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Deciphering a structural signature of glass dynamics by machine learning
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The dynamics of atoms plays a key role in governing various dynamical and transport properties of glasses.
However, it remains elusive which structural features (if any) control atom dynamics in glasses. Here, based on
million-atom molecular dynamics simulations and classification-based machine learning, we extract a needle in
a haystack by identifying a local, nonintuitive structural signature (a revised version of the recently developed
softness metric) that governs glass dynamics. We do so by investigating the ion mobility in sodium silicate
glasses—a realistic, archetypal glass—finding that the sodium ion mobility is largely encoded in its initial
softness, wherein softer Na atoms exhibit higher mobility. Importantly, our approach allows us to interpret the
machine-learned softness metric and thus elucidate the atomistic origin of the ion mobility. Namely, we find
that Na mobility is anticorrelated with the local density of defect oxygen neighbors that are located between the
nearest two coordination shells. This local packing order offers a potential path to develop glass formulations
with tailored dynamical properties. Finally, we demonstrate that the softness is strongly anticorrelated with the
activation energy for Na atom reorganization.
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I. INTRODUCTION

The origin and nature of glass dynamics—i.e., the dy-
namic motion of the atoms in the glassy state—have remained
mysterious for centuries [1–3]. A prominent example of
this mystery is manifested as the ubiquitous-yet-indefinite
relaxation behaviors of glasses at room temperature [4–6].
Indeed, the dynamics of the atoms governs various dynam-
ical and transport properties of the glass [7,8], including
viscosity [9,10], thermal conductivity [11,12], and ion diffu-
sivity [13,14]. In that regard, understanding the key structural
features that control atom dynamics would facilitate the ra-
tional design of tailored glasses [15,16]. However, due to the
complex and disordered nature of glass structures [17,18],
pinpointing which structural features (if any) govern dy-
namics is essentially a needle-in-a-haystack problem [19–21]
since intuitive structural metrics [e.g., local packing or coor-
dination number (CN)] are often only weakly correlated with
dynamics [22–24]. As a result, a long-standing debate exists
about whether glass dynamics is in some way encoded in the
static glass structure [25].

As an emergent thrust to discover hidden patterns in com-
plex, multidimensional data [26–28], machine learning (ML)
has become a paradigm to unveil the nature of the linkages
between glass dynamics and its static structure—without the
need for any prerequisite intuition regarding which struc-
tural feature(s) could be influential [25,29–31]. Schoenholz
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et al. [31], Cubuk et al. [32,33], and Sussman et al. [34]
recently used classification-based ML to extract a nonintu-
itive structural fingerprint (named sof tness) which is strongly
correlated with the probability of a particle to exhibit some
rearrangement upon loading or spontaneous relaxation. Nev-
ertheless, due to the intrinsic complexity of the ML model, our
understanding of how glass dynamics is controlled by its static
structure is still limited [25,31]. Specifically, although a few
studies revealed that more liquidlike local neighborhoods tend
to enhance atom mobility [24,31,33], it remains elusive what
types of structural features are key to determine its liquidlike
level and therefore control atom mobility in glasses [35–38].
Moreover, as the ML approach has thus far been applied
to only some simple and small glass systems that may not
capture the complex chemistry of more realistic ionocovalent
oxide glasses [39–42], little is known about the level of corre-
lation between glass dynamics and its static structure in more
complex real-world glasses [30–32].

Here, inspired by the softness approach [31–33], we in-
troduce a slightly revised definition for softness (relying on
logistic regression and radial features, see below)—which we
recently proposed to successfully predict creep dynamics of
silicate gels from their static structure [43]—and apply it to
investigate ion mobility in sodium silicate glasses, an archety-
pal glass with relevance in various fields such as household
windows [1,2], display screens [16,44], magmatic rocks [10],
and battery electrolytes [45,46]. It is worth mentioning that,
by conducting million-atom molecular dynamics (MD) simu-
lations, we extend the softness approach to investigate a more
realistic and larger glass system (<104 atoms) [32,35,39].
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TABLE I. Interatomic potential parameters [47]. The superscript
of each element is the element charge.

Interaction Ai j (eV) ρi j (Å) Ci j (eV|Å6)

O−1.2–O−1.2 1844.7458 0.343645 192.580
Si+2.4–O−1.2 13702.9050 0.193817 54.681
Na+0.6–O−1.2 4383.7555 0.243838 30.700

Indeed, we find that the Na atom mobility is largely encoded in
its initial softness, where a softer Na atom exhibits higher mo-
bility, and the predictive power of Na atom softness remains
valid when extrapolating to higher-temperature or longer-time
glass dynamics. Importantly, we demonstrate that the softness
effectively captures the activation energy for Na atom reorga-
nization, suggesting that the initial static structure can dictate
the topography of the local energy landscape. Finally, the use
of logistic regression allows us to interpret the ML softness
metric. By decoding the softness, we conclude that the sodium
ion mobility is highly controlled by the local density of defect
oxygen neighbors that are located between the first and second
coordination shells.

