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Unconventional delocalization in a family of three-dimensional Lieb lattices
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Uncorrelated disorder in generalized three-dimensional Lieb models gives rise to the existence of bounded
mobility edges, destroys the macroscopic degeneracy of the flat bands, and breaks their compactly localized
states. We now introduce a mix of order and disorder such that this degeneracy remains and the compactly
localized states are preserved. We obtain the energy-disorder phase diagrams and identify mobility edges.
Intriguingly, for large disorder the survival of the compactly localized states induces the existence of delocalized
eigenstates close to the original flat-band energies—yielding seemingly divergent mobility edges. For small
disorder, however, a change from extended to localized behavior can be found upon decreasing disorder—leading
to an unconventional “inverse Anderson” behavior. We show that transfer-matrix methods, computing the
localization lengths, and sparse-matrix diagonalization, using spectral gap-ratio energy-level statistics, are in
excellent quantitative agreement. The preservation of the compactly localized states even in the presence of this
disorder might be useful for envisaged storage applications.
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I. INTRODUCTION

The phenomenon of wave localization in disordered lat-
tices has attracted a lot of attention in the condensed-matter
community since it was first predicted in 1958 [1] for uncorre-
lated random potentials. The resulting localization properties
induced by the disorder can strongly depend on the lattice
dimensionality, the type of lattice geometry considered, and
the nature of the potential considered [2–4]. Indeed, if in a
two-dimensional (2D) square lattice with uncorrelated disor-
der all eigenstates are exponentially localized for any disorder
strength [5], this is no longer true in a 3D cubic lattice where
an energy-dependent transition from delocalized to localized
eigenstates is induced only after reaching a critical disorder
strength [6]. Likewise, a transition from a delocalized to a
localized phase may also occur in 1D chains when correlated
disordered potentials are considered [7,8].

Spatial disorder, however, is not the only ingredient that
can lead to wave localization phenomena in lattices. In transla-
tionally invariant networks, one of the most intensely studied
frameworks for eigenstate localization is the case of flat-band
lattices—i.e., networks where destructive interference re-
sults in families of macroscopically degenerate single-particle
eigenstates localized within a finite number of lattice sites
[9–11]. These states, called compact localized states (CLS),
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form a nondispersive (hence, flat) Bloch band Ej (k) = const.
in the energy spectrum which is independent of the momen-
tum k. First introduced to analytically study ferromagnetic
ground states in many-body systems [12,13], flat-band models
have since been used to study a plethora of physical phenom-
ena, from the fractional quantum Hall effect [14–16] to spin
liquids [17,18], ferromagnetism [19–22], disorder-free many-
body localization [23,24], superfluidity and superconductivity
[25–31], among others. Furthermore, flat-band systems have
also been experimentally realized in a variety of diverse
settings, such as electronic systems [32], ultracold atomic
systems [33–35], and photonic systems [36–41].

The CLS have been discussed as potential candidates
for information storage applications [42]. However, they are
typically sensitive to perturbations. Uncorrelated on-site dis-
order in most cases lifts the existence of CLS irrespective
of the disorder strength and induces wave localization in
flat-band lattices [43–50]. In certain cases, however, local
symmetries within flat-band lattices suggest local correlations
in the on-site disorder which result in anomalous localiza-
tion features—as shown in Refs. [51,52] for disorder and
quasiperiodic potentials in 1D and 2D sample lattices.

In this work we study the impact of local ordering cor-
relations in a family of 3D extended Lieb lattices. These
lattice systems, in the presence of uncorrelated spatial dis-
order, exhibit energy-dependent transitions between localized
and delocalized phases [53]. By exploiting local symmetry in
the family of Lieb lattices, we introduce a mix of correlated
order and disorder within the lattice. This mix of local order
and disorder preserves the existence of the degenerate CLS
and induces an effective projection of the nondegenerate states
onto the CLS [43]. The projection yields the existence of
delocalized states existing mostly within the locally ordered
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FIG. 1. (a)–(d) Schematic representation of the first four cases of the lattice family L3(n)—namely, (a) L3(1), (b) L3(2), (c) L3(3), and
(d) L3(4). Blue spheres denote the cube sites while red spheres denote the Lieb sites. The latter are without disorder to retain the degenerate
compact states in our model. Sites comprising the unit cell in the bottom left corner of each lattice are enclosed in a (gray) cube. The dark
lines between sites are guides to the eye and indicate the hopping profiles. The light blue and light red sites denote the front plaquettes. (e)–(h)
Plaquettes with their CLS indicated by their (unnormalized) wave function amplitudes |X〉. In panels (e)–(f) the flat bands are (e) E = 0 for
n = 1 and (f) E = ±1 for n = 2. In panel (g), for n = 3 the three flat bands are E = β = 0 and ±√

