̄ν(r, t ; τ ) =
∑

n

˜̄̄νn(r; τ )e jn�t , (A1)

in which ˜̄̄ν = ˜̄̄ε, ˜̄̄μ,
˜̄̄
ξ,

˜̄̄
ζ . Assuming a multitone current source

in the form J̃a,b = ∑
m Ja,b

m e j(ω0+m�)t , the electromagnetic
fields are written as

E (r, t ) =
∑

m

Em(r)e jωmt ,

H (r, t ) =
∑

m

Hm(r)e jωmt , (A2)

where ωm = ω0 + m�.
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By substituting Eqs. (A1) and (A2) in Eq. (1), we will have

D (r, t ) =
∫ t

−∞

∑
n

e jn�t ˜̄̄εn(r; τ ) ·
∑

m

Em(r)e jωmt ′
dt ′ +

∫ t

−∞

∑
n

e jn�t ˜̄̄
ζn(r; τ ) ·

∑
m

Hm(r)e jωmt ′
dt ′

=
∑
m,n

∫ ∞

0

˜̄̄εn(r; τ )e− jωmτ dτ · Em(r)e jωm+nt +
∑
m,n

∫ ∞

0

˜̄̄
ζn(r; τ )e− jωmτ dτ · Hm(r)e jωm+nt . (A3)

Then by using Fourier transform of parameters ˜̄̄εn(r; τ ), ˜̄̄
ζn(r; τ ), ˜̄̄κn(r; τ ), this equation can be revised as

D (r, t ) =
∑
m,n

¯̄εn(r; ωm) · Em(r)e jωm+nt +
∑
m,n

¯̄ζ n(r; ωm) · Hm(r)e jωm+nt =
∑
m,n

( ¯̄εm−n(r; ωn) · En(r) + ¯̄ζ m−n(r; ωn) · Hn(r))e jωmt .

(A4)

Therefore, D (r, t ) can be written as D (r, t ) = ∑
m Dm(r)e jωmt and so on B(r, t ), where

Dm(r) =
∑

n

(
¯̄εn

m−n(r) · En(r) + ¯̄ζ n
m−n(r) · Hn(r)

)
,

(A5)
Bm(r) =

∑
n

(
¯̄μn

m−n(r) · Hn(r) + ¯̄ξ n
m−n(r) · En(r)

)
,

in which ¯̄εn
m−n = ¯̄εm−n(r, ωn) is the Fourier component at frequency ωn and so on, which is defined as

¯̄εn(r, ω) =
∫ ∞

0

˜̄̄ε(r; τ )e− jωτ dτ. (A6)

APPENDIX B: DERIVATION OF THE GENERALIZED RECIPROCITY CONDITION

If we apply a time translation t → t − �T to Eq. (5), we will have∫
V a

∑
m

Eb
m · Ja

m

jωm
e−2 jωm�T dV a −

∫
V b

∑
m

Ea
m · Jb

m

jωm
e−2 jωm�T dV b

=
∫

V

[∑
m,n

Hb
me− jωm�T · (

¯̄μn
m−n

′(r) − ¯̄μm
n−m

′T (r)
) · Ha

ne− jωn�T + Ea
me− jωm�T · (

¯̄εn
m−n

′(r) − ¯̄εm
n−m

′T (r)
) · Eb

ne− jωn�T

+ Hb
me− jωm�T · ( ¯̄ξ n

m−n

′
(r) + ¯̄ζ m

n−m

′T
(r)

) · Ea
ne− jωn�T − Eb

me− jωm�T · ( ¯̄ζ n
m−n

′
(r) + ¯̄ξm

n−m

′T
(r)

) · Ha
ne− jωn�T

]
dV. (B1)

Thus, the generalized reciprocity condition, Eq. (7), is obtained.

APPENDIX C: CONSTITUTIVE PARAMETERS IN THE CASE OF NEARLY MONOCHROMATIC SOURCE

In the case of assuming monochromatic source, Eq. (1) can be written as

D (r, t ) =
∑

m

( ˜̄̄εr (r, t ; ωm) · Em(r) + ˜̄̄
ζr (r, t ; ωm) · Hm(r)) cos(ωmt )

+
∑

m

( ˜̄̄εim(r, t ; ωm) · Em(r) + ˜̄̄
ζim(r, t ; ωm) · Hm(r)) sin(ωmt ) (C1)

and

B(r, t ) =
∑

m

( ˜̄̄μr (r, t ; ωm) · Hm(r) + ˜̄̄
ξr (r, t ; ωm) · Em(r)) cos(ωmt )

+
∑

m

( ˜̄̄μim(r, t ; ωm) · Hm(r) + ˜̄̄
ξim(r, t ; ωm) · Em(r)) sin(ωmt ), (C2)
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where the subscripts r and im show the real and imaginary parts of parameters. By applying the simplifying assumption � � ω0,
Eqs. (C1) and (C2) can be simplified as

D (r, t ) =
∑

m

( ˜̄̄εr (r, t ; ω0) · Em(r) + ˜̄̄
ζr (r, t ; ω0) · Hm(r)) cos(ωmt )

+
∑

m

( ˜̄̄εim(r, t ; ω0) · Em(r) + ˜̄̄
ζim(r, t ; ω0) · Hm(r)) sin(ωmt ) (C3)

and

B(r, t ) =
∑

m

( ˜̄̄μr (r, t ; ω0) · Hm(r) + ˜̄̄
ξr (r, t ; ω0) · Em(r)) cos(ωmt )

+
∑

m

( ˜̄̄μim(r, t ; ω0) · Hm(r) + ˜̄̄
ξim(r, t ; ω0) · Em(r)) sin(ωmt ). (C4)
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