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Quantum criticality in the disordered Aubry-André model

Xuan Bu,1 Liang-Jun Zhai,2,3 and Shuai Yin 1,*

1School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
2Department of Physics, Nanjing University, Nanjing 210093, China

3The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China

(Received 2 November 2022; revised 15 December 2022; accepted 15 December 2022; published 26 December 2022)

In this paper, we explore quantum criticality in the disordered Aubry-André (AA) model. For the pure AA
model, it is well known that it hosts a critical point separating an extended phase and a localized insulator phase
by tuning the strength of the quasiperiodic potential. Here we unearth that the disorder strength � contributes
an independent relevant direction near the critical point of the AA model. Our scaling analyses show that the
localization length ξ scales with � as ξ ∝ �−ν� with ν� a new critical exponent, which is estimated to be ν� ≈
0.46. This value is remarkably different from the counterparts for both the pure AA model and the Anderson
model. Moreover, rich critical phenomena are discovered in the critical region spanned by the quasiperiodic and
the disordered potentials. In particular, in the extended phase side, we show that the scaling theory satisfies a
hybrid scaling form as a result of the overlap between the critical regions of the AA model and the Anderson
localization.
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I. INTRODUCTION

Quasiperiodic systems have recently gained growing at-
tention since a lot of novel phases and phase transitions
emerge therein [1–18]. For example, unconventional super-
conductivity appears in the twisted-bilayer systems with
incommensurate moiré superlattices [19], nontrivial topologi-
cal property comes up in one-dimensional (1D) quasicrystals
owing to their profound connections to the topological insu-
lators in higher dimensions [20], non-Fermi-liquid behavior
arises in the strongly correlated quasicrystals [21], and so
on. Among various quasiperiodic systems, the Aubry-André
(AA) model stands out with many unusual characteristic
features [1,2], such as the self-similar energy spectra and
nontrivial topological properties. In particular, the AA model
features a remarkable self-dual extended phase-localizaiton
transition at a multifractal critical point [22]. The AA model
has been realized in several experimental setups including
ultracold atoms in bichromatic laser potentials [23] and pho-
tonic devices [24]. Besides, a variety of generalized AA
models are proposed and show rich localization proper-
ties [4,25,26], such as the appearance of the mobility edge by
including other hopping terms [5,6], many-body localization
by including the interaction [18,27–33], and the open AA
model with dissipation [14,16,34–38].

On the other hand, disorder is ubiquitous in nature and
has dramatic effects on static and dynamic properties in both
classical and quantum systems [39]. For instance, localization
induced by disorder, proposed by Anderson, is a longstanding
research topic in condensed-matter physics [40–43]. The-
oretically, universality classes of Anderson transition have
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been categorized [39,44–49]. Experimentally, the Anderson
localization has been realized in cold atomic gases [50,51],
quantum optics [52,53], acoustic waves [54], and elec-
tronic systems [55]. In addition, understanding the effects
of quenched disorder on continuous phase transitions is a
question of enduring interest [56,57]. In periodic lattice sys-
tems, the divergence of the correlation length at the critical
point gives universal critical phenomena that are controlled
by renormalization-group fixed points of a translationally in-
variant continuum quantum field theory. A quenched disorder
configuration breaks the periodicity of the system in all length
scales, and, thus, can produce behavior qualitatively different
from that of a periodic system [56–58]. However, the disorder
effects in the phase transitions in quasiperiodic systems are
still largely unknown except for some recent works in many-
body localization transitions [31–33].

