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Escaping many-body localization in an exact eigenstate
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Isolated quantum systems typically follow the eigenstate thermalization hypothesis, but there are exceptions,
such as many-body localized (MBL) systems and quantum many-body scars. Here, we present the study of a
weak violation of MBL due to a special state embedded in a spectrum of MBL states. The special state is not
MBL since it displays logarithmic scaling of the entanglement entropy and of the bipartite fluctuations of particle
number with subsystem size. In contrast, the bulk of the spectrum becomes MBL as disorder is introduced. We
establish this by studying the entropy as a function of disorder strength and by observing that the level spacing
statistics undergoes a transition from Wigner-Dyson to Poisson statistics as the disorder strength is increased.
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I. INTRODUCTION

Statistical mechanics is a well-established theory success-
fully describing quantum systems in contact with external
reservoirs [1]. When these systems reach equilibrium, most
information about the initial state is erased. In contrast, the dy-
namics of isolated quantum systems are determined by unitary
time evolution. Recent experimental progress in preparing and
controlling isolated quantum systems has drawn intense at-
tention to the subject of describing isolated quantum systems
by statistical mechanics [2,3] as well as finding exceptions to
thermal behaviors leading to interesting properties [4].

The eigenstate thermalization hypothesis asserts that sys-
tems act as their own reservoir [5,6]. In this way, subsystems
can be in thermal equilibrium with the remaining system, and
expectation values of local observables then agree with those
from conventional quantum statistical mechanics. While the
eigenstate thermalization hypothesis makes powerful predic-
tions about a large class of quantum systems, it is violated
by various mechanisms, such as quantum integrability, many-
body localization (MBL) [4,7], and quantum many-body scars
[8–10]. MBL is typically achieved by introducing disorder
into suitably chosen systems. This results in a complete
set of quasilocal integrals of motion such that the bulk of
the spectrum violates the eigenstate thermalization hypothe-
sis. Quantum many-body scars instead provide examples of
weak violations of the eigenstate thermalization hypothesis,
in which nonthermal states are embedded in a spectrum of
thermal states.

Symmetries play an important role in physics leading to a
variety of exotic phenomena [11]. In the context of physics
of localization, the presence/absence of symmetries leads to
different transport behavior and has been observed experimen-
tally [12]. Interestingly, in MBL systems, symmetries may
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lead to ordered eigenstate phases or even lead to breakdown
of localization [13]. When a generic eigenstate at infinite
temperature is invariant under a continuous non-Abelian sym-
metry, such as SU(2), it cannot be area-law entangled and the
entanglement entropy scales at least logarithmically with sys-
tem size [14]. This incompatibility between MBL and SU(2)
symmetry was exploited recently to construct a model that
weakly violates MBL by embedding a special eigenstate with
an emergent SU(2) symmetry into an MBL spectrum [15].

A natural question arises if the presence of a non-Abelian
symmetry is the only route to avoid localization in a many-
body eigenstate of a strongly disordered system. We show
that this is not the case by constructing a model Hamiltonian
with a special eigenstate that does not have additional sym-
metries compared to the Hamiltonian. The system many-body
localizes when disorder is added, but the special state con-
tinues to have non-MBL properties. This suggests that partial
solvability of a disordered model with suitable, exact eigen-
states can provide a mechanism to achieve weak violation of
MBL.

The paper is structured as follows. In Sec. II, we present
the special state and discuss how disorder enters the model.
In Sec. III, we introduce a Hamiltonian for which the spe-
cial state is an exact eigenstate. In Sec. IV, we show that
the entanglement entropy of the special state scales logarith-
mically with the subsystem size for both weak and strong
disorder, and hence the state is neither thermal, nor MBL.
Furthermore, we demonstrate that the bipartite fluctuations
of particle number do not signal a transition to MBL as dis-
order is introduced. In Sec. V, we show that the eigenstates
of the considered Hamiltonian generally many-body localize
by studying the entanglement entropy and the level spacing
statistics. In Sec. VI, we investigate a modification of the
model that allows us to place the special state in the middle
of the spectrum, while still achieving that the remainder of
the spectrum is MBL. The conclusions are summarized in
Sec. VII.
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FIG. 1. The model is defined in terms of the phases φ j . (a) With-
out disorder, the phases are evenly distributed on the unit circle.
(b) Disorder is introduced by randomly choosing the phases accord-
ing to Eq. (2). For small disorder, 0 < δ < 1, φ j remains within π/N
of its value at no disorder (blue areas), and the ordering coincides
with the nondisordered system. (c) For large disorder, 1 < δ, the
original ordering of the phases is broken and f [see Eq. (3)] is applied
to recover ascending ordering.

