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Tunable topological phases in monolayer Pt2HgSe3 with exchange fields
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We investigate topological phases of monolayer jacutingaite (Pt2HgSe3) that arise when considering the
competing effects of spin-orbit coupling (SOC), magnetic exchange interactions, and staggered sublattice
potential V . The interplay between the staggered potential and exchange field offers the possibility of attaining
different topological phases. By analyzing the Berry curvatures and computing the Chern numbers and Hall
conductivities, we demonstrate that the system is time-reversal-symmetry-broken quantum spin Hall insulator
when mb < λso, where mb is the exchange field operating on the bottom Hg sublattice and λso is the intrinsic SOC.
For mb > λso and in the presence of Rashba SOC, we find that the band gap at valley K (K ′) is topologically
trivial (nontrivial) with Chern number C = 1 and valley Chern number Cv = −1, indicating that the system
is valley-polarized quantum anomalous Hall insulator. We show that the topology of each valley is swapped
(the Chern number becomes C = −1) by reversing the sign of the exchange field. The system transitions to a
valley-polarized metal and quantum valley Hall phase as V increases. Along the phase boundaries, we observe a
single Dirac-cone semimetal states. These findings shed more light on the possibility of realizing and controlling
topological phases in spintronics and valleytronics devices.
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I. INTRODUCTION

In the past few years, unprecedented efforts have been de-
voted to the exploration of novel topological insulator phases
and of their remarkable properties at their boundaries [1,2]. In
two dimensions, their hallmark is the presence of propagat-
ing edge states, which carry dissipationless currents. These
transport properties depend crucially on the nature of the
bulk energy gaps and the associated topological invariants
together with the underlying symmetries of the system [3].
For instance, the quantum anomalous Hall (QAH) effect could
arise when time-reversal (T ) symmetry is broken by local
magnetization [4]. The QAH effect is characterized by a
nonzero topological invariant C, known as Chern number, and
is similar to the integer quantum Hall (IQH) effect but without
Landau-level quantization.

Another topological phenomenon is the quantum spin Hall
(QSH) effect, a state of matter originating from spin-orbit
coupling (SOC) and the preservation of T symmetry [5–7].
Its nontrivial topology is characterized by a Z2 index [6] or a
spin Chern number [8]; the two descriptions being equivalent
for T invariant systems [9,10]. The spin Chern number is
well defined even if T symmetry is broken and the QSH state
was shown to survive in this case [11]. Their topological and
dissipation-free transport properties make the QAH and QSH
insulators outstanding material platforms for the realization of
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quantum-based technologies, including spintronics [12] and
topological valleytronics [13].

A major challenge for practical applications is the iden-
tification of experimentally synthesized QSH insulators that
persist up to room temperature. The QSH phase was first re-
alized in semiconductor quantum wells based on HgTe/CdTe
[14,15] and InAs/GaSb [16,17] heterostructures, and in two-
dimensional (2D) materials like WTe2 [18–20], while the
QAH phase was demonstrated in magnetically (Cr or V)
doped (Bi, Sb)2Te3 thin films [21–23]. However, edge state
transport in these systems occurs at low temperatures due
to their small bulk energy gaps. The search for topological
phases in materials with large gap is thus highly desirable.

Recently, using first-principles simulations, the first large-
gap QSH insulator was predicted to be monolayer jacutingaite
(Pt2HgSe3) [24], a new species of platinum-group minerals
[25], which was also synthesized [26]. It has a sandwich-like
structure with a platinum (Pt) layer between two selenium
(Se) and mercury (Hg) layers. Its Hg atoms at the top and
bottom layers form a buckled honeycomb lattice, similar to
that in silicene and germanene. Its low-energy physics around
the Fermi level can be described by the Kane-Mele (KM)
model, originally introduced for graphene [5,6], but with
significantly stronger SOC; it gaps the Dirac point making
the system an insulator with a band gap of ≈0.15 eV at
the DFT level [24,27,28], and ≈0.5 eV as obtained from
many-body G0W0 calculations [27]. QSH to QAH phase
transition in monolayer jacutingaite was demonstrated by
chemical functionalization [29]. It was also identified as a
promising candidate to realize topological valleytronics when
interfaced with a 2D magnet [30], and it can potentially
host unconventional superconductivity [31]. A strong valley
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FIG. 1. (a) The band structure of monolayer Pt2HgSe3 near the
K and K ′ valleys in the absence of the Zeeman field m+ and V = 0.
(b) The same as in (a) but with m+ = 0.3λso. The blue (red) lines are
for spin-up (spin-down) states. The splitting of the spin-degenerate
bands is 2m+. (c) The same as in (a) but with V = 0.6λso. The split-
ting of the spin-degenerate bands is 2V . (d) Side view of the structure
of Pt2HgSe3 on an antiferromagnetic (AFM) substrate. The exchange
fields mb and mt are shown by the arrows.