2, with ξ = +1 for β = ±√
2 and ξ = −1

for β = 0. In panel (h), for n = 4 the four flat bands are E = ±δ, with δ = 1
2 (1 ± √

5).

sublattice of the systems spanned by the CLS, whose energies
lie closer to the macroscopic degeneracy as the strength of
the disorder increases. Ultimately, the persistence of these
extended states results in a divergent profile of the mobility
edge separating delocalized and localized phases, unlike what
was found in Ref. [53] for uncorrelated disorder. Furthermore,
we observe that this correlated ordering in the regime of
weak disorder induces an “inverse” change from localized to
delocalized eigenstates for energies close to the macroscopic
degeneracies.

The paper is structured as follows. In Sec. II we introduce
the extended Lieb lattices called L3(n) and review the nu-
merical methods employed, while in Sec. III we present our
results, separating between the standard 3D Lieb lattice L3(1)
in Sec. III A and its generalized version L3(2) and beyond in
Sec. III B. We conclude in Sec. IV.

II. MODELS AND METHODS

A. The extended Lieb models in 3D

We consider a parametric family of three-dimensional Lieb
lattices labeled L3(n), n = 1, 2, . . ., and defined by the Hamil-
tonian

H =
∑

X

εX |X〉〈X | −
∑

X �=Y

tXY |X〉〈Y | . (1)

Here, the set of |X〉 indicates the orthonormal Wannier states
corresponding to electrons located at sites X = (x, y, z) of the
Lieb lattices and εX is the on-site potential [53]. As usual, we
set the hopping integrals tX ,Y ≡ 1 for nearest-neighbor sites X
and Y and tX ,Y ≡ 0 otherwise. The integer parameter n enu-
merates the added number of sites between two sites located
at the “cubic” vertexes of the lattices as shown in Fig. 1 for

n = 1 to 4. We denote those sites sitting on the vertexes of
the lattices as the cube sites (colored in blue in Fig. 1) while
those sites located between two neighboring cube sites are
called the Lieb sites (colored in light red in Fig. 1). Hence
3n + 1 is the total number of sites per unit cell, resulting in
3n + 1 bands. Notably, for any n, the corresponding lattices
L3(n) have n double-degenerate flat bands (namely, all flat
bands are counted twice). Thus, for any n, there exist n-
families of macroscopically degenerate compactly localized
states (CLS), all of which have strictly nonzero amplitude in
the Lieb sites enclosed within each 2D square plaquette of the
lattice—as shown in Figs. 1(e)–1(h) for n = 1 to 4. Further
details of the CLS on generalized Lieb lattices L3(n) are given
in the Supplemental Material [54].

We consider in Eq. (1) locally correlated potentials εX

which neither destroy the existence of CLS nor renormalize
their degeneracy while simultaneously offering the possibility
of localization for non-CLS. To ensure this for any number
n of Lieb sites, the simplest choice is to set the on-site poten-
tial of Lieb sites ε

(L)
X constant, i.e., ε(L)

X ≡ 0, while introducing
a spatially varying disorder potential on the cube sites ε

(c)
X via

uncorrelated uniform random numbers with disorder strength
W such that ε

(c)
X ∈ [−W

2 , W
2 ]. Note that in this setup of mixed

order and disorder, the standard 3D Anderson model of local-
ization [1] can be recovered for n = 0.

B. Transfer-matrix-based measures of localization

To study the emerging localization features due to such
locally correlated potentials, we combine diverse numerical
methods applied to finite versions of these 3D lattices. We
compute the reduced localization length �M of a wave func-
tion by the usual transfer-matrix method (TMM) [53,55]. In

214204-2



UNCONVENTIONAL DELOCALIZATION IN A FAMILY OF … PHYSICAL REVIEW B 106, 214204 (2022)

brief, the method considers electrons transferring, accord-
ing to the single-particle, stationary Schrödinger equation,
along a quasi-1D bar with fixed transversal square cross sec-
tions of M2 unit-cells for given L3(n) via highly optimized
matrix-vector calculations. One iteratively obtains converging
estimates of the self-averaged localization length λM (E ,W ),
with �M = λM (E ,W )/M being the dimensionless, reduced
localization length, when the number of electron transfers M̃,
i.e., the number of matrix-vector calculations in the longitu-
dinal direction, is typically M̃ > 107–109 such that M̃ � M
along the bar [56,57].

