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Localization transitions and winding numbers for non-Hermitian Aubry-André-Harper models
with off-diagonal modulations
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We study localization and topological properties, as well as the fate of the critical phase, of non-Hermitian
generalizations of the Aubry-André-Harper model with both on-site and off-diagonal incommensurate modula-
tions. Non-Hermiticity arises from nonreciprocal hopping and a complex phase in the potential. In the absence
of nonreciprocal hopping, we compute analytically the localization length of single-particle states by applying
Avila’s global theory. The system has the same phase diagram as Hermitian cases, except that the complex
phase renormalizes the strength of the potential. In the presence of nonreciprocal hopping, the phase diagram
is analytically determined by a similarity transformation. Due to the presence of the skin effect, induced by
nonreciprocity, the skin phase turns into extended and critical phases when the boundary condition changes from
open to periodic, while states are localized asymmetrically in the boundary-independent localized phase. The
nonreciprocal hopping is in favor of the critical phase under a periodic boundary condition. The spectra are
complex, and loops always exist. A winding number is not a proper indicator of the presence of loops, but the
topological transition is in agreement with the localization transition.
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I. INTRODUCTION

The Aubry-André-Harper (AAH) model [1,2] is a reliable
framework for understanding quantum localization and topo-
logical states of matter in one dimension (1D). It originates
from the dimension reduction of the two-dimensional quan-
tum Hall system [1,3]. Hence, it inherits the nature of the
Chern topological insulator and it supports Thouless pumping
[4–6]. When the model is made quasiperiodic, it undergoes a
localization phase transition from metal to insulator at a finite
strength of quasiperiodic potential [1,3,7]. The relationship
between quasiperiodicity and localization has been explored
in various generalized AAH models [8–12]. Some exhibit
exact mobility edges [13–17], i.e., critical energies separating
localized and extended states in the spectrum, while others
lack any phase transition [18]. An important model is pro-
duced by introducing incommensurate modulations on both
the on-site potential and the off-diagonal hopping [19–22]. As
one of a dozen exactly solvable AAH models with analytical
localization properties, it is the only one supporting a large
area of the critical phase due to the interplay of modulations.
In the critical phase, states have spatially power-law decays,
and they are fractal. The AAH models, including the ones
with off-diagonal modulations, have been realized in various
artificial systems, such as ultracold atoms [16,23–28] and
photonic crystals [4,29].

On the other hand, given the ability to experimentally en-
gineer non-Hermitian Hamiltonians [30–36], there has been
growing interest in non-Hermitian physics recently [37,38].
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Non-Hermiticity is usually achieved by introducing nonrecip-
rocal hoppings and/or complex potentials. It results in various
exotic phenomena, such as parity-time (PT ) symmetry break-
ing [39,40], non-Hermitian topology [41,42], the skin effect
[43,44], and revised bulk-edge correspondence [45–50]. In
addition to the Anderson localization in non-Hermitian disor-
dered systems [51–57], non-Hermitian generalizations of the
AAH model have also been studied extensively very recently
[58–79]. Complex potentials result in the PT symmetry
breaking [62–65,68], butterfly spectra [63,69], topological
edge states [58,65–69], mobility edges [79–83], and modi-
fied localizations [60,68–74,84]. In particular, a relationship
between the localization and topology of the spectrum has
been reported [67]. The interplay between nonreciprocal
hopping and (quasi)periodicity leads to asymmetrical local-
ization and boundary-dependent topologies and self-dualities
[61,69,76,82,84]. Despite intensive activities on AAH models,
the localization and topological properties of non-Hermitian
generalizations of the important family with both on-site and
off-diagonal modulations are largely unexplored [78]. The
exact solvability and analytical localization properties have
not been studied. More importantly, the fate of the critical
phase against non-Hermiticity is not clear yet.

In this paper, we study localization and topological phase
transitions, as well as the fate of the critical phase against
non-Hermiticity, in generalized AAH models with both on-
site and off-diagonal incommensurate modulations. A relative
phase between these two modulations is introduced, and the
non-Hermiticity arises from the nonreciprocal hopping and
the complex phase in the quasiperiodic potential. In the ab-
sence of nonreciprocal hopping, we compute analytically the
localization length of single-particle states by applying Avila’s
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global theory of one-frequency Schrödinger operators [85].
Based on this, we analyze localization properties and de-
termine phase diagrams for systems with different relative
phases. In addition, the fate of the critical phase and the
effects of the non-Hermiticity (complex phase) on localiza-
tion are studied, along with the PT symmetry breaking (or
real-complex transition) and the topology of the spectrum.
When the nonreciprocal hopping is introduced, the model
suffers from the non-Hermitian skin effect, which results
in boundary-dependent localization, real-complex transition,
and topological transition of the spectrum. By employing
a similarity transformation, the localization is studied ana-
lytically, which is spatially asymmetric. Phase diagrams are
determined that contain boundary-dependent extended, crit-
ical, or skin phases. Other boundary-dependent properties,
such as topology and real-complex transition of the spectrum,
are studied numerically.