polarization and a layer-type band inversion around a single
valley was also found in Pt2HgSe3/CrGeTe3 van der Waals
(vdW) heterostructure [32]. Furthermore, bilayer jacutingaite
was shown to undergo a topological transition from trivial to
QSH insulator upon the application of a perpendicular elec-
tric field [33]. Some experimental evidence, including high
stability in air and measurement of its band gap was reported
recently [34].

Apart from jacutingaite, a large class of highly stable,
similar materials hosting the QSH phase based on the KM
model was recently investigated [35]. Jacutingaite-like mate-
rials, such as Pt2HgSe3 and Pd2HgSe3, with broken inversion
(P) symmetry were also shown to exhibit several promising
valley-spin-based phenomena, such as the coupled spin-valley
Hall effect, valley spin-valve effect, and selective excitation of
carriers from opposite valleys [36].

In this work, we explore topological phase transitions
in monolayer Pt2HgSe3 with magnetic exchange field and
staggered sublattice potential V . The induced inequality of
sublattice potential necessarily arises in the presence of a
perpendicular external electric field. The proximity-induced
exchange field is attainable by placing Pt2HgSe3 on a mag-
netic substrate; its presence breaks both P and T symmetries.
It also leads to different exchange fields, mb and mt , at the
bottom and top Hg sublattices due to their unequal separations
from the substrate [see Fig. 1(d)]. We consider two regimes:
(1) mb < λso and (2) mb > λso, where λso is the intrinsic SOC.
In the first regime, we show that for V = 0 the system is a
T -symmetry-broken QSH insulator. The QSH phase exists
up to a certain value of V at which a gap closing and re-
opening occur and the system enters a valley polarized metal
(VPM) phase. Further increasing V drives the system into a
quantum valley Hall (QVH) phase. At the phase boundaries,

we observe a single Dirac-cone (SDC) semimetal states. We
characterize and distinguish different topological phases by
computing topological invariants (Chern numbers), and/or by
computing the spin- and valley-resolved Hall conductivities.
We derive analytical expressions for these conductivities and
show that their quantized values persist up to relatively high
temperatures of ∼90 K.

In the second regime opposite spin valence and conduction
bands in one valley are pushed upward and downward, re-
spectively, and penetrate each other, resulting in spin mixing.
In this case, turning on the Rashba SOC introduces spin-flip
terms into the Hamiltonian, and consequently the z component
of the spin is no longer conserved. We show that the system
is valley-polarized quantum anomalous Hall (VP-QAH) in-
sulator [37,38] for V = 0 with charge Chern number C = 1
and valley Chern number Cv = −1. As V increases from zero,
the system remains in the VP-QAH phase for a certain range
of V , and thereafter it exhibits the VPM and QVH phases.
Importantly, we find that reversing the sign of the exchange
interaction swaps the topology of each valley and the Chern
number becomes C = −1.

In Sec. II we present the Hamiltonian of monolayer
Pt2HgSe3 and discuss the topological invariants. In Sec. III
we discuss the topological phases in the regime mb < λso

and characterize them with the Chern numbers and with the
spin- and valley-Hall conductivities. In Sec. IV we discuss the
VP-QAH phase. We summarize and conclude in Sec. V.

II. MODEL AND TOPOLOGICAL THEORY

The band structure of monolayer Pt2HgSe3 can be de-
scribed by a tight-binding Hamiltonian constructed from first
principles [24] that shares several terms with the KM model
for a QSH insulator in graphene [6]. In the long-wavelength
limit at Dirac points K and K ′ to linear order in the relative
wave vector k = (k2

x + k2
y )1/2 it reads

Hτ = h̄vF (τσxkx + σyky)1s + λsoτσzsz + m+1σ sz

+ m−σzsz + λR1s(τσxsy − σysx ) + V σz1s, (1)