II. SPECIAL STATE

We first define the special state with and without disorder.
Consider a system of N/q particles sitting on a lattice of
N sites. For odd q, the particles are fermions while even q
corresponds to hard-core bosons. The two basis states of the
jth site are denoted by |n j〉 with n j ∈ {0, 1}. The special state
is given by

〈n1, n2, . . . , nN |ψ〉 ∝
∏
i< j

(zi − z j )
qnin j−ni−n j , (1)

in terms of z j = eiφ j and the phases φ j ∈ [0, 2π [, where j ∈
ZN = {0, 1, . . . , N − 1}.

We take the uniform case φ j = 2π j/N as a starting point
and add disorder by choosing a set of random numbers α j

from the uniform probability distribution across the interval
[− δ

2 , δ
2 [, where δ ∈ [0, N] is the disorder strength. The phases

are then given by

φ f ( j) = φ′
j = mod2π

(
2π ( j + α j )

N

)
, j ∈ ZN , (2)

where the function mod2π returns the remainder after division
by 2π and the function f orders the phases in ascending order.
Let n(A) denote the number of elements in a set A. Then f is
explicitly given by

f : ZN → ZN

j �→ n({φ′
k|k ∈ ZN , φ′

k < φ′
j}).

(3)

To understand the purpose of this function, it is helpful to con-
sider the system at different disorder strengths as illustrated in
Fig. 1. At no disorder, δ = 0, we recover the uniform model
and the phases are equidistant. For small nonzero disorder,
0 < δ < 1, the phases slightly differ from the phases at zero
disorder. Each phase remains within π/N of the correspond-
ing phase at no disorder. Hence, it is not possible for two
phases to get interchanged and the ordering of the phases is
preserved. The function f ( j) is simply equal to j in both of
these cases. For larger disorder, 1 < δ, the ordering of the
phases may change and in the extreme case, δ = N , the phases
can be anywhere on the unit circle. For this case, the function
f relabels the phases such that the phases once again appear in

ascending order. Thus, if φ′
j is the kth smallest phase modulo

2π , then f ( j) = k.

III. HAMILTONIAN

We now construct a Hamiltonian for which |ψ〉 is an exact
zero-energy eigenstate. Let di be the operator which annihi-
lates a particle at site i and ni = d†

i di the number operator on
site i. Furthermore, we define the scalars

wi j = zi + z j

zi − z j
= −i cot

(
φi − φ j

2

)
. (4)

It was shown in [16] that |ψ〉 is annihilated by the operators,

�i = (q − 2)di +
∑
j( 	=i)

wi j[d j − di(qn j − 1)], (5a)

�i =
∑
j( 	=i)

wi jdid j . (5b)

Thus, a Hamiltonian constructed as a linear combination of
�

†
i �i and �

†
i �i has |ψ〉 as a zero-energy eigenstate. Here, we

consider the model described by the Hamiltonian,

H =
∑

i

�
†
i �i − q

∑
i

�
†
i �i. (6)

We assume throughout the lattice filling factor is one third,
i.e., q = 3.

