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Ab initio calculation of hafnium and zirconium melting curves via the Lindemann criterion
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In this work we present the melting curves of hafnium and zirconium obtained using quantum molecular
dynamics calculations. The mean-square displacements computed during ab initio simulations of a crystal phase
are used to reconstruct the melting curve according to the Lindemann criterion. The resulting Zr melting curve
shows a steeper slope in the low-pressure region compared to some recent diamond-anvil cell experiments
but agrees with our previous estimate via the Clausius-Clapeyron relation. The slope for higher pressures is
consistent with the experimental one. As for Zr, the Hf melting curve also has a similar steep initial slope being
in agreement with our estimate from the Clausius-Clapeyron relation. Currently there are no data on the melting
of Hf above atmospheric pressure, so we demonstrate the first ab initio estimate of the melting curve of Hf up to
225 GPa.
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I. INTRODUCTION

Hafnium (Hf), zirconium (Zr), and titanium (Ti) belong to
the same group of the Mendeleev Periodic Table (group IVB).
Thus they have a very similar structure of valence electrons;
moreover, the chemical properties of hafnium are alike to
zirconium [1]. Hafnium is used as a control rod material in
nuclear reactors due to its high thermal neutron absorption
cross section [2,3]. It also serves as a structural material in
water-cooled nuclear reactors since its corrosive resistance
turned out to be higher than that of zirconium [3].

For successful and safe use of Zr and Hf in nuclear power
engineering, it is necessary to know their thermal properties as
well as phase diagrams. At room temperature and atmospheric
pressure, Hf exists in the α phase (the hcp crystal structure).
When heated, it transforms into the β phase (bcc lattice),
which was first reported nearly 100 years ago [4] and studied
in detail later [5–7]. Ti and Zr show similar behavior [8],
although the transition happens at lower temperatures [9]. The
transformation from the α phase to the ω one (hexagonal crys-
tal structure) also occurs at much higher pressures for Hf than
for Ti and Zr [9]. In [10], an attempt was made to reproduce
the experimental results for Ti, Zr, and Hf crystal structures
at zero temperature using density functional theory (DFT).
Ab initio DFT calculations agree well with the experimental
transition pressures [11]. Later, a complete phase diagram
of solid Hf was reconstructed in [12,13]. The influence of
an exchange-correlation functional as well as the spin-orbit
coupling on the phase diagram was considered in [14].

The phonon and elastic properties of Hf are also widely
studied. From the theoretical point of view, these properties
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are considered mostly in the quasiharmonic approximation
(QHA) [15]. The phonon dispersion of α-Hf at 295, 800, and
1300 K have been measured in [16,17]. For higher temper-
atures, the phonon dispersion curves of the β phase of Ti,
Zr, and Hf were experimentally determined in [18–20]. As
a result of a phonon spectrum calculation, imaginary modes
of vibrations in the β phase are observed [13,21–23]; the
calculations were performed by “SCAILD” [24] and “small
displacement” [25] methods. Thus, the β phase of Ti, Zr, and
Hf is dynamically unstable [26] so that the QHA is not suit-
able in this case and anharmonic effects should be taken into
account. Quantum molecular dynamics (QMD) simulations
[26] or the “large displacement” method [15] can be used
for this purpose; both methods eliminate imaginary modes
and provide a better agreement with the experimental phonon
spectrum for the β phase. However, the method of Ref. [26] is
very computationally expensive, and there is no strict criterion
for the amount of displacement in the large displacement
approach [15]. In contrast, imaginary modes are not observed
for the α phase of Hf, Zr, and Ti [13,27].

Thermophysical properties of pure hafnium were exten-
sively investigated experimentally at very low [28–32] and
high temperatures [33,34]. The papers [33,35–38] present
information on the enthalpy dependence on temperature, in-
cluding different aggregate states [36]. Density, heat capacity,
surface tension, and viscosity were also reported [34,39–43].
The semiempirical Mie-Grüneisen equation of state (EOS) of
Hf was constructed in Ref. [44]; the coefficients were fitted to
the data of shock wave experiments. Finally, the multiphase
EOS for hafnium [45–47] was constructed, and its critical
parameters [48] were estimated.