A system-size-independent intersection point of the
�M (W ) curves obtained for different bar widths M at a given
energy E (or, alternatively, versus E at a given disorder W )
can indicate a critical disorder Wc (respectively, the critical
energy Ec), at least for large enough M. Such critical values
mark a transition between a metallic/extended/delocalized
regime, where �M monotonically increases as M grows, and
an insulating/localized regime, where �M monotonically de-
creases as M grows. Expecting the metal-insulator transition
to be a second-order phase transition [2,4,58], we can then
extract a critical exponent ν characterizing the divergence
of the correlation length ξ (W ) ∼ |W − Wc|−ν (respectively,
ξ (E ) ∼ |E − Ec|−ν) via finite-size scaling (FSS)—under the
assumption of single-parameter scaling via �M (E ,W, M ) =
f [ξ (E ,W )/M] [2,59]. In principle, this ν should determine
the universality class of the model. For the standard Anderson
model with n = 0, one finds ν = 1.590(6) as well as Wc =
16.530(3) [60]. A more detailed technical description of these
methods as applied to Lieb lattices is given in Ref. [53] and in
the papers cited therein.

C. Spectral measures of localization

Initial results for the L3(n) models obtained from the TMM
calculations appear, at least at first glance, somewhat unex-
pected and hint towards a surprisingly rich phase structure
when compared to the well-known Anderson behavior. We
therefore proceed to also compute the density of states (DOS)
and various energy-level-ratio statistics via diagonalization
of the Hamiltonian in Eq. (1). We compute spectra of the
models via (i) exact diagonalization [61] for the complete
spectrum with typically O(102) potential configurations and
(ii) sparse-matrix diagonalization [62] for selected energy
ranges in the spectrum with typically O(104) potential con-
figurations. Each such diagonalization routine is applied to a
cubic section of a L3(n) lattice with periodic boundary condi-
tions. With N denoting the number of unit-cells, we then have
a total of L = (3n + 1)N3 sites. We emphasize that the given
typical numbers of potential realization have to be realized
for each L and each W , resulting in sizable computational
run-time requirements even on modern taskfarm installations.
Furthermore, we took care to make all such configurations use
independent random numbers—otherwise results would show
inconsistencies in the error estimates.

With eigenenergies Ei, the DOS is simply given as
a suitable histogram of Ei values. For the energy level-
ratio statistics, we start with the adjacent gap ratio ri =
min(si, si+1)/ max(si, si+1), with si = Ei − Ei−1, which can
discriminate between extended and localized phases [63].

In the extended phase, the r values follow the gap-ratio
distribution P(r) of the Gaussian orthogonal matrix ensem-
ble (GOE) with the numerically determined mean value
〈r〉 = ∫ 1

0 rP(r)dr = 0.5295 [63] or the analytical surmise
〈r〉Sur = 4 − 2

√
3 ≈ 0.53 590 [64]. In the localized phase,

the r values follow the P(r) for a Poisson random number
distribution, with the mean value 〈r〉Poi = 2 ln 2 − 1 ≈ 0.386.
Next, we compute from the spectra a more recent measure
introduced and used in Refs. [65,66] by defining the ex-
tended gap ratio |zi| = |Ei − ENN |/|Ei − ENNN | and ENN and
ENNN the nearest and the second-nearest eigenenergies to Ei,
respectively. In this case, the mean value 〈|z|〉 ranges be-
tween 〈|z|〉ext = 0.5687(1) (extended, i.e., GOE matrices) and
〈|z|〉loc = 0.5000(1) (localized, i.e., Poisson matrices) [67].
For both measures, we show that FSS gives estimates for ν

and Wc in agreement with the results from TMM.

III. RESULTS

In this chapter, we focus mainly on the first two represen-
tative cases of the lattice family, L3(1) and L3(2). Note that,
due to approximate mirror symmetry of the energy spectrum
around E = 0 (which is exact when ε

(L)
X = 0), we show results

only for positive energies E � 0, although we have computed
data for the full spectrum.

A. The Lieb lattice L3(1)

In this first case, a single macroscopic degeneracy of CLS
exists at E = 0. We therefore begin to study the localization
lengths �M via TMM at energy E �= 0, in order to avoid
possible complications of the numerical schemes due to the
degeneracy.