In this paper, we investigate the phase-transition proper-
ties in the 1D-disordered AA model. The phase diagram is
sketched in Fig. 1 in which � denotes the disorder strength
and δ denotes the distance to the AA critical point in the
direction of the quasiperiodic potential. We find that the dis-
order strength � represents an independent relevant direction
at the critical point of the AA model. Our scaling analyses
show that the localization length ξ scales with � as ξ ∝ �−ν�

with ν� a new critical exponent, which is estimated to be
ν� = 0.46(1). This exponent is remarkably different from
both the counterpart exponent νδ by tuning the strength of
the quasiperiodic potential [59,60] and the counterpart one νA

in the Anderson model without quasiperiodic potential [60].
Furthermore, critical behaviors of the localization length ξ ,
the inverse participation ratio (IPR), and the energy gap �E
in the critical region spanned by δ and � are studied. A full
scaling form is then developed to describe these critical prop-
erties. In particular, in the extended phase side with δ < 0,
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FIG. 1. Sketch of the phase diagram of the disorder AA model.
The dark blue region (region A) denotes the critical region of local-
ization transition of the disordered AA model. The light green region
(region B) denotes the critical region of the Anderson localization
transition. Near the critical points of δ = 0 and � = 0, these critical
regions overlap with each other.

we show that the scaling behaviors are controlled by both the
AA critical point and the Anderson transition. Accordingly,
the scaling theory satisfies a hybrid scaling form as a result
of the overlap between the critical regions of the AA model
and the Anderson localization.

The rest of the paper is arranged as follows. After intro-
ducing the disordered AA model in Sec. II, we focus on the
scaling dimension of the disorder strength and determine the
exponent ν� in Sec. III. Then in Sec. IV, the critical properties
in the critical region in the presence of the disorder is studied.
A summary is given in Sec. V.

II. MODEL AND CHARACTERISTIC OBSERVABLES

The Hamiltonian of the disordered AA model reads

H = −J
L∑
j

(c†
j c j+1 + H.c.) + (2J + δ)

×
L∑
j

cos[2π (γ j + φ)]c†
j c j + �

L∑
j

w jc
†
j c j, (1)

in which c†
j (c j ) is the creation (annihilation) operator of the

hard-core boson, J is the hopping coefficient which is set as
unity of the energy scale, (2J + δ) measures the amplitude
of the quasiperiodic potential, γ is an irrational number, φ

is the phase of the potential with a uniform distribution in
[0,1), w j provides the quenched disorder with uniform dis-
tribution in [−1, 1], and � measures the disorder strength.
The periodic boundary condition is imposed in the following
calculation. To satisfy the periodic boundary condition, γ

has to be approximated by a rational number Fn/Fn+1 where
Fn+1 = L and Fn are the Fibonacci numbers [35,38]. Without
the last disorder term, i.e., � = 0, it was shown that all the
eigenstates of model (1) are localized when δ > 0, whereas
all the eigenstates are delocalized when δ < 0 [2]. In contrast,
without the quasiperiodic potential, i.e., δ = −2J , the system
is always in the localized phase for any finite �, indicating the
Anderson localization transition point is at � = 0 [40,55].

To describe the critical properties of the localization tran-
sition, some characteristic quantities are employed. First, in
the localized phase, the localization length, ξ , is defined in the

localization phase as [59]

ξ =
√√√√

L∑
j

[( j − jc)2]Pj, (2)

in which Pj is the probability of the wave function at site j,
and jc ≡ ∑

jPj is the localization center. Near a critical point,
ξ scales with the distance to the critical point g as

ξ ∝ g−ν . (3)

For the pure AA model, � = 0, g = δ, and ξ ∝ δ−νδ with νδ =
1 [59,60]. For the pure Anderson model, δ = −2J , g = �, and
ξ ∝ �−νA with νA = 2/3 [60].

The second quantity to characterize the localization transi-
tion is the IPR, which is defined as [61,62]

IPR =
∑L

j=1 |〈	( j)|	( j)〉|2
∑L

j=1 |〈	( j)|	( j)〉| , (4)

where |	( j)〉 is the eigenvector. For the extended phase, the
wave function is homogeneously distributed through all sites,
and IPR scales as IPR ∝ L−1, whereas for the localization
state IPR ∝ L0. At the localization transition point, IPR sat-
isfies a scaling relation [38],

IPR ∝ L−s/ν . (5)

When L → ∞, IPR scales with g as

IPR ∝ gs. (6)

For the pure AA model, sδ ≈ 0.333, whereas for the pure
Anderson model sA = 2/3 since its critical point is just the
homogeneous extended state without disorder.