II. METHODS

A. Interatomic potential interaction in sodium silicate glasses

To establish our conclusions, we simulate the sponta-
neous relaxation process of a (Na2O)30(Si O2)70 glass. The
interatomic potential adopted herein is the well-established
Teter potential [14,47,48], which has been proven to offer
an accurate description of various structural, dynamical, and
thermodynamical properties of silicate glasses [10,12,48,49].
In general, ionocovalent glasses (e.g., sodium silicate glasses)
can be well described by using only radial two-body in-
teractions [12,50], and each pairwise interaction consists of
both the long-range Coulombic interaction and the short-
range interaction. The Coulombic interaction is evaluated by
a damped shifted force model [51] with a damping parameter
of 0.25 and a cutoff of 8 Å [52,53], and partial charge is
used for each element [54] (see Table I). The short-range
interactions of Si–Si, Si–Na, and Na–Na are set to zero, and
a Buckingham-format potential is adopted to describe the
short-range interaction of the other atom pairs (Si–O, O–O,
and Na–O) [12,48,53]:

Ui j = Ai jexp

(
− ri j

ρi j

)
− Ci j

r6
i j

, (1)

where ri j is the distance between each pair of atoms, and Ai j ,
ρi j , and Ci j are some parameters describing the short-range
interactions (see Table I). A cutoff of 8 Å is consistently used
for the short-range interactions [12,48]. Note that a repulsive
term is introduced for small ri j values to prevent atom overlap,
known as the Buckingham catastrophe [52], and is calculated
so that the modified potential and its derivative are both con-
tinuous [48,49].

B. Preparation of melt-quenched (Na2O)30(Si O2)70 glasses

We then prepare the (Na2O)30(Si O2)70 glasses by a
melt-quenching MD simulation. First, we construct a large

configuration that contains 1 million atoms (i.e., 205 800 Na
atoms) in a cubic box with periodic boundary conditions and
a side length of 241 Å, in agreement with the experimental
density (2.466 g/cm3) [48]. Note that, as an independent test
configuration (see Sec. III C), we also construct a small 3000-
atom system subjected to the same simulation protocol. The
NVT ensemble is applied in the entire simulation process
using a Nosé-Hoover thermostat [55], and the timestep is fixed
as 1 fs. Note that the Nosé-Hoover thermostat generally offers
realistic atom trajectories suitable for the statistical analyses
in this paper [56]. The system is initially melted at 4000 K for
100 ps. The glass is prepared by melt quenching from 4000 to
400 K with a cooling rate of 1 K/ps, and the glass transition
temperature Tf is ∼2100 K (see Sec. S1.1 in the Supplemental
Material [57]). Partial pair distribution functions of the simu-
lated glass are computed as an initial static structural reference
(see Sec. S1.2 in the Supplemental Material [57]). During
the melt-quenching process, we take out the configurations at
several selected temperatures, including 400, 600, 700, 800,
1000, 1500, 2000, and 2500 K, to performance spontaneous
relaxation simulations under the selected temperatures.

C. Tracing Na atom motions in glasses at constant temperatures

Finally, using the prepared glass configurations, we con-
duct relaxation simulations at the selected temperatures and
track the location of atoms (Na) over time. Specifically, we
conduct short-time relaxation simulations at 400, 600, 800,
1000, 1500, 2000, and 2500 K, respectively, for 50 ps, and
a long-time simulation at 700 K for 5 ns. Note that, if not
specified, all the analyses conducted in the following are based
on the relaxation simulation of the glass at 700 K during
the initial 50 ps. This temperature is large enough to activate
the motion of an Na atom but simultaneously low enough to
ensure that Si and O network-forming atoms remain largely
immobile within the time of the simulation (see Secs. S1.3
and S1.4 in the Supplemental Material [57]). All simulations
are performed by using the LAMMPS code [58].