1. Existence of localization transitions

In Fig. 2(a) we show the localization length �M at energy
E = 1 for M2 ranging from 162 to 222 computed with high
precision. These curves show a stable intersection point,
indicating the existence of a critical disorder Wc separating
metallic from localized phases. Such a critical transition is
extracted by FSS shown in Figs. 2(b) and 2(c), yielding
Wc = 16.38(2)—which incidentally is roughly the same as the
standard Anderson transition Wc = 16.590(12) for a cubic lat-
tice at E = 0 [60]. However, the same computation repeated
closer to the macroscopic degeneracy—namely, at E = 0.4,
as shown in Figs. 2(d)–2(f)—yields a critical transition value
of Wc ≈ 40.29(7) that is substantially higher than the value
for E = 1 [68]. These two results seem to hint towards a
divergence of Wc as the energy approaches the macroscopic
degeneracy at E = 0. Consequently, we systematically es-
timate the critical transition Wc(E ) within the interval 0 <

E � 1.5—i.e., strictly different than E = 0—for small system
sizes M = 6 and 8 via TMM with a maximal convergence
error of � 0.5%. The resulting curve is shown in Fig. 3(a)
with white circles connected by a solid line within the yellow
region—confirming the divergence of Wc(E → 0).
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Finite-size scaling of the reduced localization lengths �M for L3(1) at large-W regimes with E = 1 [panels (a)–(c)] and E = 0.4
[panels (d)–(f)], respectively. The bar area M2 ranges from 162 (blue ×) and 182 (red ©), with maximal convergence error � 0.1%, to 202

(green �) and 222 (black +), with maximal convergence error � 0.22%, and to 242 (cyan ♦) and 262 (magenta
�

), with maximal convergence
error � 0.5%. The reduced localization length �M versus the disorder strength W on the cube sites and the fits to the data shown as a solid line
with expansion coefficients nr = 2 and mr = 1 for both graphs are presented in panels (a) and (d). Panels (b) and (e) give a double-logarithmic
plot of the scaling function �M and ξ/M with scaled data points. The scaling parameter ξ as a function of the cube disorder W and the scaled
data points are shown in panels (c) and (f), with the vertical lines indicating the estimated Wc values and their CI intervals in (green) shade.
Error bars are within the symbol size. Details of the scaling results are given in Table I.

2. Spectral characterization of the localization transitions

To further validate the behavior of Wc(E ) and to compute
the overall phase-diagram, we look at the spectral properties
of the Hamiltonian (1). Details on the computations are re-
ported in the caption of Fig. 3. The DOS—shown in Fig. 3(a)
for E > 0 and different disorder strengths W —exhibits in-
triguing phenomena close to the macroscopic degeneracy
level E = 0 in both the weak- and the large-W regimes.
Namely, we observe (i) a depletion of the DOS at E � 1 for
W → 0 and (ii) a strong enhancement of the DOS at E � 1
for W → ∞.

The former observation (i) is related to the fact that in
the clean case W = 0 the flat band at E = 0 is touching the
remaining dispersive bands via conical intersections—with
a consequent decrease of the DOS as E → 0, as discussed
in Ref. [53]. The latter observation (ii) instead follows from
the fact that for large W it becomes energetically favorable
for eigenstates to populate the unperturbed Lieb sites (where
the CLS live) rather than the disordered cube sites. This is
confirmed in Fig. 4 where we show the projected norm of

eigenstates at the Lieb sites (red colors) and the cube sites
(blue colors) as a function of the energy E for different
disorder strength W (shown with different symbols). What
appears is an increase of the relative norm in the Lieb sites
(and complementarily a decrease of the relative norm in
the cube sites) as |E | → 0—trends which are enhanced as
the disorder W increases. In particular, for strong disorder
W = 50, the norm of the eigenstates for E � 1 is almost
exclusively located at the Lieb sites. Such an effective pro-
jection of the eigenstates at E �= 0 on the set of CLS at
E = 0 results in lowering the energies of a large fraction
of states close to the macroscopic degeneracy—and, conse-
quently, the strong enhancement of the DOS for E � 1 as
W → ∞. Note that in these calculations we have excluded
those eigenstates with |E | � 10−4, removing the degenerate
CLS. However, close to E = 0, each of the different potential
realizations yields a single eigenstate at E ∼ 10−2, which is an
accidental degeneracy following from 〈ε(c)

X 〉N→∞ → 0 [69].
Such eigenstates result in the outlier points close to E = 0
in Fig. 4.
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TABLE I. Critical parameters of the traditional (standard) Anderson transition for L3(1) with reduced localization length �M and with r
and |z| values as indicators, respectively. The columns give the size of the system (the width M of the cross section of a TMM bar and of the
side length N of a cube for �M and r and |z| values, respectively), fixed E , range of W , FSS expansion orders nr and mr , the resulting critical
disorders Wc and their 95% confidence intervals (CI), the critical exponent ν and its CI, and the goodness of fit probability p in order. The
averages contain the mean of the three preceding Wc and ν values, with standard error of the mean in parentheses. The bold Wc and ν values
highlight the fits used as examples in Figs. 2 and 5.

