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Third-order elasticity (TOE) theory predicts strain-induced changes in second-order elastic coefficients
(SOECs) and can model elastic wave propagation in stressed media. Although third-order elastic tensors have
been determined based on first principles in previous studies, their current definition is based on an expansion
of thermodynamic energy in terms of the Lagrangian strain near the natural, or zero pressure, reference state.
This definition is inconvenient for predictions of SOECs under significant initial stresses. Therefore, when TOE
theory is necessary to study the strain dependence of elasticity, the seismological community has resorted to an
empirical version of the theory. This study reviews the thermodynamic definition of the third-order elastic tensor
and proposes using an “effective” third-order elastic tensor. An explicit expression for the effective third-order
elastic tensor is given and verified. We extend the ab initio approach to calculate third-order elastic tensors
under finite pressure and apply it to two cubic systems, namely, NaCl and MgO. As applications and validations,
we evaluate (a) strain-induced changes in SOECs and (b) pressure derivatives of SOECs based on ab initio
calculations. Good agreement between third-order elasticity-based predictions and numerically calculated values
confirms the validity of our theory.
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I. INTRODUCTION

In seismological applications, second-order elastic coef-
ficients (SOECs) are treated as a function of the initial
configuration of a solid in equilibrium under initial stress
[1,2]. Although studies of SOECs vs pressure take into ac-
count first-order effects of hydrostatic stress [3], addressing
the effects of nonhydrostatic or deviatoric stress on elasticity
(i.e., stress-dependent elasticity) is equally essential owing
to the nonhydrostatic nature of stress in many geological
processes (e.g., plate tectonics and mantle convection) [4].
A better understanding of the effects of stress on elastic
parameters also benefits many other applications involving
monitoring seismic wave speeds (e.g., hydrocarbon reservoir
characterization, stress formation monitoring, and volcano
monitoring).

Third-order elasticity (TOE) theory is a viable approach
for addressing the stress dependence of elasticity [5]. Since
SOECs are generally reported under hydrostatic pressure, this
condition is assumed for the initial configuration. The non-
hydrostatic or deviatoric part of the stress induces a minor
elastic strain away from the initial configuration [1]. Since
third-order elastic coefficients (TOECs) describe the effects
of such strains on SOECs according to a theoretically derived
linear-approximated expression [6,7], TOECs enable the full
SOEC tensor under nonhydrostatic stress to be determined.
Several variants of TOE theory have been adopted by seis-
mologists [8–10].
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However, although TOE theory was explored as early as
the 1960s in the ultrasound community [11,12], an empirical
version of TOE theory has been adopted by seismologists
[8–10]. The reason is that TOECs are generally determined
in terms of their original thermodynamic definition as third-
order Lagrangian strain derivatives of the thermodynamic
energy density, thereby defining the thermodynamic TOECs
[12]. As shown in this study, the use of thermodynamic
TOECs complicates the evaluation of strain effects on SOECs
by requiring SOEC tensors to be carefully pulled back to
a common reference frame. Without this practice, tensors
parameterized based on nonlinear rock physics modeling [9]
are not equivalent to those based on thermodynamic TOECs.
Early developments of first-principle TOE theory invoked the
natural (i.e., 0 GPa) reference frame [11] as the common
frame, thereby hindering its application in the multi-MPa
regime [1]. In the ultrasound community, second- and third-
order elasticity theories were developed in tandem based on
Lagrangian strain derivatives of the thermodynamic energy
density. A source of challenge and confusion in geophysics
is that there are at least two kinds of SOECs. Thermody-
namic SOECs are defined as the second derivative of the
thermodynamic energy with respect to the Lagrangian strain
[2,7,12–15], whereas effective SOECs are defined based on
an incremental version of Hooke’s law under initially hydro-
static conditions [2,7,13–16]; their values differ except under
zero initial pressure conditions. The lack of a complementary
definition of effective TOECs explains why no first-principle
TOE theory for high-pressure applications has been adopted.
The different variants of the elastic tensors mentioned above
have been recently reviewed in great detail in Ref. [15].
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TABLE I. Comparison of notations used in different studies.

This study Ref. [2] Ref. [26] Ref. [16] Refs. [7,13] Ref. [20] Ref. [27] Ref. [3] Ref. [14]

Initial frame Xi as Xi xi xi xi

Present frame xi xr xi ai Xi Xi

Deformation matrix F F ∂xr/∂as uα,β ∂xs/∂Xi Fi j ui j ui j

Lagrangian strain ηi j EL ηrs ηαβ Si j [13] or Vi j [7] ηi j ηi j ei j ηi j

Thermodynamic SOEC A0
i jkl �i jkl ci j C̊αβστ C̄i jkm Ci j / Ci jkl Ci jkl − pDi jkl

a Ci jkl

Effective SOEC C0
i jkl ϒi jkl c̊αβστ βi jkm Ci jkl Ci jkl Bi jkl

Thermodynamic TOEC A0
i jklmn Ci jk Ci jk / Ci jklmn Ci jklmn Ci jkl

Effective TOEC C0
i jklmn

aDi jkl = (δi j δkl − δil δk j − δik δ jl ).