Combining Eqs. (5) and (6) yields

H =
∑
i 	= j

(
F A

i j d†
i d j + F B

i j nin j
) +

∑
i

FC
i ni + F D, (7)

where the coefficients are given by

F A
i j = 2ωi j (1 − ωi j ) − 1, (8a)

F B
i j = 6wi j

∑
l ( 	=i,	= j)

wil , (8b)

FC
i = −2

∑
j( 	=i)

ω2
i j −

∑
j( 	=i)

∑
l ( 	=i,	= j)

ωi jωil , (8c)

F D = −N3

9
+ N2 − 5N

3
. (8d)

The Hamiltonian conserves the number of particles. We
introduce disorder to the Hamiltonian in the same way as to
the wave function, namely, by choosing the phases φ j as in
Eq. (2).

Figure 2 illustrates the general behavior of the coupling
coefficients. F A

i j describes the hopping amplitude from site
j to site i and its absolute value decreases monotonically
with distance. The coefficient F B

i j is the interaction between
particles at sites i and j. This coefficient has a complicated
behavior since the interaction strength between sites i and
j depends on the values of all the phases. At all disorder
strengths, |F B

i j | is typically largest when φi and φ j are near
each other. When increasing the disorder strength, both |F B

i j |
and its variance between different disorder realizations gen-
erally increase. FC

i is the potential at site i. Finally, F D is an
energy offset which ensures |ψ〉 has zero energy but does not
affect the eigenstates. The coupling coefficients of hopping,
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FIG. 2. Behavior of the coefficients in the Hamiltonian (7).
(a) |F A

i j | decreases monotonically with increasing phase difference
φi − φ j on the interval [0, π ] and increases on the interval [π, 2π [.
(b) For three disorder strengths, δ = 0.1, δ = 1, and δ = 12, the
phases are constructed according to Eq. (2) and two sites i and
j are chosen at random. Both |F B

i j | and φi − φ j are computed for
104 disorder realizations and the results are grouped in 12 intervals
φi − φ j ∈ [− π

12 , π

12 [, [ π

12 , 3π

12 [, [ 3π

12 , 5π

12 [, etc. Each group corresponds
to one box plot with the box containing 50% of the data and the
whiskers containing 90% of the data. The median is shown as an
orange line. While |F B

i j | varies between disorder realizations, the
coefficient is typically largest when φi and φ j are close together. Also
note that |F B

i j | increases with increasing disorder strength. (c) |FC
i | is

computed for 105 disorder realizations and the figure illustrates the
median and interquartile range (middle 50% of the data). Initially,
both quantities increase with disorder strength but saturate at large
disorder. As discussed in the main text, both |F A

i j |, |F B
i j |, and |FC

i |
diverge in the limit φi − φ j → 0. Hence the general behavior is
best described by the median and interquartile range since these
statistics are not sensitive to outliers (as opposed to, e.g., the mean
and variance). For all the plots N = 12.

interaction, and potential terms can get arbitrarily large when
δ > 1 since the scalars ωi j diverge when φi − φ j → 0.

The purpose of this paper is to demonstrate that weak
violation of MBL is possible without utilizing non-Abelian
symmetries, and we construct the Hamiltonian above, because
it provides a particularly clear example of this. In particular,
it has the advantage that it allows us to study the special state
for large system sizes with Monte Carlo techniques. Future
works could use the ideas presented here to uncover models
which are instead particularly suited for experimental demon-
strations of weak violation of MBL without non-Abelian
symmetries.

In addition to the Hamiltonian (7), we shall also study the
Hamiltonian Hα = (H − α)2 below, where α is a real number.
The special state (1) is an eigenstate of H with eigenvalue
zero, and our numerical computations show that the special
state is typically either the ground state or a low-lying excited
state. The Hamiltonian Hα has the same eigenstates as H , but
it allows us to adjust the position of the special state in the
spectrum.

IV. PROPERTIES OF THE SPECIAL STATE

It has been shown in [16] that important properties of the
state without disorder are described well by Luttinger liquid
theory with Luttinger parameter K = 1/q. In this section, we
show that the Rényi entropy and the bipartite fluctuation of
particle number continue to scale logarithmically in the pres-
ence of disorder. This shows that the state does not many-body
localize. We are capable of studying large system sizes by
applying Metropolis Monte Carlo methods.