M E δW nr mr Wc CI (Wc ) ν CI (ν ) p

Reduced localization length �M

20,22,24,26 0.4 39.0–41.5 2 1 40.29 [40.16,40.42] 1.50 [1.28,1.73] 0.52
20,22,24,26 0.4 39.0–41.5 3 1 40.29 [40.15,40.43] 1.51 [1.27,1.75] 0.46
20,22,24,26 0.4 39.0–41.5 3 2 40.35 [40.14,40.56] 1.51 [1.26,1.76] 0.44
20,22,24,26 0.4 39.0–41.5 4 1 40.30 [40.16,40.44] 1.51 [1.27,1.75] 0.43
Averages: 40.31(4) 1.51(6)
16,18,20,22 1 15.9–16.8 2 1 16.38 [16.36,16.41] 1.50 [1.37,1.63] 0.22
16,18,20,22 1 15.9–16.8 3 1 16.39 [16.36,16.41] 1.51 [1.38,1.65] 0.19
16,18,20,22 1 15.9–16.8 3 2 16.41 [16.38,16.45] 1.50 [1.37,1.63] 0.37
16,18,20,22 1 15.9–16.8 4 1 16.39 [16.36,16.42] 1.51 [1.37,1.65] 0.18
Averages: 16.39(1) 1.51(4)

r values
18,20,22,24 1 16.0–16.7 2 1 16.36 [16.32,16.40] 1.51 [1.21,1.80] 0.56
18,20,22,24 1 16.0–16.7 3 1 16.36 [16.31,16.40] 1.54 [1.22,1.86] 0.54
18,20,22,24 1 16.0–16.7 3 2 16.37 [16.32,16.42] 1.55 [1.22,1.88] 0.53
18,20,22,24 1 16.0–16.7 4 1 16.36 [16.31,16.40] 1.54 [1.22,1.86] 0.51
Averages: 16.36(2) 1.54(9)

|z| values
16,18,20,22,24 1 16.0–16.7 2 1 16.40 [16.34,16.45] 1.35 [1.01,1.68] 0.67
16,18,20,22,24 1 16.0–16.7 3 1 16.40 [16.34,16.45] 1.49 [1.10,1.88] 0.75
16,18,20,22,24 1 16.0–16.7 3 2 16.40 [16.34,16.47] 1.47 [1.08,1.85] 0.73
16,18,20,22,24 1 16.0–16.7 4 1 16.40 [16.35,16.46] 1.46 [1.09,1.84] 0.75
Averages: 16.40(2) 1.44(10)

FIG. 3. Energy E -dependent and disorder W -dependent (a) DOS and (b) r values for L3(1). The diagrams have been obtained for system
sizes L = 4 × 203 and at least 100 independent potential configurations for each (E ,W ) pair. For each such configuration, up to 100 energy
eigenvalues around the target energy E have been computed. The minimal energy spacing is 	E = 0.05 while the minimal disorder spacing
is 	W = 0.1; adaptively chosen 3300 individual (E ,W ) pairs contribute to the computed DOS and r-value density plots. The flat-band states
at E = 0 (� 10−10) are not shown in both panels for clarity. The dark lines in panel (a) denote contours of 103 (dashed) and 104 (solid) states,
while in panel (b) the lines in the red-shaded region correspond to 〈r〉 = 0.53 (dashed) and 0.5145 (solid) and in the blue-shaded region they
denote 〈r〉 = 0.4 (dashed) and 0.38 (solid). The white lines in panels (a) and (b) denote estimates of the transitions obtained by small-M TMM
with the two different lines corresponding to the crossings of �M values between M = 6 and M = 8 from localized to delocalized behavior
(solid) and delocalized to localized behavior (dashed) upon decreasing W at constant E . In panel (a) these small-M estimates for (Ec,Wc ) are
given as white circles.
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FIG. 4. Projected probabilities |ψ (x)|2 for cube sites (blue col-
ors, open symbols) and Lieb sites (red colors, solid symbols) with
disorders W = 10 (◦), 20 (♦), and 50 (�) for L3(1). The line for Lieb
sites with W = 10 is given to highlight that the data points repre-
sent averages for 144 potential configurations with energy resolution
	E = 0.05. The system size in all cases is L = 4 × 203.