As in usual quantum criticality, the energy gap between
the first excited state and the ground state can also be used
to characterize the localization transition. According to the
finite-size scaling, the energy gap �E should scale as

�E ∝ L−z (7)

for g = 0. When L → ∞, �E scales with g as

�E ∝ g−νz. (8)

For the pure AA model, zδ ≈ 2.37 [59,60,63], whereas for the
pure Anderson model, zA = 2 [60].

Since in 1D noninteracting systems can be localized even
for infinitesimal disorder [39,40,55], it is expected that the
disordered AA model (1) is always in the localized phase
except for the axis with � = 0 and δ < 0 as shown in Fig. 1.
For δ < 0 and small �, the system is in the critical region
of the Anderson localization, as illustrated by region B in
Fig. 1. However, when δ = 0, it is expected that the critical
dimension of � should be different from the one for δ < 0.
Moreover, a critical region is spanned by � and δ near the
AA critical point as illustrated by region A in Fig. 1. In
the following, we will determine the dimension of � and
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FIG. 2. (a) Curves of ξ in the ground state versus � for various
L’s at δ = 0. (b) Rescaled curves of ξL−1 versus �L−1/ν� collapse
onto each other for ν� = 0.46. Double-logarithmic scales are used.
The result is averaged for 1000 samples in which φ is uniformly
selected in the range of [0,1) and wi is uniformly selected in the range
of [−1, 1].

investigate the critical properties in the critical region sur-
rounding the AA critical point.

III. CRITICAL DIMENSION OF DISORDER AT THE AA
CRITICAL POINT

In this section, we study the critical properties of disorder
for δ = 0. It is expected that the localization length ξ scales
with the disorder strength � as ξ ∝ �−ν� with ν� being
the corresponding critical exponent. To determine ν�, the
finite-size scaling should be taken into account. Accordingly,
scaling analysis gives the scaling form of ξ ,

ξ = L f1(�L1/ν� ), (9)

in which fi is the scaling function. When L → ∞, Eq. (9)
recovers the scaling relation ξ ∝ �−ν� .

We calculate the curves of ξ versus � for various L’s and
show the results in Fig. 2. We estimate ν� by rescaling ξ and
� as ξL−1 and �L1/ν� , respectively, for some trial values of
ν�. We find that the curves collapse onto each other quite
well when ν� = 0.46(1) as shown in Fig. 2(b). The error is
estimated by the observation that the rescaled curves deviate
from each other apparently when ν� > 0.47 or ν� < 0.45.

To verify the value of ν�, we explore the scaling property
of IPR for δ = 0. Scaling analyses by setting g = δ and s =
sδ in Eq. (6) give the scaling relation in the presence of the

10 10 10

0.3

0.4

0.5 data
fit

IP
R

~ 0.1513

FIG. 3. Curves of IPR in the ground state versus � at δ = 0 for
L = 4181. The power fit shows IPR ∝ �0.1513 with the error bar of
the exponent being ±0.0007. The result is averaged for 1000 choices
of φ and disorder. Double-logarithmic scales are used.

disorder,

IPR = δsδ f2(�δ−νδ/ν� ), (10)

in the thermodynamic limit. When δ → 0, Eq. (10) gives

IPR ∝ �sδν�/νδ , (11)

in which sδν�/νδ = 0.153(3) by setting ν� = 0.46(1) as in-
put. We calculate IPR versus � at δ = 0 for a large enough
lattice size so that the size effects are tiny. The result is shown
in Fig. 3. One finds that for L = 4181 and the parameter
region shown in Fig. 3, IPR ∝ �0.1513 with the fitting error
of the exponent being ±0.0007. This exponent is consistent
with sδν�/νδ = 0.153(3) within the error bar, confirming the
value of ν�.