Both for Hf and Zr, one of the major experimental prob-
lems is the avoidance of oxidation which may interfere with
reliable transition and melting point determinations and lead
to a significant discrepancy in specific heat and enthalpy
measured values [37]. A further challenge for hafnium is
that nearly all measurements carry out on samples containing
zirconium.
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An extensive review of thermodynamic, transport, and
optical properties of Zr, as well as their first-principles
calculations, can be found in our previous paper [49]. Using
the QMD method we have presented the thermal expansion,
enthalpy, electrical resistivity, and normal spectral emissivity
of solid and liquid Zr as well as the static structure factor of
liquid Zr.

In addition to thermophysical properties, the melting curve,
Tm(P), plays an important role in high-pressure technology.
Solid Hf and Zr melt from the β phase. As stated above, the
anharmonic effects are well known for the β phase of these
metals; as a consequence, the QHA is not satisfactory in this
case. Thus, the Lindemann criterion based on the QHA and
Debye temperature [50] is not applicable to the metals under
consideration. Fortunately, the melting curve can be calcu-
lated from the Lindemann criterion in its original form [51].
According to this criterion, melting occurs if the amplitude of
thermal vibrations exceeds some critical value.

In our work, we perform the first ab initio reconstruc-
tion of the melting curve of pure hafnium and zirconium
by calculating the mean-square displacement (MSD) of ions
directly from QMD simulations. At the moment, unlike Zr
for which experimental data have recently become available
[52–54], Hf melting curve measurements are completely ab-
sent. Therefore, to verify the reliability of our method, we
present a comparison of the calculated Zr melting curve with
experimental data, and then apply the method to Hf.

II. COMPUTATIONAL METHOD

A. Methods used in earlier works

A melting curve can be computed from the modeling of a
single phase (solid or liquid) or two phases at once.

The “heat until it melts” (HUM) method is widely used
as a single-phase method [55–59]. During the calculation,
a computational cell is heated until the entire cell starts to
melt. Although this method is not very time-consuming, the
resulting melting temperature is usually overestimated and
depends on the number of particles, Nat (see Sec. IIIC in Ref.
[57], Fig. 3 in Ref. [58], and Ref. [59]). It is explained by
the overheating of a solid phase [60]: the system becomes
metastable so melting may occur at a temperature higher than
the equilibrium melting one. The HUM method can be slightly
improved using the hysteresis method (see Eq. (1), Fig. 4 in
Ref. [58] and Eq. (14) in Ref. [61]).

The Z method is another single-phase simulation approach
that appears to yield more accurate results [62–64]. The idea is
to perform a long simulation of an overheated solid in the NVE
ensemble. At some moment, the system should spontaneously
melt, causing the temperature to drop to Tm. The major disad-
vantage of this method is the necessity for a long simulation
and a large system [58, Sec. III D]. Previously, an attempt was
made to estimate two melting points of Hf at high pressures
using the Z method for 432 atoms [65]. However, the theoret-
ical basis of the Z method and its strong dependence on the
computational cell size and simulation time are still a matter
of debate [66,67].

The two-phase or coexistence method assumes the pres-
ence of adjoining solid and liquid phases in the calculation

cell [57,68–70]. During the simulation, the interface between
the two phases should be at rest. Usually, the resulting melt-
ing temperature agrees well with experiment. However, the
simulation requires at least a thousand particles to obtain a
reliable equilibrium situation so the method is extremely time-
consuming especially for the elements with a big number of
valence electrons such as hafnium and zirconium.

Based on the two-phase thermodynamic (2PT) model by
Lin et al. [71] and memory function (MF) formalism, the
2PT-MF technique [72–74] allows one to calculate entropy
and free energy via the velocity autocorrelation function. Thus
it is possible to compare the Gibbs free energy of two phases
to define the melting curve. This method gives results close
to the coexistence one for a much lower price. However, the
present formulation of the 2PT-MF method has difficulties
describing heavy elements.

B. Method of this work

In contrast to the considered above one-phase methods of
melting determination the Lindemann criterion [50,51] has a
theoretical justification in the case of the inverse power poten-
tial φ(r) ∼ r−n [75,76]. It is also known that the Lindemann
parameter is almost constant for metals with the same crystal
structure (e.g., 0.1–0.13 for fcc metals [77,78]). According
to the Lindemann criterion, melting occurs if the amplitude
of atom or ion thermal vibrations

√
〈u2(T, P)〉, depending on

temperature T and pressure P, becomes large enough com-
pared to the average interatomic distance:√

〈u2(Tm, P)〉 = Lmeltdat . (1)