In materials science, natural state (0 GPa) elastic constants
up to higher (fourth or fifth) order also contain complete
information about solids. Since they can be used to determine
SOECs and TOECs under finite pressure [15], they offer al-
ternative pathways to address SOECs under stress. Fourth- or
fifth-order elastic constants have been determined from both
the DFT [17] and planar compression experiments [18,19],
but generally for high-symmetry systems only. They are less
practical and indirect in addressing challenges in seismic mea-
surements than the formalism presented in this study.

This study demonstrates how to evaluate strain effects on
SOEC based on TOE theory using ab initio calculations. The
development of ab initio-based methods to compute TOEC
is an active research area [20–25]. We adopt the favored
approach, which expands the strain energy vs the Lagrangian
strain [20,22–24]. Because these methods are generally devel-
oped for 0 GPa elastic coefficients, we extend and test them
for SOECs and TOECs under finite pressure.

A particular case of the effects of stress on SOECs involves
their pressure derivatives, and such derivatives can be ana-
lytically expressed in terms of TOECs [7,26–28]. This could
reasonably explain why stress-induced changes in SOECs
can be conveniently described in terms of pressure deriva-
tives of SOECs, as shown in recent studies [4,29,30]. In this
study, we validate relationships between pressure derivatives
of SOECs and predictions based on TOECs; a simplified
expression thanks to our introduction of effective TOECs is
also validated. These effective TOECs also benefit predic-
tions of finite-pressure elasticity based on SOEC pressure
derivatives [31]. The use of TOE theory to evaluate pressure
derivatives of SOECs and its application to assessing strain
effects on SOECs also serves as a self-consistent validation
of the ab initio approach for computing TOECs under finite
pressure.

A recent study by Maitra and Al-Attar [30] took a different
approach to derive expressions for effective TOECs and the
pressure derivatives of SOECs. As we will show later in the
discussion, their results are similar to ours.

Given the close relationship between TOE and crystal an-
harmonic theory [7, Sec. 29.1], a better understanding of TOE
theory allows us to better address thermoelasticity or thermal
expansivity [31,32] at finite pressure for highly-anharmonic
[33] or highly-anisotropic solids (e.g., serpentine [34]).

The structure of this paper is as follows. Section II reviews
the relevant theory for elastic coefficients under finite pressure
and introduces the effective TOECs. Section III computes the
elastic coefficients under finite pressure. As applications and

validations, Secs. IV and V evaluate strain effects on SOECs
and pressure derivatives of SOECs based on our proposed the-
ories and calculated elastic coefficients. Section VI presents
our conclusions.

For reference and clarity, we summarize the notations used
in different studies in Table I.

II. FORMULATION OF ELASTIC COEFFICIENTS
UNDER FINITE PRESSURE

A. Reference frames and deformation

We first clarify the different kinds of reference frames
commonly used to address elasticity at finite pressure. In
previous studies, focusing on static properties only, there are
generally three kinds of frames [1,7,13], namely, (a) a natural
frame, the 0 GPa state, (b) an initial frame, where the elas-
tic coefficients are being evaluated, usually a hydrostatically
prestressed state, and (c) the present frame, where a small
deformation is applied upon the initial frame to help evaluate
the curvature of the potential energy surface at the initial
frame. These frames are summarized in Fig. 1. In previous
studies [7,11,13], the natural frame serves as a common frame
of reference to pull tensors back to. But to study elasticity
under multi-GPa pressures, it is pointless to keep transferring
elastic tensors to 0 GPa to evaluate stress effects and then
transferring them back. Therefore, our subsequent discussion
will focus on the initial and present frames of reference.

The deformation gradient Fri relates the initial coordinates
{Xi} and the present coordinates {xi}, via

Fri = ∂xr

∂Xi
, (1)

Natural (ai)

P = 0 GPa

Initial (Xi)

T 0
ij , A0

ijkl

Present (xi)

TL
ij , AL

ijkl
Fij

ηij

FIG. 1. Natural, initial, and present reference frames. In the nat-
ural frame at 0 GPa, we use a set of natural coordinates labeled {ai} .
Under finite stress T 0

i j in the initial frame, we use a set of initial
coordinates labeled {Xi} . The thermodynamic SOECs in this frame
are denoted by A0

i jkl . After application of a deformation induced
by the deformation gradient Fi j , with corresponding Lagrangian
strain ηi j , we reach the present reference frame with a set of present
coordinates {xi} , in which the Lagrangian description of the Cauchy
stress is given by T L

i j and the thermodynamic SOECs are denoted
by AL

i jkl .