Apparently, ν� is a new critical exponent since it is dif-
ferent from both νδ and νA, demonstrating that the disorder
contributes a new relevant direction in the AA critical point.
Furthermore, one finds that ν� is smaller than νδ , indicating
that the disorder is less relevant than the quasiperiodic po-
tential near the AA critical point. A possible reason is that
the disorder is short-range correlated, but the quasiperiodic
potential is long-range correlated.

IV. SCALING PROPERTIES IN THE CRITICAL REGION
OF THE DISORDERED AA MODEL

In this section, we explore the scaling properties in the
critical region of the disordered AA model.

A. General scaling forms in the critical region

As shown in Fig. 1, a critical region near the AA critical
point is spanned by the quasiperiodic potential δ and the
disorder strength �. In the following, we show that scaling
behaviors of the characteristic quantities, introduced in Sec. II,
can be described by the scaling forms with δ and � as the
scaling variables. In particular, for δ < 0, as a result of the
presence of the overlapping regions between the disordered
AA critical region and the Anderson transition region, a con-
straint should be imposed on the scaling functions [64], giving
a hybrid scaling form.
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FIG. 4. Scaling properties in the ground state for fixed δL1/νδ =
1. The curves of ξ versus � before (a1) and after (a2) rescaled for
different L’s. The curves of IPR versus � before (b1) and after (b2)
rescaled for different L’s. And the curves of �E versus � before
(c1) and after (c2) rescaled for different L’s. The result is averaged
for 1000 choices of φ and disorder.

For general δ and � near the critical point, the localization
length ξ should obey the scaling form

ξ = L f3(δL1/νδ , �L1/ν� ). (12)

For � = 0 and L → ∞, Eq. (12) recovers Eq. (3) in which
g = δ and ν = νδ; whereas for g = 0, Eq. (12) recovers Eq. (9)
which has been employed to estimate ν�.

Similar full scaling forms can also be obtained for IPR and
�E . The scaling form for IPR should satisfy

IPR = L−sδ/νδ f4(δL1/νδ , �L1/ν� ). (13)

When � = 0 and L → ∞, Eq. (13) restores Eq. (5) in which
g = δ and s = sδ; when � = 0 and g = 0, Eq. (13) recovers
Eq. (5) in which g = δ, ν = νδ , and s = sδ; when L → ∞,
Eq. (13) recovers Eqs. (10) and (11), which have been used
to verify the value of ν�. In addition, the scaling form of �E
should be

�E = L−zδ f5(δL1/νδ , �L1/ν� ). (14)

When � = 0 and δ = 0, Eq. (14) recovers Eq. (7) in which
z = zδ; when � = 0 and L → ∞, Eq. (14) recovers Eq. (8) in
which z = zδ and ν = νδ . These scaling forms Eqs. (12)–(14)
should be applicable in the critical region surrounding the AA
critical point as shown in Fig. 1.

Moreover, in the region with δ < 0, the critical region of
the Anderson localization also play significant roles. We take
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FIG. 5. Scaling properties in the ground state for fixed δL1/νδ =
−1. The curves of ξ versus � before (a1) and after (a2) rescaled for
different L’s. The curves of IPR versus � before (b1) and after (b2)
rescaled for different L’s. The curves of �E versus � before (c1) and
after (c2) rescaled for different L’s. The result is averaged for 5000
choices of φ and disorder.

the scaling property of ξ as the example. From the viewpoint
of the Anderson transition, for a fixed δ, ξ should satisfy

ξ = L f6(�L1/νA ). (15)

Thus, in the overlapping region between the AA critical region
and the Anderson critical region as illustrated in Fig. 1, ξ

should simultaneously obey Eqs. (12) and (15). This condi-
tion dictates that the scaling function of f3 should satisfy the
following hybrid scaling form for δ < 0:

f3(δL1/νδ , �L1/ν� ) = f7[�L1/ν� (δL1/νδ )κ ], (16)

in which

κ ≡ νδ (1/νA − 1/ν�) (17)

includes the critical exponents from both the AA model and
the Anderson transition. Accordingly, the scaling function f7

in Eq. (16) provides the link between f3 and f6.