III. RESULTS

A. Mobile vs immobile Na atoms

Based on the trajectories of Na atoms, we identify herein
those mobile Na atoms that can easily reorganize to new
sites, from the immobile atoms that only vibrate around their
original locations. Figure 1 shows the distribution of the
displacement D of Na atoms at the end of the relaxation simu-
lation. Here, D is calculated as the distance between the initial
and final positions of the atom during the relaxation. Notably,
the distribution profile features two peaks associated with two
atom ensembles—namely, immobile (D < D0) and mobile
(D � D0) Na atoms, respectively, wherein D0 is the thresh-
old displacement that distinguishably separates the two peaks
(herein, D0 = 2 Å, i.e., the local minimum between the two
peaks), and the two ensembles represent the populations of Na
atoms that are (i) simply vibrating while remaining trapped
in their local pocket and (ii) Na atoms that have jumped to
another pocket during the time of the simulation, respectively
[13]. In the following, we use this threshold D0 to classify
Na atoms as immobile (low displacement) or mobile (high
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FIG. 1. Distribution of the displacement D of Na atoms in a
(Na2O)30(Si O2)70 glass at the end of the relaxation simulation.
The system contains 205 800 Na atoms and is relaxed at a constant
temperature (700 K) and volume for 50 ps. The green dash refers to a
selected threshold displacement D0 = 2 Å that discriminates mobile
Na atoms from immobile Na atoms. The inset is a colormap of the
displacement of Na atoms in the bonded silicate network.

displacement). Based on this threshold, ∼39.7% Na atoms are
classified as mobile during the relaxation. Note, however, that
the following analysis is largely insensitive to small variations
of the selected threshold and does not significantly depend
on the arbitrary choice of this threshold displacement (see
Sec. S2 in the Supplemental Material [57]). Finally, it should
be pointed out that, compared with other metrics of atom
mobility (e.g., nonaffine squared displacement [43,59]), the
present D metric is simpler but cannot identify mobile Na
atoms exhibiting complex diffusion paths back to their initial

positions—which turn out to be rarely likely in the present
system (see Sec. S3.1 in the Supplemental Material [57]).

B. ML Na atom softness by mobility classification

We now investigate whether the propensity for an Na atom
to be mobile or immobile (i.e., a dynamic property) could be
in some way encoded in its initial static structure. To this end,
following the example of the softness approach [31–33], we
construct by ML a structural quantity that is correlated with
the mobility of Na atoms during the relaxation process. Each
step of the ML process is detailed in Sec. S2.1 in the Supple-
mental Material [57] (see also Refs. [60,61] therein). Briefly,
based on the present simulation, we first build a dataset that
contains 205 800 Na atoms from the large (Na2O)30(Si O2)70
glass configuration simulated herein, where 70% of the Na
atoms serve as a training set. Note that the size of the training
set has been proven to be large enough to eliminate the risk of
sample deficiency for the ML model training (see Sec. S2.2
in the Supplemental Material [57]). Then all Na atoms are
labeled as mobile (D � D0) or immobile (D < D0) by com-
paring their displacement D with the threshold displacement
D0 at the end of the relaxation simulation. We then train a
classifier to identify an optimal classification hyperplane that
separates mobile from immobile Na atoms in a standardized
Nr-dimensional classification space, as illustrated in Fig. 2(a).
Here, the Nr input features (i.e., the classification space) of the
classifier are constructed by computing (based on the initial
static structure before the relaxation simulation) a series of Nr

radial order parameters G(i; r) that describe the local oxygen
density of each Na atom i at different distances r [33,43]:

G(i; r) =
∑

j

exp

[
− (Ri j − r)2

L2

]
, (2)

(a) (b) (c)

FIG. 2. (a) Schematic of the classification model used to separate mobile Na atoms (red circle) from immobile Na atoms (blue square)
using a classification hyperplane (green line). The input features are constructed by a series of Nr structural order parameters G(i; r) that
describe the local oxygen density of each Na atom i at different distances r [see Eq. (2)]. For illustration purposes, here, two input features
associated with the distances r1 = 2.36 Å and r2 = 4.68 Å (i.e., the average distance of the first and second coordination shell, respectively)
are selected to represent the Nr-dimensional feature space. The hyperplane is identified by logistic regression. (b) Distribution density of the
final displacement D and initial softness S Na atoms. The softness S is defined as the orthogonal distance between the atom and the hyperplane
in classification space [see (a)]. Mobile and immobile atoms correspond to positive and negative S, respectively. The dataset contains 205 800
Na atoms from a large (Na2O)30(Si O2)70 configuration with 39.7% mobile Na (D � D0) and is randomly divided into the training (70%) and
test sets (30%). (c) Final average Na atom displacement 〈D〉 of the training and test sets as a function of their initial softness S. The blue line
is a power fit to guide the eye.
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where j refers to the neighbor O atom of Na atom i within
a cutoff distance RG (here, RG = 8 Å [33,62]), Ri j is the dis-
tance between the atom i and j, and L is the standard deviation
of the Gaussian functions centered around r (here, L = 0.2 Å
[33,62]). Overall, we calculate for each Na atom a series of
G(i; r) ranging from r = 1.6 to 6.4 Å with an increment of
0.3 Å [33,62], and the ensemble of these metrics offers an
unbiased fingerprint of the local radial order around each Na
atom.