A. Rényi entropy

The Rényi entropy of second order for a subsystem con-
sisting of L sites is given by

S(2)
L = − ln

[
Tr

(
ρ2

L

)]
, (9)

where ρL is the reduced density matrix of the subsystem. We
shall here take the L sites to be site number 0 to L − 1. The
Rényi entropy can be computed efficiently with Monte Carlo
methods using the replica trick [17]. This is done by noting
that

exp
[−S(2)

L

]
=

∑
n,n′,m,m′

|〈n, m|ψ〉|2|〈n′, m′|ψ〉|2 〈ψ |n′, m〉〈ψ |n, m′〉
〈ψ |n, m〉〈ψ |n′, m′〉 ,

(10)

where |n〉 and |n′〉 describe an orthonormal basis in the sub-
space of L sites while |m〉 and |m′〉 describe an orthonormal
basis in the subspace of the remaining N − L sites. The right-
hand side of Eq. (10) is then computed using Metropolis
Monte Carlo sampling. For critical systems described by a
conformal field theory, the Rényi entropy generally takes the
form [18,19]

S(2)
L = C ln

[
sin

(
πL

N

)]
+ α, (11)
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FIG. 3. Rényi entropy S(2)
L as a function of subsystem size L

for a system with total size N = 600. The illustrated subsystem
sizes L = 1, 2, 3, 4, 8, 12, 19, 29, 45, 76, 128, 300 respect the ex-
pected 3-periodic deviation from Eq. (11) and the corresponding
values ln[sin(πL/N )] are approximately equidistant. For both the
uniform δ = 0 and disordered δ = 3 system, the Rényi entropy fol-
lows Eq. (11). Without disorder, the fit y = 0.247x + 1.88 agrees
with the expected slope C = 0.25. With disorder, 〈S(2)

L 〉 is calcu-
lated from 3000 disorder realizations, and the fit is given by y =
0.107x + 0.893. Since the Rényi entropy scales logarithmically with
subsystem size, the special state |ψ〉 is not MBL in the presence of
disorder.

where C is a universal constant determined by the central
charge. For the special state at zero disorder, it takes the value
C = 1/4. For Luttinger liquids, there is also a correction to
the above expression that leads to q-periodic oscillations of
the entropy [20].

Figure 3 shows the Rényi entropy as a function of sub-
system size in the absence (δ = 0) and presence (δ = 3) of
disorder for N = 600. The figure also includes linear fits for
both data sets. In the uniform system, δ = 0, the fit is given
by y = 0.247x + 1.88, and the slope agrees with the constant
C = 0.25. For the disordered system δ = 3, the data follows
Eq. (11) with the linear fit given by y = 0.107x + 0.893. We
obtain a similar value for the slope for a system with N = 60
sites, and hence we do not expect the slope to change with
system size. Hence, the Rényi entropy of the special state
scales logarithmically with subsystem size even for strong dis-
order. This observation supports that the special state remains
critical in the presence of disorder and conflicts with area-law
scaling of entropy in MBL.

It is custom to analyze the transition to MBL using the
von Neumann entropy instead of the Rényi entropy (which
is also the case for our analysis in Sec. V A). The von Neu-
mann entropy of a critical state described by a conformal field
theory follows an expression similar to Eq. (11). Therefore,
we expect the von Neumann entropy of the special state to
also scale logarithmically with subsystem size. We also note
that the von Neumann entropy is strictly larger than the Rényi
entropy [21]. Consequently, when the Rényi entropy scales
logarithmically, the von Neumann entropy must also scale at

FIG. 4. (a) Bipartite fluctuation in particle number FN as a func-
tion of system size N without disorder δ = 0 and with disorder δ = 3.
In both cases, the fluctuation scales logarithmically with system size.
(b) The coefficient K/π 2 as a function of system size N . For δ = 0
and δ = 3, the coefficient agrees with predictions from Luttinger
liquid theory K/π 2 = 1/(3π 2) indicating that the state |ψ〉 does not
many-body localize. The disorder averaged quantities are calculated
by taking the mean value of 5000 disorder realizations, and the
error bars are the standard deviation of the mean over these 5000
realizations.

least logarithmically which conflicts with the area-law scaling
in MBL.