B. Numerical results

First, we verify Eqs. (12)–(14). As shown in Figs. 4 and 5
with fixed δL1/νδ , we calculate curves of ξ , IRP, and �E
versus � for different lattice sizes. In Fig. 4, we show the
results for δ > 0, and in Fig. 5, we show the results for δ < 0.
For both cases, we find that the rescaled curves collapse onto
each other very well. These results not only demonstrate that
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FIG. 6. (a) Curves of ξ versus � for various L’s for fixed δ =
−0.1. (b) Rescaled curves of ξL−1 versus �L−1/νA collapse onto each
other. Double-logarithmic scales are used. The result is averaged for
5000 choices of φ and disorder.

the critical properties of the disordered AA model (1) can be
described by the scaling theory including both δ and � as
its relevant scaling variables, but also verify that the scaling
dimension of � is ν� ≈ 0.46.

Furthermore, as shown in Fig. 6, for a fixed δ < 0, which
is still near the AA critical point, we calculate the curves
of ξ versus � for various L’s. After rescaling ξ as ξL−1

and rescaling � as �L1/νA with νA = 2/3 being the critical
exponent for the Anderson localization transition, we find
that the rescaled curves match with each other perfectly. This
result demonstrates that the scaling form of the Anderson
localization Eq. (15) is still applicable in the critical region
of the disordered AA model. Combining these results with
the previous ones, one confirms that the scaling behaviors for
δ < 0 can be simultaneously described by both the critical
theory of the disordered AA model and the theory of the
Anderson localization.

At last, we focus on the property of scaling function f3 for
δ < 0. We calculate the curves of f3 = ξL−1 versus �L1/ν�

for various δ’s with a fixed L. We find that by rescaling �L1/ν�

as �L1/ν� (δL1/νδ )κ , the curves collapse onto a single one,
as shown in Fig. 7, demonstrating that although two scaling
variables are included in f3, they are not independent ones
in the overlapping critical region as a result of the constraint
given by the hybrid scaling form given by Eqs. (16) and (17).

V. SUMMARY

To summarize, we have studied the quantum criticality
of the disordered AA model. We have discovered that the

100 101 102 103 104
10

10

L-
1

L1/

-0.1
-0.2
-0.3
-0.4
-0.5

(a)

(b)

10 10 100 101 102 103
10

10

L-
1

L1/ ( L1/ )

FIG. 7. (a) Curves of ξL−1 versus �L−1/ν� for different choices
of δ. (b) Rescaled curves of ξL−1 versus �L1/ν� (δL1/νδ )κ collapse
onto each other. L = 987, Double-logarithmic scales are used. The
result is averaged for 5000 choices of φ and disorder.

disorder provides a new independent relevant direction in the
AA critical point with the scaling dimension ν� = 0.46(1).
Critical properties in the critical region spanned by the dis-
order strength and the quasiperiodic potential strength have
been systematically explored. In particular, for δ < 0, there
is an overlapping region between the AA critical region and
the Anderson localization critical region. We have shown
that the scaling behaviors satisfy both the critical theory of
the AA critical point and the critical theory of the Ander-
son transition, giving a hybrid scaling form on the scaling
function.

Our present paper uncovers interesting critical properties
in the localization transition. As possible generalizations, one
can also investigate the many-body localization transition be-
havior simultaneously in presence of the quasiperiodic poten-
tial and the disorder. Note that there are some relevant works
on this issue with some controversial problems [31–33]. In
addition, in contrast to the Hermitian case in which lo-
calization happens for infinitesimal disorder strength in the
non-Hermitian systems, localization happens for finite disor-
der strength [65,66]. Thus, the investigation on effects induced
by disorder in the non-Hermitian AA model is intriguing and
this paper is in process.
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