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Mean-field approach for Anderson-type off-diagonal disorder
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We report a generalized auxiliary coherent medium theory to settle the longstanding challenge of Anderson-
type off-diagonal disorder (AODD) for simulating disordered alloys. The AODD is transformed into a diagonal-
like disorder with a weighted discrete distribution in an auxiliary medium. This approach is demonstrated for
simulating the phonon spectral in NiFe and NiPt alloys, and it is found that accounting for AODD substantially
enhances the phonon linewidth to agree well with the supercell and experimental results, compared to results
with averaged-value ODD. This paper provides an effective approach to treat the large fluctuation in ODD in
disordered materials, presenting an important progress for mean-field simulations in the embedding framework.
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I. INTRODUCTION

Disordered materials, such as various important metallic
and semiconducting alloys, are of great interest in materi-
als science and engineering because of their extraordinary
mechanical, thermal, and electronic properties [1–6]. The ca-
pability to effectively handle disorder is thus indispensable
for simulating disordered materials. With tremendous efforts
since the 1960s, the state-of-art mean-field approaches, by
(self-consistently) constructing a periodic effective medium,
have presented remarkable success in simulating disordered
materials and devices, especially when combining with
first-principles methods [7–14], for example, the coherent
potential approximation (CPA) [15,16] for atomic disordered
systems, dynamical mean-field theory (DMFT) [17] for quan-
tum many-body systems, DMFT-CPA [18,19] for disordered
alloys with strong correlation, and their various cluster ex-
tensions [20–25]. These important mean-field approaches
are essentially based on the embedding framework [26,27],
providing a local approximation to do disorder averaging.
However, the embedding framework is suitable for handling
diagonal disorder [15–17,22–24], rather than the generally
existing off-diagonal disorder (ODD). Unfortunately, without
properly treating ODD, mean-field approaches can fail to
reproduce the correct properties of the supercell calculations
[28,29]. Handling the general ODD has posed a major chal-
lenge to mean-field approaches since the 1960s.

Great efforts have been made to extend the mean-field
approach to ODD, including the Blackman-Esterling-Berk
(BEB) [30] transformation-based CPA (for electronic hop-
ping disorder) and itinerant CPA (ICPA) [31] based on the
augmented space formulation [32]. However, compared to
CPA for diagonal disorder, BEB-CPA and ICPA feature diffi-
cult implementations and high computational costs for ODD.
Moreover, the application of BEB-CPA and ICPA is presently
limited to the averaged-value ODD, incapable of dealing with

*keyq@shanghaitech.edu.cn

the important distribution in ODD, namely the Anderson-type
off-diagonal disorder (AODD) arising from the fluctuation in
random environments. It has been reported that [29] ICPA
calculations with an averaged-value force-constant disorder
(FCD) generally present a significant underestimation or even
a wrong phonon linewidth in many alloys compared to super-
cell phonon unfolding (SPU) and experimental results. Such
a failure of ICPA is presented for both weak and strong FCD
systems, demonstrating the necessity to include the distribu-
tion in FCD for the lattice vibration of disordered alloys. Very
recently, some of the authors have reported an auxiliary CPA
(ACPA) method by state-of-art transforming general ODD to
a diagonal-like disorder in an auxiliary medium [33–35]. The
applicability of ACPA has been well demonstrated for the
disordered lattice vibration of alloys with an averaged-value
FCD [33–35]. In this paper, we report a generalized ACPA
method to effectively treat the AODD with a large distribution
(called the ACPA-D method), as an important progress of the
mean-field approach. As a demonstration, ACPA-D, by ac-
counting for the important distribution in FCD, can essentially
improve the phonon linewidth to agree well with the SPU and
experimental results for NiFe and NiPt alloys, while ICPA and
ACPA calculations with an averaged-value FCD present large
discrepancies.