where σ and s are Pauli matrices that correspond to the sub-
lattice pseudospin and spin degrees of freedom, respectively,
and 1σ (1s) denotes the identity matrix in the σ(s) space;
τ = ±1 labels the valley (K, K ′) degree of freedom. The
first term in Eq. (1) is a massless graphene-type Hamiltonian
with vF = 3 × 105 m/s. The second term is the KM SOC
with λso = 81.2 meV [24], which is four orders of magni-
tude larger than that in graphene, and respects T and P
symmetries. The strong SOC combined with the exchange
fields significantly lifts the valley degeneracy and leads to
energy gaps of opposite sign at the two valleys, leading to
different topological responses. The third and fourth terms
represent proximity-induced exchange interactions [39] de-
scribed by m± = (mb ± mt )/2, where m+ and m− stand for
symmetric and antisymmetric parts of the inequivalent ex-
change fields mb and mt . The vertical distance between the
two Hg sublattices is 3.49 Å [40] and the lattice constant of
monolayer jacutingaite is a = 7.6 Å [24]. The bottom sublat-
tice experiences much stronger magnetic proximity effect due
to the stronger atomic wave function overlap, which makes
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mb stronger than mt . The staggered exchange field m−σzsz

preserves PT symmetry (see Appendix A for a formal proof).
On the other hand, the sublattice independent Zeeman field
m+sz breaks PT symmetry thus lifting the spin degeneracy
of the energy bands, as will be illustrated below. The m+
field also shifts the Dirac cones so as to break electron-hole
symmetry. The fifth term in Eq. (1) is the Rashba SOC, λR

and arises due to a perpendicular electric field or interaction
with the substrate. The last term arises due to a staggered
sublattice potential V ; it breaks the P symmetry and lifts the
spin degeneracy on its own.

The 2D spinful model in Eq. (1), without the exchange
fields and the sublattice potential, was proposed by Kane and
Mele [5] and constitutes a generic description of the QSH
phase. This 4 × 4 matrix model is defined on a honeycomb
lattice and is closely related to the tight-binding model appli-
cable to all Xenes, i.e., silicene, germanene, and stanene. The
model incorporates the effect of the SOC, of both intrinsic and
Rashba types, and is T symmetric. Even though jacutingaite is
a ternary material and is somewhat different from the Xenes,
it possesses a buckled honeycomb structure of mercury atoms,
which is ultimately responsible for its KM physics [41].

A. Eigenvalues and eigenfunctions

Equation (1) can be written explicitly as a 4 × 4 matrix,

Hτ =
(

H↑
τ Rτ

R†
τ H↓

τ

)
, (2)

where the diagonal elements are given by

Hsz
τ =

(
mbsz + �

sz
τ h̄vF (τkx − iky)

h̄vF (τkx + iky) mt sz − �
sz
τ

)
, (3)

with �
sz
τ = V + λsoτ sz and sz =↑,↓ for the spin-up (↑) and

spin-down (↓) states that correspond to sz = ±1. We assume
that mt < mb. This is a reasonable assumption because the ex-
change fields induced by the hybridization between Pt2HgSe3
and substrate orbitals become weaker with increasing sep-
aration. We also assume 0 < m− < λso. The off-diagonal
elements are due to the Rashba interaction,

Rτ =
(

0 −iλR(τ − 1)
iλR(τ + 1) 0

)
. (4)

We first diagonalize the Hamiltonian in the absence of Rashba
interaction, λR = 0, which is relevant for mb < λso, and then
for λR �= 0, which is for mb > λso.

(i) Case λR = 0
The spin-up and spin-down matrices in the Hamiltonian (2)

can be diagonalized separately. The diagonalization of Eq. (3)
gives the energy dispersion,

Enszk = m+sz + n
[
M2

τ sz
+ ε2

k

]1/2
, (5)

where εk = h̄vF k, Mτ sz = m−sz + �
sz
τ , and n = ± stands for

the conduction (+) and valence (−) bands. In Fig. 1(a) we
show the energy bands of monolayer Pt2HgSe3 for mb =
0.55λso, mt = 0.05λso, and V = 0, but we neglect the Zeeman
field and set m+ = 0. For nonzero m+ and V the spin splitting
between the twofold degenerate levels is given by 2(m+ + V )
at k = 0, as shown in Figs. 1(b) and 1(c). The gap between

spin-up bands at the K ′ valley, δ
↑
K ′ = 2|λso − m− − V |, closes

at V = V1 = λso − m− and reopens for V > V1, as will be il-
lustrated in Sec. II. The gap between spin-down bands at the K
valley, δ

↓
K = 2|λso + m− − V |, closes at V = V2 = λso + m−

and reopens for V > V2. All other gaps remain open. The
eigenstates of Eq. (3) are �nszk (r) = unszkeik·r/

√
S, where S

is the area of the sample and unszk are given by

unszk = 1[
ε2

k + (
nε − Mτ sz

)2]1/2

(
εk

τ
(
nε − Mτ sz

)
eiτϕk

)
, (6)

where ε = (M2
τ sz

+ ε2
k )1/2 and tan τϕk = τky/kx.