For each Na atom, we extract a synthetic, local structural
quantity softness from the classifier, where the softness S is
defined as the orthogonal distance between the atom and the
hyperplane in classification space [see Fig. 2(a)], and mobile
and immobile atoms correspond to positive and negative val-
ues of S, respectively. Unlike the original softness approach
that uses as inputs both radial and angular order features
[31–33], we here solely focus on radial features capturing
two-body correlations around each Na atom. This is key to
ensure that our softness metric remains highly interpretable
(see Sec. III D). Note that, since the Na–O interaction is nondi-
rectional, incorporating angular three-body order parameters
does not notably increase the classification accuracy (see Sec.
S3.2 in the Supplemental Material [57]), in agreement with
previous studies in Lennard-Jones systems [31,34]. In that
regard, limiting the number of input features also ensures
that the model does not become overfitted. Moreover, as an
alternative to the support vector machine-based classifying
technique adopted by the original softness approach [31–33],
we use logistic regression to build the classifier [63], which
offers great model simplicity, accuracy, and interpretability
[43,63] (see Sec. S2.1 in the Supplemental Material [57]).
Indeed, logistic regression directly provides the probability of
a given atom to be mobile or immobile. In addition, it embeds
regularization to limit the risk of overfitting. Importantly, the
classification hyperplane determined by logistic regression is
linear, which makes it possible to easily assess the importance
of each feature. We also expect that the linear nature of the
hyperplane is key to enhance the extrapolability of the classi-
fication model.

C. Softness governing Na atom dynamics

We now analyze the outcome of the classification. Fig-
ure 2(b) shows the distribution density of the final displace-
ment D and initial softness S of Na atoms. We find that the
softness sign (S > 0 or S < 0) can properly separate mobile
(D � D0) and immobile (D < D0) Na atoms with a decent
classification accuracy of ∼63% for both the training and test
sets. Note that the accuracy remains limited as many soft Na
atoms (S > 0) remain trapped in the cage effect (D < D0)
under the fairly low relaxation temperature selected herein
(see Sec. IV B) [13]. In contrast, at elevated temperature, the
static structure tends to lose its predictivity of the long-time
glass dynamics as the system quickly loses the memory of its
initial structure [25]. Further, Fig. 2(c) shows the final average
Na atom displacement 〈D〉 of both the training and test sets
as a function of their initial softness S. Interestingly, we find
that the magnitude of Na atom displacement features a power
law dependance on softness, where softer Na atoms exhibit
larger displacement during the relaxation, and vice versa, as

described in the form of D ∝ Sλ by shifting S to the positive
axis and assigning a fitting exponent to S. This power law
correlation is likely rooted in an intimate link between Na
atom softness and the energy barrier for the atom to rearrange
during relaxation (see Sec. IV C), which echoes recent studies
that reveal a generic power law relationship between particle
displacement D and the associated energy barrier Eb to over-
come in disordered materials, namely, D ∝ Eλ

b [64,65].
For Na atoms belonging to the test set, it is notable that the

degree of correlation remains high between their softness and
dynamics. Figure 3(a) shows a snapshot of the predicted Na
atom softness in an additional 3000-atom (Na2O)30(Si O2)70
glass that is simulated herein as a fully independent test set.
Note that the test glass is prepared by the same simulation
protocol as that of the large training configuration (see Sec. II),
and all the analyses herein are based on its relaxation simula-
tion after 50 ps at 700 K. The distribution of softness (both
for all Na atoms and for mobile Na atoms in the glass) is pro-
vided in Fig. 3(b). We find that the classification accuracy is
satisfactory as ∼64% of the mobile Na atoms indeed exhibit a
positive softness (S > 0). Further, we calculate the probability
PR(S) of an Na atom to rearrange (D � D0) as a function of its
initial softness S [Fig. 3(c)]. Interestingly, we find that PR(S)
exhibits an exponential dependance on S, as it is following an
activated process [66,67]:

PR(S) = P0exp(βS), (3)

where P0 and β are fitting parameters. In accordance with the
power law correlation between the final displacement D and
initial softness S of Na atoms [see Fig. 2(c)], this exponential
correlation between PR(S) and S suggests that the structural
quantity S is closely related to (and might be indicative of) the
energy barrier associated with Na atom rearrangement (see
Sec. IV C) [31,42,68], as suggested in a recent study of the
creep dynamics of gels [43]. Note that softness is calculated
based on the sole knowledge of the initial structure, whereas
the Na atom displacement is computed at the end of the
relaxation simulation. The high degree of correlation between
initial softness and final displacement clearly illustrates the
intimate link between glass dynamics and its initial static
structure.