II. METHODS

For a disordered alloy, the force constant kQQ′
i j not only

depends on the atomic occupation of Q and Q′ at the re-
spective i and j sites (with the concentration cQ/Q′

i/ j ), but also
is affected by the randomness of the surrounding chemical
environment, giving rise to a statistical distribution in kQQ′

i j
[namely, Anderson-type force-constant disorder (AFCD) as
shown in the inset of Fig. 1(a)]. To account for the distribution
in kQQ′

i j , we introduce a discrete representation to the AFCD,

namely kQQ′,m
i j (m = 1, . . . , M), with the probability pm and∑

m pm = 1. To enable the mean-field treatment of AFCD, we
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introduce the separable model to kQQ′,m
i j [33,34],

kQQ′,m
i j = xQ

i Sm
i jx

Q′
j + λm

i j (i �= j; Q, Q′ = A or B), (1)

where xQ
i /xQ′

j contains the atomic information on i/ j sites, and
Sm

i j and λm
i j describe the structural information, including the

lattice geometry and chemical environment. As we will show,
Eq. (1) can very well describe both weak and strong FCD
with a large distribution, covering a wide range of AFCD. It
should be mentioned that Eq. (1) neglects the spatial correla-
tions in the force-constant distribution to apply the mean-field
approach. With Eq. (1), the dynamic matrix for lattice vibra-
tion can be rewritten as � = XK , where Xi j = η

Q
i xQ

i δi j is a
diagonal matrix, and K is composed of single-site quantities
[33,34], namely,

K =
∑

i,Q,m

η
Q,m
i Ki,Q,m, (2)

where η
Q,m
i = 1 or 0, and 〈ηQ,m

i 〉 = cQ
i pm. By construction,

K satisfies the force-constant sum rule required by the mo-
mentum conservation law, namely Kii = −∑

j Ki j . For site
i with Z nonzero AFCD neighbors, Ki,Q,m is a d (Z + 1) ×
d (Z + 1) matrix (d is the dimension of the system) with the
elements,

Ki,Q,m
j j = Sm

jix
Q
i ( j �= i), (3)

Ki,Q,m
ji = −Sm

jix
Q
i ( j �= i), (4)

Ki,Q,m
i j = −λm

i j

xQ
i

( j �= i), (5)

Ki,Q,m
ii =

∑

j

λm
i j

xQ
i

, (6)

Ki,Q,m
j j′ = 0 ( j, j′ �= i). (7)

In such a form, the complex AFCD is reduced to an aux-
iliary site-diagonal-like disorder with a discrete weighted
distribution, enabling the self-consistent mean-field treatment
of AFCD for disordered lattice vibrations. Then, one can
write the auxiliary Hamiltonian P = ∑

i,Q,m η
Q,m
i PQ,m

i with

the single-site quantity PQ,m
i = xQ,−1

i miω
2 − Ki,Q,m. Due to

the simple relation, namely the physical Hamiltonian H =
XP, we solve the disorder-averaged auxiliary Green’s func-
tion by implementing ACPA, namely 〈g〉 = P−1 describing
the coherent medium, to derive the physical properties.
For example, the physical Green’s function 〈Gii〉 = 〈giixi

−1〉
[33–35]. By utilizing the single-site approximation (SSA)
[36], P = ∑

i P i is obtained by solving the single-site CPA
self-consistent equations with the interactor formulation [37].
With 〈g〉, coherent scattering structure factors can be derived
to obtain the phonon spectral function (for more details about
ACPA, see Refs. [33–35]).

III. RESULTS AND DISCUSSION

We study fcc Ni0.5Fe0.5 and Ni0.5Pt0.5 alloys since we gen-
erally expect a large AFCD distribution in high-concentration
binary alloys due to the large fluctuation in the disordered

FIG. 1. (a), (b) First-shell kQQ′
s vs the bond length for the (a) NiFe

and (b) NiPt alloys, from one 108-atom supercell first-principles
calculation. The inset of (a) is the illustration of a binary AxB1−x .
(c), (d) The average ks from 20 supercell calculations including first,
second, to third shells for the (c) NiFe and (d) NiPt alloys. (e),
(f) Statistic distribution of ks for (e) NiFe and (f) NiPt, with the
histograms and solid circles for the respective 20-supercell results
and results of Eq. (1).