Here, 〈u2(T, P)〉 is the MSD of ions, Lmelt is a dimension-
less constant and Tm is a melting temperature at pressure P.
Lmelt determines the critical amplitude of thermal vibrations.
The notation L(T, P) =

√
〈u2(T, P)〉/dat defines the reduced

amplitude of vibrations; we refer to it as the Lindemann pa-
rameter, while the constant Lmelt will be further referred to
as the critical Lindemann parameter. The value of the average
interatomic distance is calculated as the doubled Wigner-Seitz
radius [79, Eq. (19.11)]:

dat =
(

6�

πNat

)1/3

. (2)

It is possible to calculate the MSD using the QHA [78]. In
this theory, 〈u2(T, P)〉 is determined by the phonon density of
states (PhDOS) [80]. The Lindemann criterion (1) with such a
choice of 〈u2(T, P)〉 showed a very good agreement with ex-
perimental data for Al, Cu, and Ni [78,81]. The anharmonicity
of vibrations can be accounted for using a thermodynamic
integration [82] or machine-learned potentials [83].

Nevertheless, in some cases the quasiharmonic approach
cannot be applied. This is valid for metals in which a crys-
tal structure is dynamically unstable at 0 K (i.e., its phonon
spectrum contains imaginary frequencies) [26,84]. The same
situation may be observed for crystal structures near the
melting curve. The anomalous phonon spectra are found, for
example, in Li, Zr, and Hf (see Figs. 2, 3 in Ref. [26] and Fig.
7 in Ref. [13]). They can be mended by taking into account
the anharmonic contributions to the free energy at elevated
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temperatures [15,24,26,85]. However, to restore the meting
curve the dependence of PhDOS on temperature and volume
is necessary, which requires huge computational costs when
using the methods of Refs. [24,26]. On the other hand, in the
large displacement approach [15] there is no strict physical
criterion for the choice of displacements, which leads to an
unsatisfactory dependence of phonon free energy on volume
on isotherms.

Therefore, in this work we do not calculate the phonon
spectrum at all. Instead, the MSD is calculated directly from
the ionic trajectories, and the anharmonic effects are taken
into account immediately. A similar method was used in [86];
however, the MSD of ions and the critical Lindemann param-
eter were estimated with less accuracy.

To calculate the MSD of ions, we perform a QMD sim-
ulation in the framework of DFT using the Vienna Ab initio
Simulation Package (VASP) [87–90]. Next, we briefly describe
the simulation method. One may find a more detailed descrip-
tion of the QMD technique in [91].

A simulation is performed in a cubic computational cell for
a crystalline system; the NVT ensemble is used. The volume
of the cell corresponds to a given density ρ; the temperature
of ions is maintained via the Nosé thermostat [92]; the same
temperature of electrons is set as a parameter in the Fermi-
Dirac distribution. After the system reaches equilibrium, we
calculate the reference configuration of ions to take into ac-
count a possible disruption of the ideal lattice structure in
the vicinity of melting. For this purpose, we calculate the
equilibrium positions for each ion by averaging its coordinates
in all equilibrium configurations. Additionally, we determine
the self-diffusion coefficient to make sure that it equals to zero
and no irreversible displacements of atoms take place during
the equilibrium part of the simulation. Pressure P = P(T, ρ)
is determined by averaging of the ionic and electronic contri-
butions over equilibrium configurations.

Then we calculate the MSD with respect to the reference
configuration for each equilibrium ion configuration and each
ion. These displacements are averaged over all ions and con-
figurations:

〈u2(T, P)〉 = 1

Nat Ncf

Ncf∑
c=1

Nat∑
i=1

3∑
α=1

(
xα

ci − xα
ri

)2
, (3)

where T is the simulation temperature, Ncf is the number of
equilibrium configurations, α stands for the index of the three
coordinate axes, xα

ci is the α coordinate of ion i in configu-
ration c, and xα

ri is the α coordinate of ion i in the reference
configuration.

The value of the critical Lindemann parameter Lmelt de-
pends on the material. To compute it, we perform several
simulations at a given temperature Tm0 corresponding to the
reference melting temperature at atmospheric pressure and
different densities to obtain the dependence L(Tm0, P) on pres-
sure P (see Fig. 1). Then, this dependence is extrapolated to
zero pressure to obtain Lmelt.