214104-2



THIRD-ORDER ELASTIC COEFFICIENTS … PHYSICAL REVIEW B 106, 214104 (2022)

and the corresponding Lagrangian strain ηi j is defined by

ηi j = 1

2
(FkiFk j − δi j ) = 1

2

(
∂xk

∂Xi

∂xk

∂Xj
− δi j

)
. (2)

The Jacobian J relating the volume or density in the initial
state (V0, ρ0) to the present state (V , ρ) frame is defined as

J = det F = V/V0 = ρ0/ρ. (3)

B. Thermodynamic definition of elastic constants

Suppose the system has an initial volume V0 and initial
stress T 0

i j , corresponding to the initial state in Fig. 1. If we
expand the thermodynamic energy E near the initial state in
powers of the Lagrangian strain ηi j , that is,

E (T 0
i j , ηi j )

V0
= E (T 0

i j , 0)

V0
+ T 0

i j ηi j + 1

2!
A0

i jkl ηi j ηkl

+ 1

3!
A0

i jklmn ηi j ηkl ηmn + O(η4), (4)

then the first-, second-, and third-order expansion coefficients
are the initial stress T 0

i j , the thermodynamic elastic coeffi-
cients SOECs A0

i jkl (denoted as �i jkl in [2]) , and the TOECs
A0

i jklmn . The expansion of the Helmholtz free energy gives
isothermal elastic coefficients, the expansion of the internal
energy gives adiabatic elastic coefficients [14], and the expan-
sion of static (clamped ions) energies gives static coefficients
(0 K but without zero-point-motion energy effects). These
tensors are all evaluated in the initial state where the strain
ηi j = 0, hence the superscript 0 . The strain, stress, SOEC,
and TOEC tensors used in this study are based on traditional
fixed Cartesian basis vectors. These expansion coefficients
can alternatively be expressed as partial derivatives of the
Helmholtz free energy with respect to the Lagrangian strain,
that is,

T 0
i j = 1

V0

∂E

∂ηi j
, (5a)

A0
i jkl = 1

V0

∂2E

∂ηi j ∂ηkl
, (5b)

A0
i jklmn = 1

V0

∂3E

∂ηi j ∂ηkl ∂ηmn
, (5c)

in accordance with the original definition of high-order elastic
constants by Brugger [12].

These stress and thermodynamic elastic tensors may be
pulled back or pushed forward between different reference
frames. For example, pulling the Lagrangian description of
the Cauchy stress (T L, also known as the Cauchy stress,
the Lagrangian-Cauchy stress, or the true stress) back from
the present frame to the initial frame as the second Piola-
Kirchhoff stress (T SK

i j ) is achieved via the Piola transformation
[2,11,30],

T SK
i j = J F−1

ir F−1
js T L

rs = J
∂Xi

∂xr

∂Xj

∂xs
T L

rs . (6)

Similarly, suppose AL denotes the regular thermodynamic
SOECs, whereas ASK denotes its pull-back to the initial frame.

Then we have the relationship [11,15,30]

ASK
i jkl = J F−1

ir F−1
js F−1

kp F−1
lq AL

rspq

= J
∂Xi

∂xr

∂Xj

∂xs

∂Xk

∂xp

∂Xl

∂xq
AL

rspq. (7)

This set of transformations brings tensors to a common
frame and makes it convenient to consider higher-order strain
derivatives of these tensors, for example [11, Eq. (34)],

A0
i jkl = ∂T SK

i j /∂ηkl or T SK1
i j = A0

i jkl ηkl , (8a)

A0
i jklmn = ∂ASK

i jkl/∂ηmn or �ASK
i jkl = A0

i jklmn ηmn, (8b)

where the incremental second Piola-Kirchhoff stress T SK1
i j is

defined as T SK1
i j = T SK

i j − T 0
i j , and where �ASK

i jkl is defined
similarly, namely,

�ASK
i jkl ≡ ASK

i jkl − A0
i jkl . (9)

These two equations give us the stress vs strain and SOECs vs
strain relationships within a single frame.

C. Constitutive relations and effective elastic tensors

It might be mathematically convenient to have all tensors
live in the same reference frame; however, this is no longer so
in practice.

In the absence of initial stress, Hooke’s law takes the form
Ti j = Ci jkl εkl , where εkl denotes the symmetric infinitesimal
strain tensor which is related to the deformation tensor Fi j by

εi j = 1
2 (Fi j + Fji ) − δi j ≈ ηi j, (10)

which approximates the Lagrangian strain.
The presence of initial stress modifies the constitutive re-

lationship and complicates the linearized version of the stress
vs strain relationship. To calculate the induced effect on stress
by a strain, one needs to (a) use an “effective” SOEC tensor
that may lack the familiar symmetries (e.g., Bi jkl in [14] or
ϒi jkl in [2], where Bi jkl does not satisfy Bi jkl = Bkli j except
under hydrostatic stress), or (b) use a symmetric “effective”
SOEC tensor (�i jkl in [2]) that has the desired symmetries but
modifies the stress vs strain relationship with contributions
from the deviatoric stress [2, Eq. (3.144)]. Either way, an
“effective” SOEC tensor is involved.