B. Bipartite fluctuation of particle number

Bipartite fluctuation of particle number represents another
diagnostic for identifying a transition to the MBL phase
[22–25]. While the full set of even cumulants of charge
fluctuations provide equivalent information to the Rényi and
von Neumann entropies in some systems (e.g., noninteraction
fermionic systems [22]), the bipartite fluctuation represents a
distinct quantity in our interacting model. Consider the oper-
ator NN = ∑N/2−1

i=0 ni which counts the number of particles in
half of the chain. The subscript refers to the total system size.
Then the fluctuation is given by

FN = 〈
N 2

N

〉 − 〈NN 〉2. (12)

The expectation value 〈N �
N 〉 for any power � is given by

〈
N �

N

〉 =
∑

n0,n1,...,nN−1

(
N/2−1∑

i=0

ni

)�

|〈n0, n1, . . . , nN−1|ψ〉|2.

(13)

Using this expression, one may compute 〈NN 〉 and 〈N 2
N 〉 with

Monte Carlo simulations. Figure 4 illustrates the fluctuation as
a function of system size for δ = 0 and δ = 3. The fluctuation
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of a Luttinger liquid is asymptotically given by [22]

FN = K

π2
ln(N ) + const. (14)

While the fluctuation is generally smaller for δ = 3 compared
to δ = 0, the scaling with system size in both cases agrees
with Eq. (14). We extract the coefficient K/π2 from the data
by observing that

K

π2
= FN − FN/2

ln(2)
. (15)

Using the data in Fig. 4(a), we compute (FN − FN/2)/ ln(2)
for δ = 0 and δ = 3. These results are illustrated in Fig. 4(b).
Both with and without disorder, this quantity is close to the
Luttinger liquid value for large system sizes. Thus, the scaling
of fluctuation with system size is independent of the disor-
der strength. This result indicates that the special state does
not undergo a transition to the MBL phase as disorder is
introduced.

V. MANY-BODY LOCALIZATION

In this section, we investigate the properties of generic
eigenstates of the considered Hamiltonian by studying the
entanglement entropy and level spacing statistics. For weak
disorder, the entanglement entropy displays volume-law scal-
ing with system size while it exhibits area-law scaling at large
disorder. Consistent with these findings, the level spacing
statistics changes from the Wigner-Dyson distribution to the
Poisson distribution as the disorder strength is increased. Both
diagnostics indicate that the eigenstates generally many-body
localize as disorder is introduced.

A. Entanglement entropy

We identify the transition from thermal to MBL behavior
by considering the half-chain entanglement entropy. Let ρ =
TrR(|�〉〈�|) be the reduced density operator after tracing
out the right half of the chain (in the case of an odd number
of sites, the chain is separated into two subsystems of sizes

N/2� and �N/2). The von Neumann entanglement entropy
is given by

S = − Tr[ρ ln(ρ)]. (16)

The entropy of energy eigenstates follows a volume-law scal-
ing in the thermal phase and an area-law scaling in the MBL
phase. Figure 5 illustrates the mean and variance of the en-
tropy averaged over 103 disorder realizations for states at
different energy densities. The energy density is defined as

ε = E − Emin

Emax − Emin
, (17)

where Emin (Emax) is the minimum (maximum) energy in
the spectrum, and E is the energy of the considered eigen-
state. The mean and variance of the entropy are plotted as
a function of disorder strength for different system sizes.
These quantities display the same qualitative behavior for

FIG. 5. Mean 〈S〉 and variance Var(S) of the von Neumann
entanglement entropy for the state closest to ε = 0.5, i.e., in the
middle of the spectrum, and ε = 0.1, i.e., low in the spectrum,
plotted against disorder strength for different system sizes N . Av-
eraging is done over 103 disorder realizations. At weak disorder
0 < δ � 0.5, the system is thermal with entropy obeying volume-law
scaling with system size. At intermediate disorder strengths 0.5 �
δ � 1.5, the system transitions from thermal to MBL behavior and
displays a peak in the variance of the entropy. At strong disorder
1.5 � δ, the system is MBL with mean entropy independent of
system size.