D. Structural interpretation of Na atom softness

Finally, we discuss the structural interpretation of the ML
softness metric. Indeed, the hyperplane created by logistic
regression can be expressed as a linear equation of each of
the features as [see Fig. 2(a)]

�rw(r)G(i; r) = b, (4)

wherein w(r) and b are the coefficients and the bias of the
logistic regression model, respectively. Note that, all input
features G(i; r) have been standardized (before training) so
that the coefficients are directly indicative of the relative im-
portance of each feature in the classification. Namely, a large
absolute value for w(r) refers to a fairly orthogonal hyper-
plane to the axis associated with the corresponding feature
G(i; r). In addition, the positive and negative signs of the co-
efficients w(r) are informative as they indicate that increasing

214206-4



DECIPHERING A STRUCTURAL SIGNATURE OF GLASS … PHYSICAL REVIEW B 106, 214206 (2022)

Predicted Na softness 

+2

-2

0

-1

+1

Test glass
-2 -1 0 1 2

Na atom softness S

0.0

0.5

1.0

1.5

2.0

D
is

tr
ib

ut
io

n 
in

te
ns

ity
 (

a.
u.

)

All Na atoms
Mobile Na

P(S > 0 | mobile)
≈ 64%

Test glass

-1.0 -0.5 0.0 0.5 1.0
Na atom softness S

-1.60

-1.20

-0.80

-0.40

P
ro

ba
bi

lit
y 

to
 r

ea
rr

an
ge

 ln
(P

R
(S

))

PR(S) = P0exp(βS)

(b)(a) (c)

FIG. 3. (a) Snapshot of the predicted Na atom softness S for a new, independent test (Na2O)30(Si O2)70 glass. The system contains 600 Na
atoms as a test set. (b) Distribution of the softness of all Na atoms (black) and mobile Na atoms (red) in the glass. The orange area represents
the properly predicted soft Na atoms (S > 0) within the mobile Na atoms. (c) Logarithm of the probability ln[PR(S)] of an Na atom to rearrange
(D � D0) as a function of its initial softness S. The red line is an exponential fit following Eq. (3).

values of the feature G(i; r) tend to result in increased and
decreased softness values, respectively.

Figure 4(a) shows the coefficients w(r) of the logistic
regression classifier as a function of the distance r, wherein
the absolute value of w(r) denotes how influential the feature
G(i; r) is on determining the atom softness. We find that the
most influential feature is associated with the distance rm that
corresponds to the region that is located between the peak
positions r1 and r2 of, respectively, the first and second coor-
dination shells of the Na–O partial pair distribution function
gNa−O(r) (see the upper panel of Fig. 4). Note that w(r) is
negative at the distance rm as well as at all other distances.
Although the absolute values of w(r) at other distances are
smaller and approach zero when r is larger than r2, we notice

that the features G(i; r) that are associated with distances r
that are close to rm (between r1 and r2) contribute significantly
more than other features to determine softness (see the gray
window in Fig. 4). Namely, a defect oxygen neighbor located
in this extent of distances (i.e., between the first and second
coordination shells) tends to greatly reduce the mobility of the
Na atom [see blue particle in Fig. 4(a)], although all oxygen
neighbors within the first two coordination shells synergically
reduce the mobility of the central Na atom. The key role
played by the defect oxygen neighbors at the intershell region
is to occupy those potential empty jumping sites around the
central Na atom to block the motion of the Na atom within the
displacement threshold (D < D0) (see Supplemental Material
[57]).
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FIG. 4. (a) Weight coefficient w(r) of the classification hyperplane [see Fig. 2(a)] at different distances r. The red line is to guide the eyes.
The partial Na–O pair distribution function gNa–O(r) of the glass is added in the top panel as reference. The distance r1 and r2 are associated
with the peak position of the first and second coordination shells of gNa–O(r), respectively. The gray window indicates the range of large
weights. The inset illustrates the local oxygen (purple sphere) environments around (i) a soft Na atom (red sphere) and (ii) a harder Na atom
(blue sphere) with an extra O atom (gold sphere) between the first and second coordination shells (green halo). (b) Na atom softness S as a
function of their Voronoi volume V and coordination number (CN). The color coding is based on a linear interpolation between the datapoints
in the Na atom dataset.
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reorganization. (c) Misclassification fraction as a function of relaxation time ranging from 10 to 5000 ps. The line is a guide to the eye.
(d) Average displacement as a function of Na atom softness at 10, 50, 100, and 200 ps, respectively. The lines are power fit to guide the eyes.