To facilitate a subsequent discussion on TOECs, we follow
the formulation in Refs. [14,16]. The relationship between the
symmetric incremental Lagrangian description of the Cauchy
stress T L1

i j and the infinitesimal symmetric strain can be given
in a familiar linearized form, namely,

T L1
i j = T L

i j − T 0
i j = C0

i jkl εkl

or C0
i jkl = ∂T L

i j /∂εkl .
(11)

The same would be valid in the formulation in Ref. [2] in
the absence of an initial deviatoric stress. Here, C0

i jkl denote
the elements of the “effective” elastic tensor, sometimes also
known as the Wallace moduli [14]. The C0

i jkl are related to the
thermodynamic SOECs A0

i jkl via [13,16]

C0
i jkl = A0

i jkl − T 0
i j δkl+ 1

2

(
T 0

ik δ jl+T 0
k j δil+T 0

il δ jk+T 0
l j δik

)
,

(12)
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which is the symmetric component of [13,14,16]

C̃0
i jkl = A0

i jkl − T 0
i j δkl + T 0

il δ jk + T 0
l j δik . (13)

For an initial state under hydrostatic stress, T 0
i j = − P δi j ,

Eq. (12) reduces to [16]

C0
i jkl = A0

i jkl + P (δi j δkl − δil δk j − δik δ jl ), (14)

and so does �i jkl in [2]. Therefore, different forms of the
“effective” tensors (Bi jkl in [14], ϒi jkl in [2], and �i jkl in [2])
are equivalent under hydrostatic prestress.

Likewise, to more conveniently evaluate the effect of strain
on SOECs under hydrostatic conditions, we are motivated to
introduce an effective TOE tensor. The general effective TOE
tensor C̃0

i jklmn under the infinitesimal formalism is:

C̃0
i jklmn = A0

i jklmn − A0
i jkl δmn + A0

n jkl δim + A0
inkl δ jm

+ A0
i jnl δkm + A0

i jkn δlm. (15)

The elements of C̃0
i jklmn satisfy the general relationship

�AL
i jkl = C̃0

i jklmn(εmn + ωmn) . Here, Fi j − δi j = εi j + ωi j , the
antisymmetric infinitesimal tensor (or infinitesimal rotation
tensor) ωi j is given by ωi j = 1

2 (Fi j − Fji ) . The symmetric
component of C̃0

i jklmn ,

C0
i jklmn = ∂A0

i jkl/∂εmn = A0
i jklmn − A0

i jkl δmn

+ 1
2

(
A0

n jkl δim + A0
inkl δ jm + A0

i jnl δkm + A0
i jkn δlm

+ A0
m jkl δin + A0

imkl δ jn + A0
i jml δkn + A0

i jkm δln
)
,

(16)

gives a linearized relationship with �AL
i jkl under a symmetric

infinitesimal strain εmn that has the same form as Eq. (11), that
is,

�AL
i jkl ≡ AL

i jkl − A0
i jkl = C0

i jklmn εmn

or C0
i jklmn = ∂AL

i jkl/∂εmn.
(17)

The antisymmetric component of C̃0
i jklmn characterizes the ef-

fect of rotation:

∂A0
i jkl/∂ωmn = 1

2

(
A0

n jkl δim + A0
inkl δ jm + A0

i jnl δkm + A0
i jkn δlm

− A0
m jkl δin−A0

imkl δ jn−A0
i jml δkn − A0

i jkm δln
)
.

(18)

In the expression for C̃0
i jklmn [Eq. (15)], the contribution of

A0
i jklmn corresponds to �ASK

i jkl , as shown in Eqs. (8)–(9); for
the remaining terms (C̃0

i jklmn − A0
i jklmn), it can be shown that

(see Appendix A):

AL
i jkl − ASK

i jkl = J−1FirFjsFkpFlqASK
rspq − ASK

i jkl

� (J−1FirFjsFkpFlq − δirδ jsδkpδlq) A0
rspq

= ( − A0
i jkl δmn + A0

n jkl δim + A0
inkl δ jm

+ A0
i jnl δkm + A0

i jkn δlm
)

(εmn + ωmn)

= (
C̃0

i jklmn − A0
i jklmn

)
(εmn + ωmn). (19)

The equality above does not impose any symmetry require-
ments on A0

i jkl other than invariance under the exchange of

indices within the pairs (i, j), (k, l ), and (m, n). This invari-
ance is guaranteed by the symmetry of the stress and strain
tensors, allowing Voigt notation on these tensors [16,35]. Sim-
ilar to C0

i jkl and C̃0
i jkl , C0

i jklmn or C̃0
i jklmn do not have symmetries

that would allow exchanges between (i, j) and (k, l ) or (m, n)
pairs.

We note that the elements C̃0
i jklmn defined in Eq. (15) are

identical to the quantities �i jklmn in Maitra and Al-Attar [30,
Eq. (A57)]. In Maitra and Al-Attar [30, Appendix A], �i jkl

and �i jkl denote the thermodynamic SOEC in the initial and
present frames (background and equilibrium frames in their
terms); they correspond to A0

i jkl and AL
i jkl in this study.