eigenstates in the middle of the spectrum and eigenstates
low in the spectrum. For weak disorder 0 � δ � 0.5, the
mean entropy scales linearly with system size consistent with
the expected volume-law scaling in the thermal phase. As
the disorder strength is increased, 0.5 � δ � 1.5, we observe
a rapid increase in the variance indicating the system is
undergoing a phase transition. At strong disorder, 1.5 � δ,
the mean entropy is constant as a function of system size
consistent with the area-law scaling expected in the MBL
phase. These findings indicate that the system many-body
localizes as disorder is introduced. This is true both in the
middle of the spectrum and close to the special state low in
the spectrum.

B. Level spacing statistics

The MBL phase can be identified by studying the level
spacing statistics. Let {En} be the energy levels sorted into as-
cending order and sn = En+1 − En � 0 the nth level spacing.
In the thermal phase, one expects level repulsion and the dis-
tribution of level spacings follows the Wigner surmise. Since
the coefficients F A

i j in Eq. (8) are complex, the Hamiltonian
(7) is not invariant under time reversal and the level spacing
is described by the Gaussian unitary ensemble (GUE). In the
MBL phase, no level repulsion is expected and the energy
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FIG. 6. (a)–(c) Distribution of the adjacent gap ratio obtained
from 103 disorder realizations and the middle third of the spectrum
for system size N = 15 at different disorder strengths (blue). For
comparison, the graphs also show the corresponding GUE (dashed)
and Poisson (dashed-dotted) distributions from Eq. (19). (a) At weak
disorder, δ = 0.1, the distribution of the adjacent gap ratio agrees
with GUE. (b) At intermediate disorder strength, δ = 0.75, the adja-
cent gap ratio transitions from GUE towards the Poisson distribution.
(c) At strong disorder, δ = 2, the adjacent gap ratio agrees with
the Poisson distribution. (d) The adjacent gap ratio averaged over
103 disorder realizations and the middle third of the spectrum as a
function of disorder strength for different system sizes. The system
is thermal at low disorder and the average adjacent gap ratio agrees
with GUE. As the disorder strength is increased, the adjacent gap
ratio approaches the Poisson value signaling a transition to the MBL
phase.

levels follow the Poisson process. The transition to MBL can
be identified by observing the level spacing distribution shift-
ing from GUE to Poisson as disorder is introduced. However,
before comparing the level spacing distribution to either GUE
or Poisson one must account for the local density of states,
which is done with a technique known as unfolding [26,27].
The procedure of unfolding the spectrum is costly numerically
and may introduce error. Therefore, it is custom to study the
adjacent gap ratio rn instead of working directly with the level
spacing distribution [28]. The adjacent gap ratio is given by

rn = min(sn+1, sn)

max(sn+1, sn)
. (18)

This quantity is independent of the local density of states and
no unfolding is needed. When the spectrum is described by,

respectively, the Wigner surmise or a Poisson process, the
adjacent gap ratio is distributed according to [29]

PGUE(rn) = 81
√

3

2π

(
rn + r2

n

)2

(
1 + rn + r2

n

)4 , (19a)

PPoisson(rn) = 2

(1 + rn)2
. (19b)

Figures 6(a)–6(c) show the distribution of the adjacent gap
ratio (blue line) of a system with N = 15 sites at different dis-
order strengths (a) δ = 0.1, (b) δ = 0.75, and (c) δ = 2. The
figure also displays the probability distributions in Eq. (19)
for comparison (dashed and dashed-dotted lines). At low dis-
order, the adjacent gap ratio agrees with GUE indicating the
system is thermal. As the disorder strength is increased, the
distribution shifts towards the Poisson distribution. At large
disorder, the adjacent gap ratio follows the Poisson distribu-
tion signaling the system is MBL.