The rest of the paper is organized as follows. In Sec. II, we
introduce the generalized AAH model. Section III is devoted
to the study of the case in the absence of nonreciprocal hop-
ping. We compute analytically the localization length, and we
study localization properties. Along with these, PT symmetry
breaking (or real-complex transition) and the topology of the
spectrum are also studied numerically. In Sec. IV, we study
analytically the asymmetrical localization induced by non-
reciprocal hopping. Boundary-dependent properties, such as
critical phase, skin phase, real-complex transition, and topol-
ogy, are also analyzed. Finally, we conclude our main results
and propose experiments in Sec. V.

II. MODEL AND HAMILTONIAN

We consider generalized AAH models, which contain a
tunable relative phase between on-site and off-diagonal in-
commensurate modulations. Non-Hermiticity arises from the
nonreciprocal hopping and the complex phase in the on-site
potential. These models are described by the following tight-
binding Hamiltonian:

H =
∑

j

[t j (e
−ηc†

j c j+1 + eηc†
j+1c j ) + Vjc

†
j c j]. (1)

c†
j (c j ) is the creation (annihilation) operator of a particle at

site j. η characterizes the nonreciprocity of hoppings and is
the source of the non-Hermitian skin effect [43]. t j and Vj

are the modulated hopping amplitude and on-site complex
potential, respectively, which are given by

t j = t + W cos[2πβ( j + 1/2) + θ ],

Vj = 2V cos(2πβ j + θ + δ + ih). (2)

t is the unmodulated part of the hopping amplitude, and it
sets the unit of energy (t = 1). W and V denote modula-
tion amplitudes of off-diagonal hopping and on-site potential,
respectively. θ is a global phase, which is trivial on the local-
ization, and we will set θ = 0 if not specified. δ is the relative
phase between off-diagonal and on-site modulations. In the
presence of phases θ and δ, we can set both W and V positive
real. β is an irrational number characterizing the quasiperiod-
icity of modulations. It usually takes the value of the inverse
of the golden ratio [β = (

√
5 − 1)/2], which in practice is

approximated by rational numbers β = Fn/Fn+1, with Fn the
nth Fibonacci number. Correspondingly, the total number of
lattice sites is L = Fn+1. Furthermore, the imaginary phase ih
characterizes non-Hermiticity of the quasiperiodic potential.
The model is PT -symmetric at least when η = 0 and δ = 0.
The parity operator sends the site index j to − j in Eq. (1), and
the time-reversal operator turns i into −i in Eq. (2).

In the Hermitian limit (η = h = 0), the model reduces to
the one studied in Ref. [21], where phase diagrams on local-
ization have been determined by computing bandwidth. Here,
we determine phase diagrams of the non-Hermitian extension
by analytically computing the localization length, which is
also valid in the Hermitian limit. When η = 0 and W = 0, the
model reduces to the non-Hermitian one studied in Ref. [67].
It showed that PT -symmetry breaking, topological phase
transition, and localization phase transition happen at the
same strength of the quasiperiodic potential. Furthermore, the
special case with δ = 0 was numerically studied in Ref. [78],
where the discordance of three transitions was observed. Here,
for the general model, in addition to the exact solvability,
we further focus on the effects of the non-Hermiticity on
localization and the critical phase, and we study the topology
of the spectrum and PT symmetry breaking (or real-complex
transition of the spectrum). The strategy of our study is that
we first concentrate on the case in which non-Hermiticity is
only from the imaginary phase ih in the potential, which is the
subject of the next section. Then in Sec. IV, we further include
the nonreciprocity η, which is the source of the skin effect and
leads to boundary-dependent behaviors.