These results are consistent with free volume theory
[13,14,47]. Indeed, closed-packed structures with many oxy-
gen neighbors are associated with low local free volume,
wherein the central Na atom exhibits very limited mobility.
In contrast, more loosely packed structures exhibiting less
oxygen neighbors tend to show more potential empty jumping
sites around them, which promotes Na atom mobility [see
red particle in Fig. 4(a)]. Further, Fig. 4(b) illustrates the
dependance of the softness S of Na atoms on their Voronoi
volume V and CN. Overall, larger CN and smaller V val-
ues tend to favor smaller softness. However, we nevertheless
observe that softness is a complex, nonmonotonic function
of CN and V . Indeed, we find that the classifier trained by
the sole knowledge of the Na atom Voronoi volume offers a
very limited accuracy of ∼50% as compared with that offered
by the softness metric (∼63% accuracy, see Supplemental
Material for details [57]). Similarly, training a classifier based
on the sole knowledge of the Na atom CN yields an accuracy
of ∼52%, wherein both low- and high-coordination atoms are
very likely to be classified as soft (see Supplemental Material
for details [57]). This indicates that, although they offer an in-

tuitive interpretation of the origin of Na mobility, the CN and
Voronoi volume metrics do not fully capture the propensity
of Na to reorganize. This exemplifies the benefit of using an
unbiased ML approach to build the set of input features since
intuitive structural features show only limited correlation with
dynamical properties.

IV. DISCUSSION

A. Predictive power of Na atom softness in its
time-dependent displacement

We now evaluate whether the Na atom softness computed
at a fixed time duration can predict the time-dependent dis-
placement. Figures 5(a) and 5(b) show the distribution density
of the initial softness S and final displacement D of Na atoms
at 10 and 200 ps, respectively, wherein S is computed from
the displacement at 50 ps. We find that, after a duration of
200 ps, the initial softness remains predictive to discriminate
mobile Na atoms (i.e., D > 2 Å) from immobile Na atoms
(i.e., D < 2 Å), with a classification accuracy of 64% slightly
higher than that offered at 50 ps. Figure 5(c) further provides
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FIG. 6. (a) The distribution of Na atom displacement at 700 K after a duration of 10, 50, and 5000 ps, respectively. The green dash refers
to the selected displacement threshold D0 = 2 Å for Na atom reorganization. (b) Misclassification fraction as a function of relaxation time
for both the training and test set, where 10 random training-test splits are performed at each selected time for statistical average. The green
line is a guide to the eye. (c) The distribution of Na atom displacement after a duration of 50 ps at 700, 1000, and 2000 K, respectively.
(d) Misclassification fraction as a function of the relaxation temperature for both the training and test set, where 10 random training-test splits
are performed at each selected time for statistical average. The green line is a guide to the eye.

the misclassification fraction as a function of relaxation time
ranging from 10 to 5000 ps. It is notable that the classifica-
tion accuracy shows a quadratic dependance on the relaxation
time t and exhibits a maximum at t = ∼200 ps. Indeed, at
short-term relaxation regime (t <200 ps), soft Na atoms grad-
ually reorganize to be mobile and consequently promote the
classification accuracy; while at long-term relaxation regime
(t > 200 ps), the local structure gradually loses its initial
memory so that the initial softness eventually fails to predict
atom mobility. We nevertheless find that, after a long relax-
ation time up to 1 ns, the softness metric remains satisfactory
to predict Na atom mobility, with a classification accuracy of
∼60%, close to that offered at 50 ps, as a manifestation of
the slow dynamics of Si and O atoms under the glassy state
(see Sec. S1.3 in the Supplemental Material [57]). Finally,
Fig. 5(d) shows the power law dependance of the average
displacement of Na atoms on their softness after 10, 50, 100,

and 200 ps, respectively, where the power law varies and is
largely dependent on the relaxation time (see Sec. III C), and
apparently, longer relaxation time results in larger average
displacement. Overall, these results demonstrate that the atom
softness computed from short-term dynamics remains predic-
tive when extrapolating to longer-term dynamics.