The transition from GUE to a Poisson process is high-
lighted by considering the adjacent gap ratio averaged over
the middle spectrum and many disorder realizations. When
the spectrum is described by, respectively, the GUE or Poisson
process, this average is given by rGUE = 2

√
3

π
− 1

2 ≈ 0.60 and
rPoisson = 2 ln(2) − 1 ≈ 0.39. The average adjacent gap ratio
as a function of disorder strength is shown in Fig. 6(d). We
observe a transition from GUE to the Poisson process as the
disorder strength is increased indicating the system becomes
MBL at large disorder. The agreement with GUE at weak
disorder is better for larger system sizes due to the smaller
finite size effects. Similarly, the system size N = 6 at strong
disorder converges below the Poisson value due to finite size
effects that reduce for larger system sizes.

VI. PLACING THE SPECIAL STATE IN THE MIDDLE
OF THE SPECTRUM

The special state is either the ground state or one of
the low-lying excited states of the parent Hamiltonian in
Eq. (7). Other Hamiltonians may, however, be constructed
where the special state appears higher in the spectrum. Con-
sider the Hamiltonian Hα = (H − α)2 obtained by shifting
and squaring. Similar to the original Hamiltonian, this new
Hamiltonian contains long-ranged interactions and hopping.
The new Hamiltonian also contains more complicated terms
such as four-body interactions and correlated hopping. The
new Hamiltonian Hα has the same eigenstates as H , but the
spectrum is different since the energies are transformed as
En → (En − α)2. The special state is an eigenstate of Hα with
energy α2, and by choosing α appropriately, the special state
can be placed near the center of the spectrum.

The new model also localizes in the presence of disorder.
Figure 7 illustrates the average entropy and adjacent gap ratio
for Hα with α = Emax/(1 + √

3) which places the special state
one third into the spectrum. We consider disorder strength δ =
3 in all panels. Figure 7(a) shows that the average entangle-
ment entropy of an eigenstate in the middle of the spectrum is
constant as a function of system size. In Fig. 7(b), we observe
the average adjacent gap ratio agreeing with the expected
value for the Poisson distribution. Figure 7(c) illustrates the
distribution of the adjacent gap ratio for system size N = 15
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FIG. 7. The Hamiltonian Hα is investigated at strong disorder
δ = 3. (a) The average von Neumann entanglement entropy for the
eigenstate closest to ε = 0.5, i.e., in the middle of the spectrum. The
entropy is constant as a function of system size N in accordance with
area-law scaling for MBL. (b) The average adjacent gap ratio as a
function of system size (blue dots), expected value for GUE (dashed
line), and for the Poisson distribution (dashed-dotted line). (c) The
distribution of adjacent gap ratio for system size N = 15 (blue his-
togram), GUE distribution (dashed line), and Poisson distribution
(dashed-dotted line). The adjacent gap ratio agrees with the Poisson
distribution establishing the model is MBL. For all panels the number
of disorder realizations is 103, and in (b) and (c) the middle third of
the spectrum has been used.

also agreeing with the Poisson distribution. These diagnostics
establish the Hamiltonian Hα is MBL at large disorder. While
the new Hamiltonian Hα is more complicated than the original
H , this analysis demonstrates that the special state is not
inherently limited to low-energy densities. It may as well exist
near the center of the spectrum. Future work could seek to
uncover simpler models hosting non-MBL states in the middle
of an MBL spectrum.

VII. CONCLUSION

While emergent symmetry has previously been identified
as a mechanism to obtain weak violation of MBL [15], we
have here shown that weak violation of MBL can also happen
without the presence of emergent symmetry. Specifically, we
have constructed a model with a known eigenstate. Consid-
ering entanglement entropy and level spacing statistics, we
have shown that the model many-body localizes at strong
disorder. Nevertheless, the entanglement entropy and bipartite
fluctuation of particle number for the known eigenstate scales
logarithmically with system size implying that this state is not
MBL at strong disorder. Our model hence contains a special
non-MBL state embedded in a spectrum of MBL states. The
idea to have exactly solvable eigenstates embedded in a spec-
trum is quite general and draws parallels to quantum many-
body scars, and we expect that several further examples of
weak violation of MBL can be constructed along these lines.
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