III. LOCALIZATION AND TOPOLOGY IN THE ABSENCE
OF NONRECIPROCAL HOPPING (η = 0)

To study localization in the case when the nonreciprocity is
absent, we compute analytically the Lyapunov exponent (LE)
(or the inverse of the localization length) of single-particle
eigenstates by using Avila’s global theory of a one-frequency
analytical SL(2,C) cocycle [85]. Given a single-particle state
|�〉 = ∑

j φ jc
†
j |0〉 with eigenenergy E , the Schrödinger equa-

tion of amplitudes φ j in transfer matrix form is written as

[
φ j+1

φ j

]
= Tj

[
φ j

φ j−1

]
, Tj =

[
E−Vj

t j
− t j−1

t j

1 0

]
. (3)

The LE of the state is computed by

γε = lim
L→∞

1

L
ln

∥∥∥∥
L∏

j=1

Tj (θ + iε)

∥∥∥∥,

where ‖ · ‖ denotes the norm of a matrix. The LE γε=0 = 0
indicates that the state is extended or critical, whereas it is
localized when γε=0 > 0. Notice that analytical continuation
of the global phase (θ → θ + iε) has been performed, which
plays a crucial role in Avila’s global theory. By factorizing out
the unbounded term (t−1

j ) in the matrix Tj , we can rewrite the
transfer matrix as a commutative product. Then, the LE for the
unbounded part can be obtained by turning the product into a
summation and then into an integral. As for the LE for the
remaining matrix, Avila proved that for transfer matrices in
the family of one-frequency analytical SL(2,C) cocycles, the
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LE γε=0 can be obtained from γε→∞. Given that in the limit
ε → ∞ the norm of the transfer matrix is site-independent,
the LE γε→∞ can be easily computed. Including two parts, we
obtain the LE (see the Appendix for details)

γ =
{

max( f1, 0), W � t,
max( f2, 0), W > t,

(4)

where

f1 = max

{
ln

∣∣Ve±(iδ+h) + (−)
√

[Ve±(iδ+h)]2 − W 2
∣∣

t + √
t2 − W 2

}
,

f2 = max

{
ln

∣∣Ve±(iδ+h) + (−)
√

[Ve±(iδ+h)]2 − W 2
∣∣

W

}
.

The LE is an even function of h. Furthermore, quantities f1,2

and then the LE are periodic functions of the relative phase δ

with a period π , and they are also symmetric with respect to
δ = mπ/2, m ∈ Z. Thus, we can restrict δ ∈ [0, π/2]. Then,
when δ ∈ [0, π/2], f1,2 can be simplified to

f1 = ln

∣∣Veiδ+|h| +
√

[Veiδ+|h|]2 − W 2
∣∣

t + √
t2 − W 2

,

f2 = ln

∣∣Veiδ+|h| +
√

[Veiδ+|h|]2 − W 2
∣∣

W
, (5)

by analyzing the magnitudes of the complex numerators
above. Localization phase transition points are determined
by conditions f1(2) = 0, which indicate that the state changes
from extended or critical to localized, or the LE changes from
γ = 0 to γ > 0. f1 = 0 leads to

Ve|h|/t =
√

t2 − W 2

t2 − W 2cos2δ
when W � t, (6)

while f2 = 0 results in

Ve|h| =
{

W if δ = 0,

0 if δ �= 0,
when W > t . (7)

It is worth noticing that f2 = 0 holds in a large area of the
parameter space, which indicates the presence of the critical
phase. The LE and conditions for phase transition are energy-
independent. Thus, there is no mobility edge. They are also
independent of the irrational frequency β and global phase
θ . Furthermore, note that in the exact expressions of the LE
and conditions for phase transition, the imaginary phase ih
only renormalizes the strength V by e|h|. Other than these, the
localization is the same as for the Hermitian model (h = 0).

On the other hand, due to its complex nature, the energy
spectrum of a non-Hermitian system can have nontrivial topo-
logical structures (loops) [41,44,46,48,49,59,67,84]. To study
the topology of the spectrum, the winding number is intro-
duced, which is defined by [41,59,67,84]

νEB = lim
L→∞

1

2π i

∫ 2π/L

0
dθ

∂

∂θ
ln[det(H − EB)]. (8)

It characterizes how the complex spectral trajectory E encir-
cles a base energy EB in the complex energy plane, when θ

changes from 0 to 2π . Similar to the case in the Non-Bloch
band theory [41], the imaginary phase ih complexifies the

artificial “momentum” θ and results in nontrivial winding
numbers. In other words, νEB characterizes the topology of the
spectrum induced by h. Different choices of the base energy
EB give winding numbers characterizing different loop struc-
tures. We concentrate on the most nontrivial winding number
for any EB, i.e., ν = sgn(νEB ) × max(|νEB |),∀EB ∈ C, which
is usually used to characterize the existence of loops in the
complex energy plane [59,67,84].