To calculate the melting curve, Tm(P), we use Eq. (1).
We choose several densities corresponding to a compressed
crystalline state. For each density ρg (the index g stands for
“given”), we perform the simulations at different tempera-
tures to calculate P(T, ρg), L(T, P(T, ρg)). We approximate

FIG. 1. Determination of the critical Lindemann parameter Lmelt

for Zr. Each point corresponds to a Lindemann parameter L(Tm0, P)
for the experimental melting temperature Tm0 = 2125 K. This pres-
sure dependence is linearly extrapolated to zero pressure to obtain
Lmelt = 0.1475(4) ≈ 0.148.

P(T, ρg), L(T, P(T, ρg)) by linear functions of T ; the fitting
value L(Tm, Pm) = Lmelt corresponds to the melting tempera-
ture Tm at a pressure Pm = P(Tm, ρg) (see Fig. 2). The melting
curve obtained in this way can be fitted by the Simon-Kechin
approximation [93, Eq. (13)]:

Tm(P) = Tm0

(
1 + P

A

)B

exp(−C × P). (4)

We found that the Simon-Kechin approximation describes
our melting curve better than the Simon-Glatzel one espe-
cially in the low-pressure region, where the slope of the
calculated curve changes significantly, as will be demon-
strated below.

FIG. 2. The temperature dependence of the Lindemann parame-
ter at fixed densities ρg for Zr. Points correspond to L(T, P(T, ρg))
at each density ρg. Each dependence L(T, P(T, ρg)) for a fixed ρg is
linearly fitted. The substance density, ρg, is indicated on every line in
g/cm3. The critical parameter Lmelt ≈ 0.148.
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(a) (b)

FIG. 3. The melting curve of (a) Zr; (b) Hf. (a) The experimental data for Zr are from [52–54]. The calculation by Smirnova et al. [94]
is provided via classical molecular dynamics up to 13 GPa. The long-dashed and short-dashed lines from [95] represent the fitted data from
Birch-Murnaghan EOS and QMD data of [96], respectively, via the Lindemann-Gilvarry approximation. The red circles and red solid line
represent our computational result and Simon-Kechin fit (4), respectively (see Table I). (b) Melting curve of Hf according to our calculations.
Our Zr melting curve is shown as a gray dashed curve for comparison.

As can be seen, a reference melting point Tm0 is needed
to obtain Lmelt. In our work, the experimental value of the
melting point at atmospheric pressure is used. However, if
necessary, this temperature can be obtained from the methods
described above (e.g., by the coexistence method).

III. SIMULATION PARAMETERS

The initial computational cell contains 128 atoms of Zr or
Hf in bcc positions, which corresponds to 43 unit cells of a
bcc lattice. The periodic boundary conditions are imposed. A
QMD simulation is performed for no less than 6000 steps with
a 2 fs time step. The first 2000 configurations were discarded;
the rest of the configurations correspond to the equilibrium
section.

During the electronic structure calculation, we use the
Perdew-Burke-Ernzerhof (PBE) parametrization [97] for the
generalized gradient approximation (GGA) of the exchange-
correlation functional. The projector augmented-wave [98]
pseudopotentials with 12 valence electrons for both metals
are used. A cutoff energy for the plane-wave basis is equal
to 500 eV for both Zr and Hf. The Baldereschi mean-value
k point {1/4, 1/4, 1/4} is used to approximate the Brillouin
zone. All bands with occupation numbers greater than 10−6

are taken into account during the simulation.
The convergence on the number of atoms and the influence

of exchange-correlation functional on the reconstruction of
the melting curve are discussed in the Appendix.

IV. RESULTS AND DISCUSSIONS

A. Melting curve of Zr

Since there is no experimental data on the melting curve
of hafnium, we verify the presented method by example of
Zr. There are several recent experiments [52–54] as well as
calculations [94,95] of Tm(P) for Zr. The experimental data

[52–54] are obtained with the laser heated diamond-anvil cell
(LHDAC) technique. Our calculations using the Lindemann
criterion (1) are shown in Fig. 3(a) by red circles. We fitted
our data with the Simon-Kechin approximation (4) with A =
11.7647 GPa, B = 0.2965, and C = −1.03 × 10−3 GPa−1.
Our QMD data on the melting curve of Zr are collected in
Table I.

As can be seen, our calculations predict a steep slope of the
melting curve in the initial pressure range up to 40 GPa. At
higher pressures the slope becomes flatter. We can note that
our curve is consistent with the measurements by Radousky
et al. [53] up to 20 GPa. As for higher pressures, all available
experimental data [52–54] are slightly lower than our curve;

TABLE I. Melting curve data for Zr and Hf based on our QMD
calculations. σTm is a statistical error of temperature and ρg is the
density of the solid phase at melting.