At P = 0 GPa, because the second term on the r.h.s. of
Eq. (14) vanishes, we have A0

i jkl = C0
i jkl , which explains why

a distinction between the two types of SOECs is sometimes
not made. For TOECs, however, since A0

i jkl �= 0 at 0 GPa,
C0

i jklmn and A0
i jklmn are never equal according to Eq. (15).

Therefore, one always needs to be specific about which
TOECs are being used, even at P = 0 GPa. It is worth notic-
ing that some previous reports on “effective TOEC tensors”
[36–38] are available. Even though the “effective SOECs” in
Refs. [36–38] agree with ours, their “effective TOECs” are not
equivalent to ours. The difference between “effective TOECs”
and “thermodynamic TOECs” in Refs. [36–38] is not the same
as in the present work. This is evident when comparing these
tensors at 0 GPa. The “effective TOECs” in Refs. [36–38]
have the same values as the thermodynamic TOECs at 0 GPa.
This is not the case for our effective TOECs (C0

i jklmn). Recent
discussions concerning these alternative forms of “effective
TOECs” in Refs. [36–38] can be found in Refs. [15,39,40].

To reduce clutter, we drop the superscript 0 in the remain-
der unless otherwise noted.

III. AB INITIO CALCULATIONS

Our ab initio validations are performed on NaCl and MgO.
Both systems are cubic and belong to the Fm3̄m space group.
Systems within the Fm3̄m space group have three indepen-
dent SOECs (c11, c12, c44), and six independent TOECs (c111,
c112, c123, c144, c155, c456) [41]. Here, we calculate SOECs and
TOECs for these systems under finite hydrostatic pressure.

Ab initio calculations were performed with the Quantum
ESPRESSO code suite [42] based on the local density ap-
proximation (LDA) [43] applied to the Density Functional
Theory (DFT). Norm-conserving pseudopotentials generated
with the Martin-Troullier method [44] were used for Na, Cl,
Mg, and O. For NaCl, the energy cutoff was set to 160 Ryd
and Brillouin zones were sampled with a shifted 8 × 8 × 8
Monkhorst-Pack k-point grid; for MgO, the energy cutoff was
set to 160 Ryd and Brillouin zones were sampled with a
shifted 16 × 16 × 16 Monkhorst-Pack k-point grid.

We follow the recipe of Zhao et al. [20] to obtain the ther-
modynamic elastic coefficients. The expansion coefficients
M1, M2, and M3 from the polynomial expansion of energy vs
strain magnitude η,

E (Ti j, ξ )

V
= M0 + M1 η + M2 η2 + M3 η3 + O(η4), (20)
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FIG. 2. [(a), (b)] SOECs and [(c), (d)] TOECs vs P for [(a), (c)] NaCl and [(b), (d)] MgO. Tensor indices are in Voigt notation.

are linear combinations of T 0
i j , A0

i jkl , and A0
i jklmn for the config-

uration under initial stress Ti j . The M1 η terms are necessary
to account for the initial stress in this study (in this instance,
the hydrostatic prestress T 0

i j = − P δi j); they equal zero for
the 0 GPa state and are thus absent in earlier studies [20].
Perturbations with a set of linearly-independent Lagrangian
strains ηi j of the form (A1–A6) [20] with magnitudes η =
0.00,±0.01,±0.02,±0.03 are applied. The corresponding
symmetric part of the deformation gradient Fi j is obtained
from the Lagrangian strain ηi j using a scheme described by
Ref. [22]. T 0

i j , A0
i jkl , and A0

i jklmn are determined by inverting
the linear equations in Table I of Ref. [20].

Figure S1 [45] compares − T 0
11 vs V from the strain

energy expansion in P of the third-order Birch-Murnaghan
finite-strain equation of state fitted given E vs V (i.e., P =
− ∂E/∂V ). The hydrostatic condition − T 0

11 = P is observed
here by the excellent consistency between the two.

Figure 2 shows the calculated SOECs (a, b) and TOECs (c,
d) vs P . The thermodynamic elastic coefficients are obtained
directly from the energy vs strain expansion [Eq. (20)]; the
effective elastic coefficients are calculated based on Eqs. (12),
(14), and (15). The calculated data points for SOECs and
TOECs are displayed as scattered symbols. Overall, the
expansion of energy vs strain is a robust and effective ap-
proach to computing elastic coefficients for cubic systems
up to third-order at finite pressure. Interpolated elastic co-
efficients, shown as smooth curves, are used to determine
values at intermediate volumes or pressures. The TOECs
have a greater magnitude than the SOECs. For NaCl and
MgO, the TOECs and SOECs are a near-linear function
of pressure.

IV. EFFECT OF STRAIN ON SOECS

In this section, we evaluate the effect of strain on ther-
modynamic SOECs based on the ab initio calculated TOECs
discussed in the previous section, using Eq. (8) to obtain �ASK

and (17) for �AL. We are not going to address effects on
effective SOECs, but the additional stress-related terms in
Eq. (12) can be easily calculated by substituting the induced
stress calculated from Eq. (11) into Eq. (12).