3. Spectral gap-ratio statistics

The diverging behavior of Wc(E ) shown in Fig. 3(a) had
been estimated via TMM. To find further support for this
behavior, we now use the independent spectral gap-ratio
statistics for 〈r〉 outlined in Sec. II to compute the full
phase-diagram for L3(1) via sparse-matrix diagonalization. In
Fig. 3(b) we show 〈r〉 for L = 4 × 203 as a function of E and
W . The results convincingly confirm the diverging trend for
the transition curve Wc(E ) from extended with 〈r〉 ∼ 〈r〉Sur

(∼0.53) to localized with 〈r〉 ∼ 〈r〉Poi (∼0.38) as E → 0
for W � 10. In particular, the r-value-based transition line
shows strong agreement with the transition curve obtained
from the scaling behavior of localization lengths �M [shown
in Fig. 3(b) with white solid line]. Furthermore, we observe
that close to E = 0 in the small-W regime, 〈r〉 drops from
r ∼ 0.529—a decrease occurring in correspondence to the
depletion of the DOS.

We first have a more in-depth look at the localization-to-
delocalization transition [white solid line in Fig. 3(b)] when
starting from high E and/or W values. Analogously with
the TMM, we fix energy to E = 1 and study the behavior

FIG. 5. Finite-size scaling results of the r values [panels (a)–(c)] and the z values [panels (d)–(f)] for L3(1) in the high-W region at E = 1,
respectively. The system sizes L = 4 × N3 are N = 16 (blue ×), 18 (red ©), 20 (geen �), 22 (black +), and 24 (cyan ♦). For each N and
W , 10 000 different potential configurations have been calculated, and for each we include up to 100 energy eigenvalues around the target
energy E in the computing of 〈r〉 and 〈|z|〉. Panels (a) and (d) show the 〈r〉 values (〈|z|〉 values) versus the W data, and the fits to the data, as
given in Table I with expansion coefficients nr = 2 and mr = 1, are marked with solid lines. Panels (b) and (e) give double-logarithmic plots
of the scaling function r values (z values) versus ξ/M with scaled data points. The scaling parameter ξ (W ) is shown in panels (c) and (f). The
vertical lines indicate the Wc values and the shaded region indicates their CI. Error bar as shown in panels (a), (b), (d), and (e) are mostly within
symbol size. The horizontal lines in panels (a) and (d) denote the values 〈r〉 = 0.5148 (with CI [0.5143,0.5153]) and 〈|z|〉 = 0.5624 (with CI
[0.5621,0.5627]) obtained at Wc.
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(a) (b)

FIG. 6. (a) Reduced localization length �M versus disorder W at small disorder for L3(1) at E = 0.4 and TMM bar area M = 62 (yellow
©), 82 (gray �), 102 (cyan +), 122 (magenta ♦) and 142 (black

�
), 162 (blue ×), 182 (red ©), 202 (green �). The error bars are all shown,

and within symbol size. The inset focuses on the small-W regime 0.01 � W � 1. (b) r values versus disorder W at E = 0.4 for system size
L = 4 × N3 with N = 20 (green �), 22 (black +), 24 (cyan ♦) and 26 (magenta

�
), 28 (gray ×), 30 (blue ©) with 10 000 potential realizations

for each (N,W ) pair. The horizontal dashed green (red) line represents the extended (localized) regime with 〈r〉Sur (〈r〉Poi). All other lines are
guides to the eye, only.

of 〈r〉(W ) for various system sizes N . In Figs. 5(a)–5(c) we
show FSS results for 〈r〉 values for N ranging from 18 to 24
around the expected transition value Wc ≈ 16.4. Note that
the errors bars (of order 10−3) are obtained as standard er-
ror

√
([〈r〉2] − [〈r〉]2)/(R − 1), where [ ] denotes the average

over the R potential realization, and 〈〉 represents the average
within a given potential realization [63]. We find that the criti-
cal disorder Wc ≈ 16.36(2) as computed with the r statistics is
in excellent agreement with the critical value Wc = 16.38(2)
obtained via TMM. Furthermore, as detailed in Table I, the
FSS results are in agreement with the conventional critical
exponents for the 3D Anderson transition [59,60]. Indeed,
the critical exponent ν = 1.51 (for nr = 2, mr = 1) is also
in agreement with the TMM result. Last, we see in Fig. 5(a)
that the value 〈r〉(Wc) = 0.5145, which is one of the con-
tour lines highlighted in Fig. 3(b), separates localized from
extended behavior, again emphasizing the consistency of our
results.