Tm (K) σTm (K) Pm (GPa) ρg (g/ cm3)

Zr

2662 99 12.7 7.0
2864 84 18.2 7.3
3181 157 32.4 8.0
3863 205 58.6 9.0
4133 93 73.5 9.5
4763 117 109.0 10.5
5726 153 172.8 12.0

Hf

3083 165 9.9 13.50
3782 27 25.8 15.00
4808 192 60.4 17.55
5806 151 107.0 20.12
6698 150 149.1 21.95
7822 191 214.0 24.31
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however, the slope matches that of Parisiades et al. [52] and
Gal [95] (long-dashed curve). It should be noted that the slope
of our calculated curve at zero pressure dTm/dP ≈ 56 K/GPa
is consistent with the one obtained via the Clausius-Clapeyron
relation (dTm/dP = Tm0
Vfus/
Hfus ≈ 60 K/GPa) using the
enthalpy of fusion 
Hfus ≈ 14 kJ/mol and volume change

Vfus/Vsolid ≈ 2.6% for Zr at melting calculated in our
previous work [49]. Here, Vsolid is the volume of the solid
phase at T = Tm0.

As has been shown in our previous work [78] and con-
firmed in [81], the calculated Ni melting curve is located
higher than that obtained in LHDAC experiments up to 2013
[109–111]. Later experiments [112,113], however, agree quite
well with our melting curve from Ref. [78]. The underes-
timation of melting curves in LHDAC experiments as well
as challenges due to uncertainties in the material’s emis-
sivity, thermal gradients, and other experimental factors are
discussed in detail by Hrubiak et al. [114] by example of
molybdenum. A systematic underestimation of LHDAC melt-
ing data compared to shock wave experiments and theoretical
predictions is clearly observed for iron [115]. It is possible that
the melting curve of Zr in Refs. [52–54] may also be slightly
underestimated.

In [95] the melting curve of Zr was evaluated. It was cal-
culated with the Lindemann-Gilvarry criterion [50] based on
QMD simulations from [96]. The result [95, Fig. 2] appears to
be frustrating [see also Fig. 3(a), the blue short-dashed line].
The author of [95] concludes that “the mismatch demonstrates
the difficulties of the DFT theory to predict melting curves.”
We are strongly opposed to such a statement. The calculation
of the melting curve in [95] from QMD data [96] is done
using the Lindemann-Gilvarry approximation, which is based
upon the quasiharmonic theory. Due to strong anharmonic
effects in the bcc phase of Zr such an approach can lead to
significant errors.

We can repeat here that DFT data and the Lindemann
criterion have previously provided excellent agreement with
experimental data for better studied metals [78,86,116].

B. Melting curve of Hf

Our estimation of the Hf melting curve is presented in
Fig. 3(b) together with the melting curve of Zr for compari-
son. The determination of the critical Lindemann parameter
Lmelt for Hf is shown in Fig. 4(a). The corresponding value
Lmelt = 0.1594(2) ≈ 0.16 was obtained through the linear
extrapolation of calculated parameters along the isotherm
Tm0 = 2506 K to zero pressure. Six isochors referring to the
densities ρg were computed to reconstruct the melting curve
up to 225 GPa (see Table I). The temperature dependencies of
the Lindemann parameter along the isochores were linearly
fitted and extrapolated to Lmelt as shown in Fig. 4(b). The
pressure values for the melting curve were determined using
linear approximations for the calculated P − T dependencies
along the isochores. The obtained result is well fitted via
the Simon-Kechin relation with parameters A = 14.2857 GPa,
B = 0.3745, and C = −4.6341 × 10−4 GPa−1. QMD data on
the Hf melting curve are collected in Table I.