Previously, Refs. [4,29] have shown that if the induced
stress T 0

i j is known, �AL
i jkl and �ASK

i jkl can be evaluated
based on the pressure derivative of the thermodynamic SOECs

Initial (Xi)

T 0
ij , A0

ijkl

Present (xi)

TL
ij , AL

ijkl

Perturbed (ξi)

tLij
Fij

εij

fij

eij

FIG. 3. Relevant configurations for validating the SOECs vs
strain relationships. Left: The initial configuration with coordinates
{Xi} is in equilibrium with the initial hydrostatic pressure; the related
SOECs and TOECs are known. We adopt the hydrostatically stressed
configuration discussed in Section III as the initial configuration.
Middle: The present configuration with coordinates {xi} is derived
from the initial configuration {Xi} by applying an elastic deformation
gradient Fi j = ∂xi/∂Xj , or uniform or uniaxial stretches, εi j ; they
are the ones whose SOECs are in question; the external stress T L

i j

in equilibrium with this configuration can be calculated from the
stress vs strain relationship. Right: The perturbed {ξi} configuration
is invoked when necessary; this is achieved by perturbing the {xi}
configuration with the elastic deformation gradient fi j = ∂ξi/∂x j , or
infinitesimal strain ei j .

214104-5



LUO, TROMP, AND WENTZCOVITCH PHYSICAL REVIEW B 106, 214104 (2022)

FIG. 4. Change in elastic coefficients �ASK
i jkl induced by a uniform stretch, ε11 = ε22 = ε33 = 0.005. Tensor indices are in Voigt notation.

A0 ′
i jkl ≡ ∂A0

i jkl/∂P as

�AL
i jkl = A0 ′

i jkl p − 1
4

(
A0 ′

m jkl τim + A0 ′
imkl τ jm

+ A0 ′
i jml τkm + A0 ′

i jkm τlm
)
, (21)

where the hydrostatic stress is given by p = − 1
3 tr(T0), and

the deviatoric stresses are given by τi j = T 0
i j + p δi j = T 0

i j −
1
3 tr(T0) δi j . Since the pre-stress T L

i j under εmn can be evalu-
ated based on Eq. (11), this method offers a viable alternative
to evaluating �AL

i jkl vs εmn. For comparison, this scheme will
also be included in our validations.

We consider the practical situation where the initial con-
figuration is under hydrostatic pressure. In this scenario, the
SOECs and TOECs for the initial configuration are already
known and have familiar cubic symmetry [16,41]. Changes in
SOECs induced by strain in two different forms are addressed:
(a) under ε11 = ε22 = ε33 = 0.005, that is, a uniform stretch,
and (b) under ε33 = 0.005, ε11 = ε22 = 0, that is, a uniaxial
stretch.

Figure 3 summarizes the three relevant configurations for
the validation.

The specifics for calculating SOECs in the present config-
uration for the two forms of strains tested and comparisons
between the TOE-predicted and numerically-evaluated elastic
tensors �ASK

i jkl and �AL
i jkl are as follows.

A. Uniform stretch

For a cubic system under hydrostatic pressure, the effect
of a uniform stretch corresponds to decreasing the external
pressure. Therefore, the elastic coefficients for such configura-
tions are already available from our previous interpolation of
the elastic coefficients vs volume. For an initial configuration
with volume V0, the corresponding present volume V under
the stretch ε11 = ε22 = ε33 = ε = 0.005 is V = (1 + ε)3 V0 ≈
(1 + 3 ε)V0.

Figure 4 shows �ASK
i jkl vs P, and Fig. 5 shows �AL

i jkl

vs P. The prediction of �ASK
i jkl based on A0

i jklmn , according
to Eq. (8), and the prediction of �AL

i jkl based on C0
i jklmn ,

according to Eq. (17), are both in good agreement with the
numerically calculated result. Whether evaluated within a uni-
form reference, the prediction based on the TOEC tensors
shows comparable accuracy, provided the correct set of ten-
sors is used.

B. Uniaxial stretch

Under uniaxial stretch, the present configuration no longer
has the m3̄m symmetry, we need to compute the SOECs for
the present configuration (AL

i jkl ) first. This can be achieved
by using the second Piola-Kirchhoff stress tSK1

i j vs strain ekl

relation, whose expression is similar to Eq. (8):

tSK1
i j = AL

i jkl ekl .

FIG. 5. Change in elastic coefficients �AL
i jkl components induced by a uniform stretch, ε11 = ε22 = ε33 = 0.005. Tensor indices are in

Voigt notation.
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FIG. 6. Change in elastic coefficients �ASK
i jkl induced by a uniaxial stretch, ε11 = ε22 = 0, ε33 = 0.005. Tensor indices are in Voigt notation.