chemical environment. We adopt the transferable force-
constant model with ks and kb describing the respective
stretching and bending stiffness of the bond in materials
[39,40]. Figures 1(a) and 1(b) show the random ks versus the
bond length (of the first shell) for NiFe and NiPt obtained
by one 108-atom supercell calculation with density functional
perturbation theory [41] in the Vienna ab initio simulation
package [42,43] (see kb in Fig. S1 and more details in the
Supplemental Material [44], which includes Refs. [45–52]).
For different Q-Q′ pairs, both alloys present a significant
variation in both force constants and bond length, indicating
the important influence of the random chemical environment.
For example, as seen in Figs. 1(a) and 1(b), kFeFe

s in NiFe
varies from −2.00 to −3.56 eV/Å2, while kPtPt

s in NiPt even
changes from −1.46 to −6.65 eV/Å2. For the bond length,
the variation can be as large as 0.14 Å for the Fe-Fe pair
and 0.27 Å for the Pt-Pt pair. Moreover, it is found that the
absolute variation of kNiNi

s (changing from −0.08 to −1.87
eV/Å2) is much smaller than kPtPt

s . By sampling twenty 108-

atom supercells, the averaged force constants, namely k
QQ′

s ,
for the first, second, and third shells in NiFe and NiPt are
displayed Figs. 1(c) and 1(d). It can be found that the averaged
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FIG. 2. Phonon spectra vs �q for (a) NiFe and (b) NiPt, from ICPA, ACPA, ACPA-D, and SPU calculations and experiments [29,38]. The
black solid circles are for the experimental results.

first-shell ks is about one order of magnitude larger than those
of the farther shells in both alloys. Thus, we only consider
the first-shell force constant in the phonon calculations. In

addition, the first-shell k
QQ′

s for different pairs are close to each
other in the NiFe alloy, e.g., −1.89, −2.13, and −2.57 eV/Å2

for the respective Ni-Ni, Ni-Fe, and Fe-Fe pairs, presenting a

weak FCD. However, k
QQ′

s for NiPt deviates significantly, e.g.,
−0.88, −2.10, and −3.94 eV/Å2 for Ni-Ni, Ni-Pt, and Pt-Pt
pairs, presenting a strong FCD. It should be mentioned that

the ACPA and ICPA methods utilize the averaged-value k
QQ′

,
neglecting the variation in kQQ′

as shown in Figs. 1(a) and 1(b)
[31,34].

To go further, the histograms in Figs. 1(e) and 1(f) present
the statistical distribution of the first-shell kQQ′

s for NiFe and
NiPt from twenty 108-atom supercell calculations (see Fig. S1
for kb). As shown, all the kQQ′

s present a distribution close to
the Gaussian in both disordered alloys. We obtain the relative

standard deviation of force constant, namely �kQQ′
s

k
QQ′
s

, with the

values 36.8%, 31.8%, and 26.4% (with an absolute deviation
�kQQ′

s of 0.32, 0.66, and 1.06 eV/Å2) for the respective Ni-Ni,
Ni-Pt, and Pt-Pt pairs in NiPt, presenting a strong fluctuation
in FCD. Compared to NiPt, NiFe presents a much smaller

fluctuation with �kQQ′
s

k
QQ′
s

of 10.7%, 11.7%, and 13.4% (with

�kQQ′
s of 0.20, 0.25, and 0.35 eV/Å2) for the respective

Ni-Ni, Ni-Fe, and Fe-Fe pairs. The remarkable fluctuations
in NiPt and NiFe demonstrate the necessity to account for
the AFCD in simulating the lattice vibration of alloys. To
represent the important AFCD in NiFe and NiPt alloys us-
ing Eq. (1), we choose M = 9 evenly distributed points for
each kQQ′

i j , namely kQQ′,m
i j (m = 1, . . . , M), within the range

(k
QQ′

i j − 3�kQQ′
i j , k

QQ′

i j + 3�kQQ′
i j ). By optimization, we obtain

the parameters xQ/Q′
i/ j , M sets of Sm

i j and λm
i j in Eq. (1), to

reproduce all the discrete force constants kQQ′,m
i j as shown in

Figs. 1(e) and 1(f) (see Tables S1 and S2 in the Supplemental
Material [44]). To obtain pm, we use the Gaussian function

f m = 1√
2π�k

e− (km−k)2

2�k2 and then by normalization pm = f m
∑

m f m .