A. Case δ = 0

From Eqs. (6) and (7), one can clearly see the particularity
of the case δ = 0. Simplified from them, localization transi-
tion points are determined by the condition

Ve|h| = max(t,W ). (9)

When Ve|h| > max(t,W ), the system is in the localized phase,
where all single-particle states are localized with energy-
independent LEs γ > 0. But f1 < 0, γ = 0, all states are
extended, and the system is in the extended phase, when
Ve|h| < t and W < t . When Ve|h| < W and W > t , we have
f2 = 0 and γ = 0, and the system is in the critical phase where
all states are critical. Furthermore, in the localized phase, by
expanding the LE around phase transition points, we have
γ ∝ |Ve|h|/t − 1|1 when W < t . The critical exponent 1 is
the same as that for the classic AAH model, indicating they
are in the same universality class. However, when W > t ,
we obtain γ ∝ |Ve|h|/W − 1|1/2 and the system belongs to a
different and unusual universality class. The critical exponent
1/2 was recently reported in a generalized AAH model with
unbounded potentials [86].

The above analytical results are consistent with numeri-
cal simulations. We adopt exponential wave functions φn

j =
exp(−γn| j − j0|), with j0 the localization center, n the in-
dex of states, and γn the LE. Extracted by fitting numerical
single-particle eigenstates with the above wave functions, the
mean LEs γ = ∑

n γn/L versus V for systems with differ-
ent h are shown in the inset of Fig. 1(a). From hereon, the
averaging is performed over all eigenstates, with n the in-
dex. After rescaling (V → Ve|h|), all curves collapse into a
single one and agree well with the theoretical prediction in
Eq. (4) [see Fig. 1(a)]. Besides, we also calculate the inverse
of the participation ratios (IPRs) and fractal dimensions of
single-particle states. For a normalized state, the IPR is de-
fined by P = ∑

j |φ j |4. In general, the IPR P ∝ L−α with α

the fractal dimension. For an extended state, P ∝ 1/L and
α = 1, whereas the IPR approaches 1 and α = 0 for a lo-
calized state. States with 0 < α < 1 are critical and have
multifractal properties. In Fig. 1(b), we present a mean fractal
dimension MFD = ∑

n αn/L in the (Ve|h|,W ) plane, which is
numerically extracted by the box-counting method [84]. The
boundary between localized and extended (critical) phases is
precisely described by Eq. (9), and the black dashed-dotted
line corresponds to W = t , separating extended and critical
phases. After the rescaling, the phase diagrams are the same
for systems with different h, including the Hermitian one [21].

In addition to localization of states, we also study the
properties of the spectrum. In Fig. 1(c) we show an example of
how the spectrum changes as V increases. The real-complex
transition (or PT symmetry breaking) most likely happens
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FIG. 1. Generalized AAH model in the absence of nonreciprocal
hopping (η = 0) and with relative phase δ = 0. In (a) and its inset we
present mean LEs vs Veh and V , respectively, for systems with W =
0.8. (b) Mean fractal dimension in the (Veh,W ) plane for the system
with h = 0.2. (c) Spectra in the complex energy plane for systems
with W = 1.5 and h = 0.2. In (d) and its inset we show winding
numbers vs Veh and V , respectively, for systems with W = 0.5. The
size of the lattice is L = 610.

at V = 0, since as V increases there is no sharp increase in
the largest value of log10 |Im(E )|. The sharp increase is a
characteristic signature of the transition [87]. Moreover, there
are loops in the spectrum when the system is in the local-
ized phase, while they are absent in the extended and critical
phases. To characterize the presence of loops, we present
winding numbers versus V in the inset of Fig. 1(d), which are
numerically calculated by Eq. (8). After the rescaling, they
all collapse into one curve [Fig. 1(d)]. The topological phase
transition point is the same as the localization one (dot line).
Winding numbers in different phases are shown in Fig. 1(b).