These measurements are further confirmed by the results
obtained via the spectral statistics based on the |z| measure
introduced in Refs. [65,66]. In Fig. 5(d) we plot the 〈|z|〉(W )
data and corresponding FSS lines for N ranging from 16
to 24 at E = 1, again around the expected Wc ≈ 16.4. In
Figs. 5(e) and 5(f) we show the associated scaling function
and scaling parameter. The results agree with those obtained
via the r statistic, albeit with larger error bars, giving a critical
transition at Wc ≈ 16.40(2). Full details about the FSS and
the scaling parameters of �M , r values, and |z| values are
reported in Table I. In particular, we note that FSS is possible
even without having to take into account irrelevant correc-
tions to scaling. We have also performed FSS with irrelevant
corrections and found fits with acceptable χ2 statistics. How-
ever, already the FSS without irrelevant corrections is stable,
i.e., independent of the chosen disorder range, and robust,
i.e., Wc and ν values to not violate their error boundaries
when increasing the expansion orders nr and mr . We therefore
only show the results for the latter case in Table I. This is

also the case for the FSS results from the TMM data of
Sec. III A 1.

4. The “inverse transition” at small E and W values

As briefly mentioned above when discussing Fig. 3, the
region of E � 1 and W � 10 for the DOS and the phase dia-
gram of L3(1) indicates a small DOS of ∼102 as well as small
〈r〉 ∼ 0.4 values. These observations suggest that the regime
again corresponds to localized states, and, consequently, the
system might in fact exhibit an “inverse” Anderson transition
whereby upon increasing W at some fixed 0 < E � 1 one can
observe a transition back into the extended regime.

In order to study this possibility in detail, we choose E =
0.4 and again compute localization lengths �M via TMM as
well as 〈r〉 statistics as a function of W for increasing the
bar width M or the system size N , respectively, aiming for
a maximal convergence error of 0.1% for TMM. In Fig. 6,
we show the resulting data. The error bars are mostly within
symbol size, highlighting the reliability of the data.

We find that the localization lengths �M shown in Fig. 6(a)
do indeed exhibit the expected opposite dependency on M.
For W � 1, increasing M leads to a decrease of �M , while
for W � 15, increasing M increases �M , at least for the larger
sizes studied. Hence there seems to be indeed a change from
localized behavior at small W to extended behavior at larger
W . However, we also observe considerable nonmonotonic be-
havior, e.g., for M = 14, and a complete absence of a clearly
defined crossing point to serve as an estimate for Wc. The be-
havior cannot be captured by the standard FSS techniques and
the required “corrections to scaling” are clearly beyond what
one can expect a systematic modeling of irrelevant corrections
to achieve [59,70]. Nevertheless, using the crossings defined
by considering just system sizes M2 = 62 and M2 = 82 from
Fig. 6(a), we find that the resulting “phase boundary” faith-
fully follows the trend for the contours of DOS and 〈r〉 values
as shown in Fig. 3(b). Similarly, the 〈r〉 values reach 〈r〉Sur
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(a) (b)

FIG. 7. Energy E -dependent and disorder W -dependent (a) DOS and (b) r values for L3(2). Both panels have been computed with the
same parameters as in Fig. 3, except that the minimal energy spacing increases to 	E = 0.2, giving in total 1581 individual (E ,W ) pairs. The
flat-band states at E = 1 are not shown in both panels for clarity. The dark lines are as in Fig. 3; in panel (a) they are given by 103 (dashed)
and 104 (solid) states, while in panel (b) they correspond to 〈r〉 = 0.53 (dashed) and 0.5145 (solid) in the red region and to 〈r〉 = 0.4 (dashed)
and 0.38 (solid) in the blue region. Also as in Fig. 3, the white lines in panels (a) and (b) denote estimates of the phase boundaries obtained by
small-M TMM with the two different lines corresponding to the crossings of �M values between M = 6 and 8 from localized to delocalized
behavior (solid) and from delocalized to localized behavior (dashed) upon decreasing W at constant E .

when W � 6. For W � 2, the truly localized 〈r〉Poi (∼0.38) is
not attained, but at least we find that 〈r〉 drops significantly
to ∼0.45. Again as in the case of the TMM data, no clear,
system-size-independent transition point emerges for the sys-
tem sizes studied by us.