B. Temperature (and time) dependence of Na atom
mobility on its static structure

Rather than the extrapolability of the computed softness
metric (see Sec. IV A), We examine herein whether the soft-
ness approach itself (i.e., the classification-based ML) remains
valid for high-temperature (or long-time) dynamics, where
the Na atoms undergo pronounced displacement. Figure 6(a)
shows the distribution of Na atom displacement at 10, 50,
and 5000 ps, respectively. As expected, more and more Na
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FIG. 7. (a) The logarithm of probability to rearrange ln[PR(S)] as a function of Na atom softness S at 400, 600, 700, 800, and 1000 K,
respectively. The lines are exponential fittings following Eq. (3). (b) ln[PR(S)] as a function of temperature ratio Tf /T for Na atoms exhibiting
the same softness S = −1, −0.55, −0.1, 0.35, and 0.95, respectively, where Tf = 2100 K is the fictive temperature. The lines are exponential
fittings following Eq. (5). (c) Activation energy Ea estimated from Eq. (5) as a function of S. The green line is a linear fit following Eq. (6).

atoms become mobile (i.e., D > 2 Å) as the relaxation time
increases, and the mobile Na atoms account for 93.6% of
the system after 5 ns when the system starts to enter into
the diffusive regime (see Sec. S1.3 in the Supplemental Ma-
terial [57]). By applying the softness approach at different
durations (see Sec. S2.3 in the Supplemental Material [57]),
Fig. 6(b) provides the misclassification fraction as a function
of relaxation time for both the training and test set, where
10 random training-test splits are performed at each selected
time for statistical average. We find that the misclassifica-
tion fraction gradually decreases from 40 to 25% during a
relaxation time of 5 ns because of more and more reorga-
nized soft Na atoms—in contrast to the slow dynamics of
silicate network under the glassy state (see Sec. S1.3 in the
Supplemental Material [57]). These results demonstrate the
validity of the softness approach when applied to long-time
glassy dynamics—if the local structure does not lose its initial
memory, in harmony with the recent study that predicts the
long-term creep dynamics of gels from its static structure [43].

We now investigate the validity of the softness approach at
elevated temperatures. Figure 6(c) shows the distribution of
Na atom displacement during 50 ps at 700, 1000, and 2000
K, respectively. We find that 98.9% of Na atoms reorganize
and jump out of their cages when the system temperature
increases to 2000 K, i.e., at the vicinity of glass transition
temperature Tf = 2100 K (see Sec. S1.1 in the Supplemental
Material [57]). By applying the softness approach at different
temperature (see Sec. S2.4 in the Supplemental Material [57]),
Fig. 6(d) shows the misclassification fraction as a function of
the relaxation temperature for both the training and test set,
where 10 random training-test splits are performed at each
selected temperature for statistical average. Interestingly, we
find that the softness approach exhibits a minimum misclas-
sification fraction at ∼1500 K. Indeed, at higher temperature,
the classification accuracy rapidly deteriorates due to the pro-
nounced rearrangement of local structures (see Sec. S1.4 in
the Supplemental Material [57]); while at lower temperature,
less soft Na atoms are activated to reorganize to suppress the

classification accuracy—although the local structure remains
largely unchanged in the short-time relaxation. Overall, these
results suggest that the softness approach would eventually
lose its predictivity in high-temperature (or long-time) dynam-
ics, as the system gradually evolves away from its initial static
structure.

Note that, unlike the general validity of the softness ap-
proach for glass dynamics within the simulation time [see
Fig. 6(b)], the softness computed at a specific temperature and
time generally exhibit a limited extrapolability at the vicinity
of the relaxation temperature and time [see Fig. 5(c)], as the
classifier is trained specifically to maximize the classification
accuracy at the training relaxation condition, regardless of the
fact that the resultant classification hyperplane remains the
same weight shape as that shown in Fig. 4(a) (see Secs. S2.3
and S2.4 in the Supplemental Material [57]).

C. Correlation between Na atom softness
and its activation energy

Relying on the temperature-dependent glass dynamics, we
discuss herein the nature of the linkage between Na atom
softness and its activation energy. To this end, we adopt the Na
atom softness computed at 700 K to predict glassy dynamics
at various temperatures, where the temperatures are selected
at the vicinity of 700 K to ensure the softness extrapolability
(see Sec. S2.4 in the Supplemental Material [57]). Figure 7(a)
provides the logarithm of probability to rearrange ln[PR(S)]
as a function of Na atom softness S at 400, 600, 700, 800,
and 1000 K, respectively. Like Fig. 3(c), at all the different
temperatures, the probability of Na atom rearrangement ex-
hibits an exponential dependance on its initial softness, and
higher temperature results in orders of magnitude larger prob-
ability to rearrange. Figure 7(b) further shows the probability
to rearrange ln[PR(S)] as a function of temperature T for Na
atoms exhibiting the same softness level ranging from −1 to
1. It is interesting that, at all the different softness levels, the
probability of Na atom rearrangement exhibits an exponential
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(a) (b)

FIG. 8. (a) Distribution density of the final displacement D and initial SOAP similarity Ssoap of Na atoms. The green dash refers to the
selected displacement threshold D0 = 2 Å for Na atom reorganization. (b) Distribution density of the initial softness S and initial SOAP
similarity Ssoap of Na atoms.