As can be seen from Fig. 3(b) our calculated Hf melting
curve has a steep slope at P = 0 (dTm/dP ≈ 67 K/GPa), as in

FIG. 4. Lindemann parameter along the isotherm Tm0 = 2506 K
and isochors for Hf. (a) Linear extrapolation of calculated
L(Tm0, P) to zero pressure gives a critical Lindemann parame-
ter Lmelt = 0.1594(2) ≈ 0.16. (b) The temperature dependence of
the Lindemann parameter at fixed densities. Points correspond to
L(T, P(T, ρg)) at some (T, ρg). Each temperature dependence of
L(T, P(T, ρg)) for a fixed ρg is linearly fitted. The density is in-
dicated on every line in g/cm3. The critical Lindemann parameter
Lmelt ≈ 0.16.

case of Zr. To prove this conclusion, we decided to reconstruct
the isobaric expansion (IEX) curve in the vicinity of melting
for solid and liquid Hf to estimate the slope of the melting
curve via the Clausius-Clapeyron relation. We performed a
series of calculations along isochores in the liquid phase and
along isotherms in the solid phase. A larger number of atoms
(250) were used in these simulations to ensure the conver-
gence of thermodynamic properties (i.e., pressure error of less
than 1 kbar) in the vicinity of melting. Then the calculated
points were interpolated by a quadratic polynomial or a linear
fit, and the interpolation relations were used to restore the zero
isobar. This approach helps to reduce the influence of compu-
tational errors and allows the IEX curve to be reconstructed
with high accuracy at a given pressure, as demonstrated earlier
for Mo [117,118], Re [119], and Zr [49].

Our reconstructed IEX curve in the density vs temperature
plot is presented in Fig. 5 as well as available experimental
measurements and some theoretical predictions. Our results
are in very good agreement with electrostatic levitation (ESL)
data by Paradis [40] both for solid and liquid Hf, as well as
with ESL data by Yoo et al. [42] for liquid Hf. The density
of molten Hf measured at Tm by Ivashchenko and Martsenyuk
[99] and calculated by Allen [101] is also consistent with our
prediction. It should be noted that our QMD-calculated isobar
for liquid Hf perfectly agrees with the prediction by Steinberg

214105-5



D. V. MINAKOV et al. PHYSICAL REVIEW B 106, 214105 (2022)

FIG. 5. Isobaric expansion of solid and liquid Hf in the density
versus temperature diagram. Star symbols are QMD data; red lines
are linear approximations. Experimental isobaric data: pulse heating
[43] is green down triangles; electrostatic levitation measurements
[39,40,42] are blue open circles, left violet triangles, and open purple
squares, correspondingly. Molten density measurement [99] is black
open triangle. Density calculations of liquid Hf [100,101] are black
solid triangles and square.

[100] made using the similarity law. Meanwhile, the pulse
heating experimental data by Korobenko and Savvatimskii
[43] have a similar slope of the thermal expansion curve but
predict lower density for liquid Hf. It may be noted that the
volume expansion measurements seem to be the most chal-
lenging task of the IEX experiments with pulse heating. Both
the capabilities and features of experimental instruments and
the complexity of the accompanying physical phenomena may
prevent obtaining reliable data on the dependence of density
on temperature [120].

Molar enthalpy for solid and liquid Hf in the vicinity of
melting is plotted versus temperature in Fig. 6. Our calcula-
tions agree very well with experimental and reference data
for β-Hf; the best agreement is observed for the enthalpy
measurements by Kats [103] and Cagran et al. [102]. On
the other hand, for liquid Hf QMD predicts significantly
lower enthalpy than can be found in NIST [105], IVTAN-
THERMO [107,108], and Barin’s handbook [106], and recent
reviews [37,104] and experiments [33,102]. Nevertheless, the
slope of our molar enthalpy curve, which by definition is
isobaric heat capacity, for liquid Hf is close to that from
the IVTANTHERMO handbook and Rösner-Kuhn et al. Our
calculations predict Cp ≈ 41.5 J mol−1 K−1 for liquid Hf, IV-
TANTHERMO, 44; Rösner-Kuhn et al. [33], 40; Korobenko
et al. [34], 42.8; and Paulson et al. [104], 45 J × mol−1 K−1.
Meanwhile, the figure shows that there is a strong discrep-
ancy between the measurements for liquid Hf, mainly due
to different estimates of the melting enthalpy jump, which
differs almost twice from 14.69 [102] to 29 kJ/mol [105]. Our
QMD calculations predict the lowest value of the enthalpy of
fusion among available estimates of about 13.1 kJ/mol. For
comparison, the lowest measured values of the enthalpy of
fusion for Hf were presented by Cagran et al. [102], 14.69;