A total of 6 sets of perturbed configurations ({ξi}) is used
to obtain the full AL

i jkl tensor. Measured within the present
frame, the incremental second Piola-Kirchhoff stress for the
perturbed configuration tSK1

i j is given by

tSK1
i j = tSK

i j − t0
i j = tSK

i j − T L
i j ,

because the present configuration’s Lagrangian Cauchy stress
is the initial stress within the present reference frame, that is,
t0
i j = T L

i j . Similar to Eq. (6), the expression for pulling back
tL
i j from the perturbed frame to tSK

i j within the present frame is

tSK
i j = j f −1

ir f −1
js tL

rs = j
∂xi

∂ξr

∂x j

∂ξs
tL
rs.

where fir = ∂ξr/∂xi, and the Jacobian j = det f .
With the SOECs AL

i jkl and A0
i jkl both available via numeri-

cal calculations, we compare their difference vs pressure with
TOE predictions. Figure 6 shows �ASK

i jkl vs pressure com-
puted in a uniform reference frame. Figure 7 shows �AL

i jkl
vs pressure with elastic coefficients before and after the strain
computed in their own frames. Overall, our predictions based
on Eq. (22) are in good agreement with numerically calculated
values. Breaking of the cubic (m3̄m) symmetry results in the
splitting of A33 from A11, A13 from A12, and A66 from A44.

Under uniform and uniaxial stretches, TOE theory accu-
rately predicts the incremental SOECs for configurations not
far from the initial condition. Residuals in both �ASK

i jkl and
�AL

i jkl originate from approximating changes in SOECs lin-

early with TOECs A0
i jklmn and C0

i jklmn, both of which are also
functions of strain.

V. PRESSURE DERIVATIVES OF SOECs

TOE theory allows us to assess the pressure derivatives
of SOECs. We discuss pressure derivatives of the thermody-
namic SOECs A0 ′

i jkl only. Pressure derivatives of the effective
SOECs C0 ′

i jkl may be obtained by addition of the terms
(δi j δkl − δil δk j − δik δ jl ) .

First, we derive an expression for the pressure derivatives
A0 ′

i jkl based on the TOECs A0
i jklmn . Noting that on the right-

hand side of Eq. (5b), E and V are both functions of P, we
have

A0 ′
i jkl = ∂A0

i jkl

∂P
= ∂

∂P

(
1

V

∂2E

∂ηi j∂ηkl

)

= ∂

∂P

(
1

V

)
∂2E

∂ηi j∂ηkl
+ 1

V

∂

∂P

(
∂2E

∂ηi j∂ηkl

)

= − 1

V 2

∂V

∂P

∂2E

∂ηi j∂ηkl
+ 1

V

(
∂3E

∂ηi j∂ηkl∂ηmn

)
∂ηmn

∂P
.

(22)

Because the initial and final states are both under hydrostatic
conditions (Ti j = − P δi j), the stress vs strain relation Eq. (8)
determines changes in stress (or pressure) caused by a strain
�ηmn via C0

mnop �ηop = − �P δmn . Using the compliance

FIG. 7. Change in elastic coefficients �AL
i jkl induced by a uniaxial stretch, ε11 = ε22 = 0, ε33 = 0.005. Tensor indices are in Voigt notation.
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FIG. 8. Pressure derivative of SOECs vs pressure for NaCl
and MgO. Curves denote numerical pressure derivatives of the
elastic coefficients; × indicates predictions based on Eq. (25);
+ indicates predictions based on Eq. (26).

tensor (C−1)mnop , we have �ηmn = − (C−1)mnop �P δop , and
therefore,

∂ηmn

∂P
= − (C−1)mnop δop, (23)

1

V

∂V

∂P
= 1

3

∂ηmn

∂P
δmn = − 1

3 (C−1)mnop δmn δop. (24)

Thus, Eq. (14) may be simplified to become

A0 ′
i jkl = − A0

i jklmn (C−1)mnpq δpq − 1
3 A0

i jkl (C−1)mnpq δmn δpq,

(25)
in agreement with previously reported results [27,28].

Alternatively, we can derive a C0
i jklmn-based expression for

A0 ′
i jkl , because

A0 ′
i jkl = ∂A0

i jkl

∂ηmn

∂ηmn

∂P

= − C0
i jklmn (C−1)mnpq δpq.

(26)

This expression is identical to Maitra and Al-Attar [30,
Eq. (A59)] under hydrostatic prestress.

Figure 8 shows A0 ′
i jkl calculated three ways. 1) Numerically

calculated derivatives based on the interpolated SOECs Ai jkl

(solid curves). 2) Predictions with A0
i jklmn based on Eq. (25)

shown as “×”. 3) Predictions with C0
i jklmn based on Eq. (26)

shown as “+”. Good consistency between the three methods
along the entire pressure range indicates that Eqs. (25) and
(26) are accurate predictions of A0 ′

i jkl for MgO and NaCl.
The above validation shows that A0 ′

i jkl at finite pressure is a
linear combination of TOECs, which is why its inverse, i.e.,
Eq. (21), works.

Finally, although Eq. (26) has a similar form as Thurston
[11, Eq. (71)], they do not have the same meaning. In

Refs. [7,11], all SOECs are measured within the natural frame
based on the second Piola-Kirchhoff description. Thus, their
pressure derivatives are not the A0 ′

i jkl defined here, but rather
limP→0 �ASK

i jkl /P ; their TOECs are at 0 GPa, so their predic-
tions remain valid only within close vicinity of zero pressure.