dependance on the system temperature T , as described by the
Arrhenius-form activation process [31]:

PR(S) = P0exp

[
Ea(S)

kT

]
, (5)

where P0 is a pre-exponential fitting parameter, k is the Boltz-
mann constant, and Ea is the activation energy. Figure 7(c)
shows the activation energy Ea estimated from Eq. (5) as a
function of Na atom softness S. Notably, Ea exhibits a linear
scaling with respect to S, namely,

Ea = eS + e0, (6)

where e and e0 are fitting parameters, and e <0. Indeed, softer
Na atoms (i.e., Na atoms exhibiting larger S) are prone to
rearrange, suggesting lower energy barriers accessible to the
atom rearrangement. This strong linear correlation between
Na atom softness and its activation energy suggests that the
local energy landscape of a glass system is largely encoded in
its initial static structure.

D. Correlation between Na atom mobility
and their SOAP atomic similarity

Finally, it is particularly of our interest to compare the
softness approach with another method proposed to represent
the atomic neighborhood environment, called Smooth Over-
lap of Atomic Positions (SOAP). Unlike the softness approach
that directly extracts a local structural descriptor S(i) for Na
atom i, the SOAP approach defines the similarity Ssoap(i, j)
of any two oxygen-neighborhood environments associated to
Na atoms i and j, where the Na–O packing environment of
Na atom i is described by a vector qsoap(i) consisting of nor-
malized SOAP many-body descriptors {p(i)} (see Sec. S3.2
in the Supplemental Material [57])—in analogy to the radial
two-body features {G(i)} [see Eq. (2)] in the softness approach
but much more complex. More technical details can be found
in Ref. [69]. The atomic similarity Ssoap(i, j) between Na
atoms i and j is computed herein as the dot product of qsoap(i)
and qsoap( j) [69,70]:

Ssoap(i, j) = qsoap(i) · qsoap( j), (7)

where Ssoap(i, j) ranges from 0 to 1 which represent, re-
spectively, the low and high limits of the degree of atomic
similarity between i and j. Note that, when using SOAP
many-body descriptors qsoap(i) as input features in the softness
approach, we notice a slight enhancement of classification
accuracy from ∼63% to ∼66% (see Sec. S3.2 in the Sup-
plemental Material [57])—in accordance with the greatly
enhanced model complexity—suggesting the dominant role
of radial two-body features in describing the Na–O atomic
neighborhood environment.

Based on the definition of Ssoap(i, j), we construct herein
a structural metric SOAP similarity Ssoap(i) for each Na atom
i, by averaging Ssoap(i, j) over all Na atoms j that exhibit the
top 10% displacement (i.e., D > 4.6 Å herein) after a duration
of 50 ps at 700 K, namely,

Ssoap(i) = 〈Ssoap(i, j)〉 j, (8)

where 〈·〉 j denotes the average operator over j. Figure 8(a)
shows the distribution density of the final displacement D and
initial SOAP similarity Ssoap of Na atoms. We find that, as
Ssoap decreases, Na atoms exhibit more confined displacement
and gradually become immobile (i.e., D < 2 Å), in analogy
to the correlation between the final displacement D and initial
softness S of Na atoms [see Fig. 2(b)]. Further, Fig. 8(c)
shows the distribution density of the initial softness S and
initial SOAP similarity Ssoap of Na atoms. Indeed, we find
that the Na atoms that exhibit smaller Ssoap are more likely
to be harder atoms (i.e., atoms with smaller softness). This
close correlation between S and Ssoap echoes the fact that
their definitions are similarly built upon a distance nature, that
is, a similarity distance of the atomic neighborhood environ-
ment from a predefined environment reference [see Fig. 2(a)].
Overall, these results establish a close correlation between Na
atom mobility and their SOAP atomic similarity, suggesting
an intimate linkage between the distance nature of S and Ssoap.

V. CONCLUSIONS

Overall, these results highlight the ability of ML to ana-
lyze large amounts of complex data and decode previously
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hidden correlations—here, between the dynamics of a glass
and its initial static structure. It is notable that our approach
allows us to predict the dynamics of a realistic, complex
oxide glass based on the sole knowledge of the ML softness
metric. The interpretation of the softness metric defined herein
[see Fig. 4(a)] suggests that the mobility of sodium atoms
in silicate glasses is strongly anticorrelated with the local
density of defect oxygen neighbors that are located between
the first and second coordination shells. ML therefore offers a
promising route to decode the complex relationship between
structure and properties in disordered, out-of-equilibrium
phases.
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