B. Case δ = π/2

When δ = π/2, the condition for the localization phase
transition reduces to

Ve|h| =
√

t2 − W 2 if W � t,

V = 0 if W > t . (10)

Except for the renormalization of V by e|h|, the localization
is still the same as for the Hermitian model. In Fig. 2(a)
we present numerical mean LEs, which agree well with and
validate the theoretical prediction in Eq. (4). Besides, in
Fig. 2(b) we show the mean inverse of the participation ra-
tio, MIPR = ∑

n Pn/L, in the (Veh,W ) plane. When Ve|h| <√
t2 − W 2 and W < t , the system is in the extended phase,

MIPR ∝ 1/L, mean fractal dimension MFD � 1, and LEs
γ = 0. Elsewhere, except when W > t and V = 0, the system
is in the localized phase, MIPR approaches 1, MFD � 0, and
LEs γ > 0. Critical states only exist at the boundary between
phases or when W > t and V = 0, which are in agreement
with Eqs. (10).

FIG. 2. Generalized AAH model in the absence of nonreciprocal
hopping (η = 0) and with δ = π/2. (a) Mean LEs vs Veh for systems
with different W and h. (b) The quantity log10(MIPR) in the (Veh,W )
plane for the system with h = 0.2. (c) Spectra of systems with
h = 0.2. In (d) and its inset we present winding numbers vs Veh and
V , respectively, for systems with W = 0.5. The size of the lattice is
L = 610.

We present typical spectra in Fig. 2(c). The spectrum of
the system is complex, as long as V > 0, W > 0, and h �= 0.
Moreover, there is no loop when the system is in the extended
phase, while there are when in the localized phase. We present
winding numbers versus Veh (V ) in (the inset of) Fig. 2(d),
where the topological phase transition point is the same as
the localization one (dot line). Winding numbers in different
phases are also shown in Fig. 2(b).

With a general δ, the system has similar localization and
topological properties as in the case δ = π/2. Numerical
mean LEs still agree with the theoretical prediction in Eq. (4),
and the rescaling and collapse still hold (not shown). In Fig. 3,

FIG. 3. The quantity log10(MIPR) of the generalized AAH
model in the absence of nonreciprocal hopping (η = 0), and with
δ = π/5, h = 0.2, and L = 610.
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we present a typical mean inverse of the participation ratio in
the (Veh,W ) plane, which has the same structure as the one for
δ = π/2. Dotted lines, describing phase boundaries that are
different from the ones for δ = π/2, correspond to Eqs. (6)
and (7). The spectrum of the non-Hermitian system is still
complex. There are loops in the spectrum when the system is
in the localized phase; otherwise, there are not. Corresponding
winding numbers are shown in Fig. 3, and the topological
transition point is still the same as the localization one.

IV. ASYMMETRICAL LOCALIZATION IN THE
PRESENCE OF NONRECIPROCAL HOPPING (η �= 0)

In the presence of nonreciprocal hopping, the model
supports the non-Hermitian skin effect and it has a boundary-
dependent spectrum and states. We first concentrate on the
case under open boundary condition (OBC). Analytical local-
ization properties can be explored by employing a similarity
transformation. Under OBC, the Hamiltonian in Eq. (1) can
be mapped to

H1 =
∑

j

[t j (ã ja j+1 + ã j+1a j ) + Vjã ja j] (11)

by the asymmetric similarity transformation c j = eη ja j and
c†

j = e−η j ã j . a j (ã j) is the annihilation (creation) operator
of a particle. [a j, ã j′ ]± = δ j j′ , but ã j is not the Hermitian

conjugate of a j due to the non-Hermiticity of the system. The
Hamiltonian H1 has the same single-particle physics as the
Hamiltonian H (η = 0), in which the nonreciprocal hopping
is absent. Related by the transformation, Hamiltonians H and
H (η = 0) have exactly the same spectra and winding numbers
under OBC.

As for the single-particle states, a correspondence can be
made. Given that φn

j is a right eigenstate of H1, ϕn
j = eη jφn

j is
an eigenstate of H . This clearly shows how the nonreciprocal
hopping affects states in different phases: for extended and
critical eigenstates of H1, corresponding wave functions ϕn

j

are localized at the right end with left side LEs γ L = |η| when
η > 0, or at the left end with right side LEs γ R = |η| when
η < 0; for localized eigenstates of H1, wave functions ϕn

j have
the form

ϕn
j ∝

{
e−(γ−η)( j− j0 ), j > j0,
e−(γ+η)( j0− j), j < j0,

(12)

where γ was given in Eq. (4). Thus, in the localized phase,
the right and left side LEs are γ R = γ − η and γ L = γ + η,
respectively. Apparently, under OBC, states are asymmetri-
cally localized due to the presence of nonreciprocal hopping.
The condition γ − |η| > 0 indicates bulk localization of all
eigenstates, while γ − |η| < 0 implies that the system is in
the skin phase where all eigenstates are located at the edge.
The condition γ − |η| = 0 determines phase transition points.
Putting Eqs. (4) and (5) in, we obtain the condition for local-
ization phase transition,