As shown in Figs. 1(e) and 1(f), the optimized first-shell kQQ′
s

[with Eq. (1)] in the yellow solid circles can match very well
with the histograms from the supercell calculations for both
alloys. Especially for the NiPt alloy, the force-constant model
in Eq. (1) can reproduce the FCD with a strong deviation in the
average and fluctuation between different Q-Q′ pairs, demon-
strating the effectiveness of Eq. (1) for representing AFCD
(see Fig. S1 for kb). The accurate representation of AFCD with
Eq. (1) provides the basis for the ACPA-D simulation of the
phonon properties of disordered alloys.

To demonstrate the applicability of ACPA-D, we compare
the phonon spectra of fcc NiFe and NiPt alloys obtained from
ACPA-D and from the SPU (averaged with 20 samplings),
ICPA, and ACPA, together with the available experimental
results [29,38]. The SPU calculations with the averaged-value
FCD have been reported to agree well with the ACPA and
ICPA results [29,34,35], and are thus not considered here.
Figure 2 displays the color-contour overview of phonon spec-
tra versus the wave vector �q along some high-symmetry
directions, for both longitudinal (LA) and transverse acous-
tic (TA) modes. For the NiFe alloy as shown in Fig. 2(a),
the ICPA and ACPA calculations present almost identical
phonon spectra and agree well with the SPU and experi-
ment, due to the weak mass disorder ( mFe

mNi
= 0.95) and FCD.

However, we can find that using the averaged-value FCD
in ICPA and ACPA narrows the phonon spectra (red re-
gion) of the NiFe alloy compared to the SPU result. By
accounting for the important fluctuation in FCD, the ACPA-D
calculation for NiFe almost reproduces the same result as the
SPU spectra, including both the dispersion and broadening.
Compared to NiFe, the NiPt alloy features a much stronger
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FIG. 3. Phonon linewidth vs �q for (a) NiFe and (b) NiPt, from ICPA, ACPA, ACPA-D, and SPU calculations and experiments [29].

mass disorder ( mPt
mNi

= 3.32) and FCD as shown in Fig. 1 and
thus presents a distinct spectral pattern as shown Fig. 2(b). It is
evident that the spectra of the LA and TA modes in NiPt from
all calculations are mixed up for a wide range of �q, while they
are well separated in NiFe. For NiPt, using the averaged-value
FCD, the ICPA and ACPA calculations present an apparent
deviation from SPU results. For example, compared to the
experiment (black solid circles) [29], the cutoff frequency at
X displays an important underestimation of 0.42 THz with
ICPA and 0.57 THz with ACPA, compared to the SPU re-
sult agreeing well with experiment. However, as shown, by
accounting for the strong AFCD in NiPt, the ACPA-D cal-
culation significantly improves the agreement with the SPU
result and experiment over the ICPA and ACPA results.

To quantitatively measure the strength of the disorder
phonon scattering in the NiFe and NiPt alloys, we present the
full width at half maximum (FWHM) of the phonon spectral
functions, namely the linewidth, for different modes along
the high-symmetry directions by the four methods in Fig. 3,
together with experimental results for comparison [29]. It
should be mentioned that the magnitude of the linewidth usu-
ally determines the phonon lifetime due to disorder scattering,
which is important to many properties of the lattice dynamics.
For the NiFe alloy, despite a weak mass disorder and FCD,
the SPU still produces an appreciable linewidth, agreeing well
with the experiment. However, as shown in Fig. 3(a), the ICPA
and ACPA, producing almost the same results, significantly
underestimate the linewidth for a wide range of �q compared
to the SPU and experimental results, especially evident for the
TA modes in the three high-symmetry directions, consistent
with the report in Ref. [29]. For example, for the TA mode at
the X with high phonon frequency, the ICPA/ACPA linewidth
is about 0.07 THz, far below the SPU value of 0.35 THz and
the experimental result 0.55 ± 0.2 THz. The situation is sim-
ilar for the TA mode at L, with a tiny ICPA/ACPA linewidth
0.05 THz in contrast to the SPU result of 0.41 THz. Such
a large deficiency in the ICPA/ACPA description of alloys
with weak mass and FCD is attributed to the neglect of the
important fluctuation in the FCD, which is fully accounted
for in the SPU calculations. It is clear that, by accounting
for the fluctuation in FCD in the NiFe alloy, namely AFCD
as shown in Fig. 1(e), the ACPA-D (in blue) significantly

enhances the phonon linewidth to agree well with the SPU and
experimental results, especially for the TA and TA1 branches
as shown. For example, the ACPA-D linewidth is 0.24 THz at
X and 0.31 THz at the L points, much higher than the ICPA
and ACPA calculations.