In summary, the results at E = 0.4 indicate the presence
of a nonconventional “inverse transitional” change from a
localized to an extended regime as W increases close to the
macroscopic degeneracy of CLS. This seems similar to the
proposed “inverse” transition reported in a 3D all-flat-band
network in the regime of weak uncorrelated disorder [71,72].

B. The Lieb lattice L3(2) and beyond

We now briefly sketch the situation for the other Lieb
lattices L3(2), L3(3), and L3(4). For L3(2), we show the
DOS, the 〈r〉-based phase diagram, and TMM-based approx-
imate phase boundaries in Fig. 7. The CLS at E ± 1 are not
explicitly shown in the figure but are clearly visible by the
behavior of the non-CLS around them. There is an identical
signature of depletion of states, as for L3(1), in the small-W
region when E → 1±. On the other hand, for both large E
and W the DOS depletes and the 〈r〉 values indicate localized
behavior. Two extended regions emerge, both of which tend
to lie close to the region of the CLS when W � 20. These
results are supported again from estimates based on TMM
for M2 = 62 and M2 = 82. We note that due to the absence
of CLS for E = 0, we can indeed observe the usual change
from extended to localized behavior upon increasing W , with
Wc ∼ 16 marking the boundary between both regimes. We
can also find the “inverse” behavior again, e.g., for L3(2)
for 1 � E � 2, where increasing W leads to a change from
localized to delocalized behavior.

This trend continues for L3(3) and L3(4) (cf. Supplemental
Material [54] and figures therein): about half of the states of
the originally dispersive bands, when W = 0, move closer to
the CLS upon increasing W , reducing the DOS for energies
further from the CLS energies and eventually localizing these.
About half of the spectrum moves closer to the CLS energies,
with states being moved onto the Lieb sites as shown for L3(1)
while the other half spreads out towards increasing energies.

IV. CONCLUSIONS

As expected, the disorder εc
X, together with the order εL

X =
0, retains the distinction between CLS and the rest of the
states, resulting in the CLS remaining unchanged for any
W . The converse is manifestly not the case: about half of
the non-CLS for, e.g., L3(1), get pushed in energy close to
the energy of the CLS and become evermore concentrated on
the Lieb sites. This leads to an accumulation of DOS near the
CLS energies and, ultimately, to the existence of seemingly
extended states even for very strong W for all the L3(1) to
L3(4) probed here. Indeed, for the system sizes studied, we
cannot identify an upper critical disorder strength Wmax such
that all states would be localized beyond this value. Instead,
we find that the mobility edges are pushed towards large-W
values, much larger than what is commonly observed for a
regular cubic Anderson lattice [60].

For the transition from extended to localized behavior
upon increasing E or W in the phase diagrams we find that
the critical properties can be extracted as usual via FSS
with the critical exponent ν being compatible with the usual
value of the cubic Anderson lattice [59,60]. Hence, although
the changes to the phase diagrams are drastic, the univer-
sal nature of the transition at this phase boundary does not
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change. However, when instead decreasing E and W from
the extended regimes, we do not see a clear signature of a
transition as a function of a single critical parameter strength.
Rather, it appears that the changes of phase behavior do not
follow traditional scaling nor do they require much larger
system sizes to reach the scaling regime.

Overall, the model presents a situation where, upon in-
creasing W , the CLS are retained while non-CLS are forced to
become more and more CLS-like, in terms of energy as well as
in terms of spatial location. As mentioned in the Introduction,
CLS states are among a class of states that might become
relevant for future information storage devices. Our results
hence suggest a way in which disorder is not detrimental to
such an application, but rather enhances the stability of the
CLS. While solid-state devices with the chosen highly corre-
lated disorder/order distribution appear unlikely to become
readily available soon, a much simpler route could be via
cold atoms in optical lattices [33–35] or in photonic band-gap
systems [36–41] where single-site potential modulation has
become routine [11]. In such experimental and hence finite
setups, it may be that the relevance of our finite-size results is

even more important than any large-scale limit. Last, it should
be clear that an investigation of the influence on many-body
interaction, in the presence of the CLS-preserving disorder
considered here, should be most insightful.

U.K. research data statement. Data accompanying this pub-
lication are available from Ref. [73].
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