[Ve|h|]2

[
cos2 δ

(t cosh |η| + √
t2 − W 2 sinh |η|)2

+ sin2 δ

(t sinh |η| + √
t2 − W 2 cosh |η|)2

]
= 1 when W � t,

[
Ve|h|

W

]2
[

cos2 δ

cosh2 |η| + sin2 δ

sinh2 |η|

]
= 1 when W > t . (13)

A. Case δ = 0

When δ = 0, the condition for the phase transition in
Eqs. (13) reduces to

Ve|h| = t cosh |η| +
√

t2 − W 2 sinh |η| if W � t,

Ve|h| = W cosh |η| if W > t . (14)

The above analytical results for systems under OBC are con-
sistent with numerical simulations. In Fig. 4(a) and its inset
we show numerical mean left and right side LEs versus Veh,
respectively. The imaginary phase ih in the potential still
renormalizes V by e|h|, and the rescaling and collapse still
hold, regardless of the value of relative phase δ (not shown).
When Ve|h| is small, the system is in the skin phase [59,76],
where all states are localized at one edge. Here, for a positive
η, states are localized at the right edge, γ L = η, and γ R is
undefined. When Ve|h| is large enough, the system is in the lo-
calized phase, states are asymmetrically localized in the bulk,
and γ L = γ R + 2η. States in both skin and localized phases
are localized, but with different localization details. Transition
points are determined by Eqs. (14) (dot lines), where γ L expe-

rience a sudden jump of size 2η. Just before the transition, the
system is still in the skin phase but with a decreasing γ L, and
delocalization of states happens. The delocalization proceeds
from the transition point of the corresponding system with
η = 0 [Eqs. (9) and dashed-dotted lines in Fig. 4(a)] to the
transition point of the system with finite η [Eqs. (14) and
dashed lines in Fig. 4(a)]. Besides LEs, in Fig. 4(b) we further
show log10(MIPR) in the (Ve|h|,W ) plane. The mean inverse
of the participation ratios approaches 1 in both the skin and
localized phases. Phase transition points correspond to the
most extended cases with the smallest MIPR, which agree
with the condition in Eqs. (14) (dashed lines).

Under the periodic boundary condition (PBC), the similar-
ity transformation does not work, and systems have different
properties of states and spectra. In Fig. 4(c) we present the
mean fractal dimension of states in the (Veh,W ) plane. The
renormalization effect of ih still holds. When Ve|h| is small,
the system is in the extended phase with MFD � 1 if W < t ,
and in the critical phase with 0 < MFD < 1 if W > t , which
both turn into the skin phase when under OBC. The system
is in the localized phase for a large enough Ve|h|. Given that
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FIG. 4. Generalized AAH model in the presence of nonrecipro-
cal hopping (η = 0.5) and with δ = 0. In (a) and its inset, we show
mean left and right side LEs vs Veh, respectively. (b) The quantity
log10(MIPR) in the (Veh,W ) plane. In (a) and (b), OBC is used, the
lattice size is L = 233, and h = 0.2. (c) Mean fractal dimension in
the (Veh,W ) plane. (d) Typical spectra. In (c) and (d), PBC is used,
the lattice size is L = 610, and h = 0.2. Dashed lines correspond to
Eqs. (14), and dashed-dotted ones correspond to Eq. (9).

localized states in the bulk should be independent of boundary
conditions, localization details in the localized phase are the
same when under different boundary conditions, and phase
transition points are still described by Eqs. (14) (dashed lines).
The region of critical phase is enlarged due to the presence of
nonreciprocal hopping [see Figs. 1(b) and 4(c)]. In addition,
in Fig. 4(c) we also show winding numbers of spectra for
systems under PBC. The topological phase transition point
is the same as the localization one, while it is not the same
in the case when under OBC [see Figs. 1(b) and 4(b)]. Fur-
thermore, the winding number is no longer an indicator of the
presence of loops in the spectrum when both η and h are finite.
In Fig. 4(d) we present typical spectra in different phases
for systems under PBC. Loops always exist except at the
phase transition points, but winding numbers are zero in both
extended and critical phases. The topology of the spectrum
can originate from the nonreciprocity η, which the winding
number ν cannot characterize. The spectrum of the system is
complex as long as the model is non-Hermitian.