FIG. 6. Molar enthalpy versus temperature for Hf. Star symbols
are QMD data; red lines are approximations. Experimental data
[33,102,103] are shown as symbols. Orange solid line is the relation
by Paulson et al. [104] obtained using the Bayesian framework for
a selection of experimental data, the relation by Arblaster [37] is a
green dashed line, the relation from Thermochemical Table NIST
[105] is a violet dash-dotted line, the blue dashed line is the data from
the handbook of thermochemical properties of inorganic substances
by Barin et al. [106], and the black line is the approximation from
the IVTANTHERMO handbook [107,108].

by Paradis et al. [40], 15.1; by Kang et al. [121], 15.68; and
by Korobenko et al. [34], 16.06 kJ/mol. At the same time, it
should be mentioned here, that experimental samples of Hf
usually consist of about 3 mass % of Zr so the influence of
the impurities on the thermophysical properties may be sig-
nificant. For example, when corrected by the Kopp-Neumann
rule the enthalpy of fusion by Paradis et al. can be refined
downward to 14.62 kJ/mol [37].

To sum up, our QMD calculations for Hf predict a substan-
tial volume change on melting 
Vfus = 1.7567 × 10−3 cm3/g
or about 2.15% volume jump in agreement with ESL experi-
ments and at the same time the lowest value of the enthalpy
of fusion (
Hfus ≈ 13.1 kJ/mol). This leads to a steep slope
of the melting curve at P = 0 of dTm/dP ≈ 60 K/GPa via
the Clausius-Clapeyron relation, that is consistent with our
estimate via the Lindemann criterion.

V. CONCLUSION

The famous Lindemann criterion [51] appeared more than
100 years ago and has been proving its usefulness in nu-
merous publications. Having a theoretical justification for an
inverse power potential, it works very well in many practical
situations. The Gilvarry reformulation of the criterion [50]
connects melting with the Debye temperature and Grüneisen
parameter. In this form the Lindemann criterion is widely used
to predict melting as all necessary information for the calcula-
tion is available from the QHA. However, in the case of Zr and
Hf the QHA fails due to strong anharmonic effects in the bcc
structure of these metals. The criterion still can be used, but
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FIG. 7. Melting curve of Zr from QMD simulations and the
Lindemann criterion. Red solid circles correspond to 128 atoms and
the GGA-PBE exchange-correlation functional, the blue open circle
is for the GGA-PBE and 250 atoms, and the blue triangle is for the
LDA-CA and 128 atoms.

the amplitude of ionic vibrations should be calculated directly
from molecular dynamics simulations.

In this work we apply the QMD method to calculate the
MSD of ions and restore the melting curves of Zr and Hf
using the Lindemann criterion in its original form. We accu-
rately determine the reference configuration and study ionic
vibrations with respect to it. The critical Lindemann parameter
is obtained by extrapolation of the Lindemann parameter at
the reference melting temperature to zero pressure. Then the
melting curve is calculated by extrapolation of the Linde-
mann parameter on different isochores to the critical value.
We obtained the following values of the critical Lindemann
parameter: Lmelt = 0.148 for Zr and Lmelt = 0.16 for Hf. The

melting curves for both metals show a rather steep slope at
P = 0, which becomes flatter at higher pressures. Indepen-
dently, we calculated the initial slope of the melting curves
from the Clausius-Clapeyron relation for Zr [49] and revealed
good correspondence with the Lindemann criterion. To make
a similar checkout for Hf we calculated the IEX curve to
obtain the values of 
Hfus ≈ 13.1 kJ/mol and 
Vfus/Vsolid ≈
2.15%. The enthalpy of fusion for Hf turned out to be the
lowest among other values while the volume jump was in
agreement with ESL experiments. Nevertheless, the slope of
the Hf melting curve at P = 0 from the Clausius-Clapeyron
relation is close to that from the Lindemann criterion. Thus,
the first ab initio melting curves for Hf and Zr are obtained.
Unlike many similar works, we also present the density of
solid phase at melting for both metals.
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APPENDIX: INFLUENCE OF SIMULATION PARAMETERS
ON MELTING CURVE RECONSTRUCTION

We checked the reliability of our calculation of the melting
curve of Zr by performing additional calculations with more
atoms in a supercell and with another exchange-correlation
functional. The results of these tests for 250 atoms and for the
LDA-CA [122] exchange-correlation functional are shown in
Fig. 7. For both cases we redefined the critical Lindemann
parameter by calculating the isotherm Tm = 2125 K with the
alternative simulation parameters. As can be seen from the
figure, the predicted melting temperature remains the same
within the error bars even for different exchange-correlation
functionals.
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