As shown in Fig. 3(b), the FWHM linewidth of the NiPt
alloy shows a much larger magnitude than that in the NiFe
alloy, due to the much stronger disorder in both mass and
force constant [as shown in Fig. 1(f)]. For example, for SPU
calculations, the linewidth at X = (1, 1, 0) is 1.15 THz for LA
and 1.13 THz for TA1, while the corresponding values in NiFe
are 0.40 and 0.40 THz. By comparing the ICPA and ACPA
results for NiPt, we can find some appreciable deviation, quite
different from the situation in NiFe, owing to the different
treatment of FCD in ACPA and ICPA (see the discussion
in Ref. [35]). Moreover, for the TA modes in the (0, 0, ζ )
and (ζ , ζ , 0) directions, ICPA and ACPA present quite close
linewidths to the SPU calculations, in contrast to the large dis-
crepancy in NiFe. Good agreement between the ICPA/ACPA
and SPU results can also be found in the low-frequency region
around 
 for the TA and LA modes in all directions. However,
a serious discrepancy between ICPA/ACPA and SPU can be
found in NiPt for high-frequency phonons. In particular, ICPA
and ACPA using an averaged-value FCD present an almost
eliminated linewidth around X and L as marked in Fig. 3(b),
while the SPU results are as large as 0.57 THz at X and
0.61 THz at L. Such a tiny linewidth of the LA and TA2

modes at X and L illustrates that the high-frequency phonons
are immune to the scattering of strong mass disorder and
FCD in the ICPA/ACPA calculation of NiPt (similar to the
long-wavelength phonon around 
), presenting a qualitatively
wrong result. Here, we can attribute such a qualitative error
in the ICPA/ACPA results to the cooperative effect of mass
disorder and averaged-value FCD that decreases the disorder
scattering [53] (as seen from Fig. S2 in the Supplemental
Material [44], where the cooperation of mass and FC disorders
significantly reduces the linewidth around X compared to the
result with FC-only disorder). However, it is clear that, by
including the AFCD, the ACPA-D substantially enhances the
linewidth at the places where ICPA/ACPA produce signif-
icant errors. Especially, for NiPt, the ACPA-D linewidth is
0.42 THz at X for TA2 and 0.62 THz at L for LA close to the
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SPU results, presenting a qualitative improvement over ICPA
and ACPA. Here, it is clear that accounting for the AFCD
can significantly enhance the effects of disorder scattering in
NiFe and NiPt, and ACPA-D provides an effective method to
simulate the disorder scattering in alloys. Lastly, it should be
mentioned that the averaged SPU results contain some noises
due to the limited number of samplings and the finite size of
the supercell.

In addition, to obtain a quantitative criterion for con-
sidering the FC distribution, we have carried out a set of
calculations by systematically reducing �k for the NiFe and
NiPt alloys, as presented in Fig. S3 of the Supplemental Ma-
terial [44], and we can find that the force-constant distribution
with �k

k
� 5% may be neglected.

IV. CONCLUSION

In conclusion, we have reported an ACPA-D approach to
enable the mean-field simulation of AODD. The capability of

the method is demonstrated in disordered vibrational systems
with large fluctuations in FCD. For both NiFe and NiPt alloys,
by accounting for the AFCD, ACPA-D in SSA substantially
improves the linewidth of the phonon spectra to agree well
with the SPU results and experiment, significantly beyond the
ICPA and ACPA methods. ACPA-D provides an important
progress for the mean-field simulation of disordered systems
within an embedding framework. The extension of APCA-D
to electronic systems is straightforward.
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