B. Case δ = π/2

When δ = π/2, phase transition points are determined by
the condition

Ve|h| = t sinh |η| +
√

t2 − W 2 cosh |η| if W � t,

Ve|h| = W sinh |η| if W > t . (15)

In Fig. 5(a) and its inset, we present numerical mean left and
right side LEs versus Veh, respectively, for systems under
OBC. Similar to the case δ = 0, the system is in the skin
phase when Ve|h| is small, while it is in the asymmetrically
localized phase for a large enough Ve|h|, and γ L = γ R + 2η.

FIG. 5. Generalized AAH model in the presence of nonrecip-
rocal hopping (η = 0.3) and with δ = π/2. In (a) and its inset,
we present mean left and right side LEs vs Veh, respectively, for
systems under OBC and with h = 0.2 and L = 233. (b) Mean fractal
dimension of the system under PBC and with h = 0.2 and L = 610.

Transition points are described by Eqs. (15) (dash lines),
where there exists a sudden jump of 2η for γ L. The delocal-
ization of states still proceeds between the above-mentioned
two phase transition points [Eqs. (10) and (15), and dashed
(dotted) lines in Fig. 5(a)]. But here, the system in the skin
phase is always delocalizing when W > t , since the transition
point is at V = 0 when η = 0. On the other hand, due to the
boundary-dependent nature, in Fig. 5(b) we show the mean
fractal dimension in the (Veh,W ) plane for a system under
PBC. Since localized bulk states are independent of boundary
conditions, localization properties in the localized phase and
transition points are the same for systems under OBC and
PBC. However, before the transition, things are different. Un-
der PBC, the nonreciprocal hopping leads to a critical phase
when W > t , while the system is in the extended phase when
W < t . The stronger the nonreciprocity η is, the larger is the
region of the critical phase, which is absent when η = 0. Both
phases turn into the skin phase when the boundary condition
changes into OBC. Winding numbers of spectra for systems in
different phases are also shown in Fig. 5(b), and the topologi-
cal phase transition is in agreement with the localization one.
Loops always exist in spectra except at the phase transition
points, and spectra are complex when η, h, and V are finite.

With a general δ, the system has similar localization and
topological properties to those in the case δ = π/2. In Fig. 6,
we show a typical mean fractal dimension of a system under
PBC, along with winding numbers of spectra in different
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FIG. 6. Mean fractal dimension of the generalized AAH model
in the presence of nonreciprocal hopping (η = 0.3), and with δ =
π/5, h = 0.2, and L = 610. PBC is used.

phases. Phase boundaries are determined by Eqs. (13) (dashed
line). Under PBC, the nonreciprocal hopping is in favor of the
critical phase when W > t . Both extended and critical phases
turn into the skin phase when PBC changes into OBC. When
W > t the system in the skin phase is always delocalizing.
The spectrum is complex and loops always exist.

V. CONCLUSION AND DISCUSSION

We have studied localization and topological properties of
generalized AAH models with both on-site and off-diagonal
modulations. A relative phase between two modulations is
introduced, and its effects have been thoroughly studied. Non-
Hermiticity arises from the nonreciprocal hopping and the
complex phase in the potential. Applying Avila’s global the-
ory, we first analytically computed the LE of single-particle
states for systems in the absence of nonreciprocal hopping,
which is also valid in the Hermitian case. Based on that,
we analyzed localization properties and determined phase
diagrams. The localization is the same as in the Hermitian
case, except that the complex phase renormalizes the strength
of the potential. The same renormalization effect was ob-
served in a non-Hermitian model with only on-site modulation
[67]. When the off-diagonal modulation is strong enough, the
model is in a different universality class from the one for the
classic AAH model. Topological phase transition is in agree-
ment with the localization one. Winding numbers correctly
characterize the presence of loops in spectra. The spectrum of
the system is complex as long as the model is non-Hermitian.

In the presence of nonreciprocal hopping, the model sup-
ports the skin effect and has a boundary-dependent spectrum
and states. Under OBC, localization properties of systems
can be analytically studied by employing a similarity trans-
formation, and phase diagrams are precisely determined. The
system turns from the skin phase into the asymmetrically lo-
calized phase as the strength of the potential increases. When
the boundary condition changes from open to periodic, the
skin phase turns into the extended and critical phases, while
the localized phase does not change. Nonreciprocal hopping is
in favor of the critical phase when under PBC. Loops always
exist in spectra, and spectra are complex. The topological

phase transition is still in agreement with the localization one,
but the winding number is no longer a proper indicator of the
presence of loops in the spectrum.