VI. CONCLUSION

In this study, we examine third-order elasticity (TOE)
theory to evaluate the effects of elastic deformation on second-
order elastic coefficients (SOECs). We review definitions of
thermodynamic SOECs, thermodynamic TOECs, and effec-
tive SOECs under finite pressure. Based on effective SOECs,
we propose the use of effective TOECs. Explicit expressions
for the effective TOECs are given and verified. We extend
the method to compute TOECs under finite pressure via ab
initio calculations. Based on ab initio-calculated TOECs, we
predict the effects of strain on SOECs and the pressure deriva-
tive of SOECs for two cubic systems, NaCl and MgO. Our
results show that both thermodynamic TOECs and effective
TOECs accurately predict strain-induced changes in SOECs.
Our study also serves as a self-consistent validation of the ab
initio approach for computing TOECs.
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APPENDIX: VERIFICATION OF Eq. (19)

To verify the equality in the following equation:

(J−1FirFjsFkpFlq − δirδ jsδkpδlq) A0
rspq = (−A0

i jkl δmn + A0
n jkl δim + A0

inkl δ jm + A0
i jnl δkm + A0

i jkn δlm
)

(εmn + ωmn), (A1)

these basic cases are studied.
(1) Under a hydrostatic stretch,

Fi j =
⎡
⎣e 0 0

0 e 0
0 0 e

⎤
⎦

i j

+ δi j (e � 1),

in Voigt notation, both sides of Eq. (A1) are

A0
i jkl e.
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(2) Under a uniaxial stretch,

Fi j =
⎡
⎣e 0 0

0 0 0
0 0 0

⎤
⎦

i j

+ δi j (e � 1),

in Voigt notation, both sides of Eq. (A1) are⎡
⎢⎢⎢⎢⎢⎢⎣

3A0
11 A0

12 A0
13 A0

14 2A0
15 2A0

16
A0

21 −A0
22 −A0

23 −A0
24 0 0

A0
31 −A0

32 −A0
33 −A0

34 0 0
A0

41 −A0
42 −A0

43 −A0
44 0 0

2A0
51 0 0 0 A0

55 A0
65

2A0
61 0 0 0 A0

65 A0
66

⎤
⎥⎥⎥⎥⎥⎥⎦

e.

(3) Under a shear deformation

Fi j =
⎡
⎣0 e 0

e 0 0
0 0 0

⎤
⎦

i j

+ δi j (e � 1),

in Voigt notation, both sides of Eq. (A1) are⎡
⎢⎢⎢⎢⎢⎢⎣

2A0
16 + 2A0

61 2A0
16 + 2A0

62 2A0
63 A0

15 + 2A0
64 A0

14 + 2A0
65 A0

11 + A0
12 + 2A0

66
2A0

26 + 2A0
61 2A0

26 + 2A0
62 2A0

63 A0
25 + 2A0

64 A0
24 + 2A0

65 A0
21 + A0

22 + 2A0
66

2A0
36 2A0

36 0 A0
35 A0

34 A0
31 + A0

32
2A0

46 + A0
51 2A0

46 + A0
52 A0

53 A0
45 + A0

54 A0
44 + A0

55 A0
41 + A0

42 + A0
56

A0
41 + 2A0

56 A0
42 + 2A0

56 A0
43 A0

44 + A0
55 A0

45 + A0
54 A0

46 + A0
51 + A0

52
A0

11 + A0
21 + 2A0

66 A0
12 + A0

22 + A0
66 A0

13 + A0
23 A0

14 + A0
24 + A0

65 A0
15 + A0

25 + A0
64 A0

16 + A0
26 + A0

61 + A0
62

⎤
⎥⎥⎥⎥⎥⎥⎦

e.

(4) Under a rotation

Fi j =
⎡
⎣ 0 e 0

−e 0 0
0 0 0

⎤
⎦

i j

+ δi j (e � 1),

in Voigt notation, both sides of Eq. (A1) are⎡
⎢⎢⎢⎢⎣

2A16 + 2A61 −2A16 + 2A62 2A63 −A15 + 2A64 A14 + 2A65 −A11 + A12 + 2A66
2A26 − 2A61 −2A26 − 2A62 −2A63 −A25 − 2A64 A24 − 2A65 −A21 + A22 − 2A66

2A36 −2A36 0 −A35 A34 −A31 + A32
2A46 − A51 −2A46 − A52 −A53 −A45 − A54 A44 − A55 −A41 + A42 − A56
A41 + 2A56 A42 − 2A56 A43 A44 − A55 A45 + A54 A46 − A51 + A52−A11 + A21 + 2A66 −A12 + A22 − 2A66 −A13 + A23 −A14 + A24 − A65 −A15 + A25 + A64 −A16 + A26 − A61 + A62

⎤
⎥⎥⎥⎥⎦e.
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