The single-particle physics studied above can be experi-
mentally tested in electric circuits [74], which recently have
turned out to be powerful platforms to simulate non-Hermitian
and/or topological phases [38]. The eigenvalue problem is
simulated by Kirchhoff’s current law Ia = ∑L

b=1 JabVb, where
the Laplacian of circuit J acts as the effective Hamiltonian,
and Ia and Va are the current and voltage at node a. On-site
complex potentials are provided by grounding nodes with
proper resistors [88], and nonreciprocal hoppings are realized
by negative impedance converters with current inversion (IN-
ICs) [89]. Furthermore, the boundary-dependent spectra could
be obtained by measuring two-node impedances [69].
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APPENDIX: COMPUTATION OF THE LYAPUNOV
EXPONENT

Factorizing out the unbounded term, we rewrite the transfer
matrix in Eq. (3) as

Tj =
[

E−Vj

t j
− t j−1

t j

1 0

]
= AjBj, (A1)

where

Aj = 1

t + W cos[2πβ( j + 1/2) + θ ]
,

Bj =
[

E − Vj −t j−1

t j 0

]
. (A2)

t j and Vj are the modulated off-diagonal hopping and on-site
complex potential, respectively [Eqs. (2)]. The LE of the
single-particle state is computed by

γ (E ) = lim
L→∞

1

L
ln

∥∥∥∥
L∏

j=1

Tj

∥∥∥∥
= lim

L→∞
1

L
ln

∥∥∥∥
L∏

j=1

Aj

∥∥∥∥ + lim
L→∞

1

L
ln

∥∥∥∥
L∏

j=1

Bj

∥∥∥∥
= γ A(E ) + γ B(E ), (A3)

where ‖ · ‖ denotes the norm of a matrix, which is defined by
the largest absolute value of its eigenvalues. Applying ergodic
theory [90] and Jensen’s formula [91], we obtain

γ A(E ) = lim
L→∞

1

L
ln

L∏
j=1

1

|t + W cos[2πβ( j + 1/2) + θ ]|

= 1

2π

∫ 2π

0
ln

1

|t + W cosθ |dθ

=
{

ln 2
t+√

t2−W 2 , W � t,

ln 2
W , W > t .

(A4)
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To compute γ B(E ), we employ Avila’s global theory. The first
step in the computation is to carry out an analytical contin-
uation of the global phase, i.e., θ → θ + iε. In the absence
of ambiguity, we will use the same symbol for a quantity
and its analytical continuation. In the limit ε → +∞, a direct
computation yields

Bj (ε → +∞) = e−i2πβ j+ε

[−Ve−iδ+h −Weiπβ/2
We−iπβ/2 0

]
+ o(1),

(A5)
which leads to

γ B
ε→+∞(E ) = ε + max

{
ln

|Veiδ+h ±
√

[Veiδ+h]2 − W 2|
2

}
.

(A6)
On the other side, in the limit ε → −∞, we obtain

Bj (ε → −∞) = ei2πβ j−ε

[−Veiδ−h −We−iπβ/2
Weiπβ/2 0

]
+ o(1),

(A7)
and the corresponding LE is

γ B
ε→−∞(E )=|ε|+ max

{
ln

|Ve−(iδ+h)±
√

[Ve−(iδ+h)]2−W 2|
2

}
.

(A8)

According to Avila’s global theory, as a function of ε, γ B
ε (E )

is a convex, piecewise linear function with integer slopes.
Moreover, the theory shows that the energy E does not belong
to the spectrum if and only if γ B

ε=0(E ) > 0, and γ B
ε (E ) is

an affine function in the neighborhood of ε = 0. Including
γ A(E ), we obtain the LE of the single-particle state,

γ (E ) =
⎧⎨
⎩max

(
f + ln 2

t+√
t2−W 2 , 0

)
, W � t,

max
(

f + ln 2
W , 0

)
, W > t,

(A9)

where

f = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln |Veiδ+h+
√

[Veiδ+h]2−W 2|
2

ln |Veiδ+h−
√

[Veiδ+h]2−W 2|
2

ln
|Ve−iδ−h+

√
[Ve−iδ−h]2−W 2|
2

ln
|Ve−iδ−h−

√
[Ve−iδ−h]2−W 2|
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A10)
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