(ii) Case λR �= 0
The diagonalization of Eq. (2) with λR �= 0 leads to a

quartic equation for the eigenvalues,

E4 + a1E2 + a2E + a3 = 0, (7)

with the coefficients ai given by

a1 = −m2
b − m2

t − 2λso(λso + 2m−τ ) − 2V 2 − 2ε2
k − 4λ2

R,

(8)

a2 = 8
(
λ2

Rτ − m+V
)
(m− + λsoτ ), (9)

a3 = (
γ

↑
1 γ

↑
2 − ε2

k

)(
γ

↓
1 γ

↓
2 − ε2

k

) − λ2
R(τ + 1)2γ

↑
1 γ

↓
2

− λ2
R(τ − 1)2γ

↑
2 γ

↓
1 , (10)

where γ
sz

1 = mbsz + �
sz
τ and γ

sz

2 = mt sz − �
sz
τ . The solutions

of Eq. (7) are

Ensk = 1

2
√

3

{
n

[
− 2a1 + B + A

21/3

]1/2

− s

[
4a1 + B

+ A

21/3
+ n

6
√

3a2√
−2a1 + B + A/21/3

]1/2}
, (11)

where n = ± stands for the conduction (+) and valence (−)
bands, and s = ± is the spin chirality. A, B, C are constants.
C = 2a3

1 + 27a2
2 − 72a1a3 and

A = [
C + [

C2 − 4
(
a2

1 + 12a3
)3]1/2]1/3

, (12)

B = 21/3
(
a2

1 + 12a3
)/

A. (13)

The corresponding eigenstates for the K (τ = +1) and K ′

(τ = −1) valleys are �K,K ′
nsk (r) = uK,K ′

nsk eik·r/
√

S, where uK
nsk

and uK ′
nsk are given by

uK
nsk = N

[
εke−iϕk

Ensk − γ
↑
1

η, η,
Ensk − γ

↓
2

εkeiϕk
, 1

]T

, (14)

uK ′
nsk = Ñ

[
η̃,− εke−iϕk

Ensk − γ
↑
2

η̃,− εkeiϕk

Ensk − γ
↓
1

, 1

]T

, (15)

with T for the transpose; η and η̃ are given by

η = ε2
k − (Ensk − γ

↓
1 )(Ensk − γ

↓
2 )

2iλRεkeiϕk
, (16)

η̃ = ηεkeiϕk /[Ensk − γ
↓
1 ], (17)
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FIG. 2. (a) The band structure of monolayer Pt2HgSe3 near the K
and K ′ valleys for mb = 1.35λso, mt = 0.05λso, V = 0.3V1, and λR =
0. The band gap δ

↓↑
K ′ < 0. (b) The same as in (a) but with λR = 0.2λso.

(c) Valley-Hall conductivities σ K
xy, σ K ′

xy ; see Sec. II B. (d) Anomalous
Hall conductivity σxy for λR = 0.

with N and Ñ the normalization constants defined by

N =
{
|η|2

[
1 + ε2

k

(Ensk − γ
↑
1 )2

]
+ 1 + (Ensk − γ

↓
2 )2

ε2
k

}−1/2

,

(18)

Ñ =
{
|η̃|2

[
1 + ε2

k

(Ensk − γ
↑
2 )2

]
+ 1 + ε2

k

(Ensk − γ
↓
1 )2

}−1/2

.(19)

We note that, for mb > λso, the gap at the K valley remains
positive, δ

↓↑
K > 0, but the gap at the K ′ valley becomes neg-

ative, δ
↓↑
K ′ < 0, for the range 0 < V < m+ [see Fig. 2(a) and

Appendix B]. This leads to spin-degeneracy circles in momen-
tum space at energy E = 0. Turning on the Rashba interaction
mixes the spin-up and spin-down states, produces an avoided
band crossing, and opens a band gap as shown in Fig. 2(b)
where we plot the energy dispersion from Eq. (11) for λR =
0.2λso. We argue in Sec. IV that the gap at the K valley
is topologically trivial and that the gap at the K ′ valley is
topologically nontrivial and displays the VP-QAH effect. We
also show that this topological phase can be switched between
valleys by reversing the sign of the exchange interaction.

The presence of the Zeeman field m+ and the sublattice
potential V break the T and P symmetries leading to nonzero
Berry curvature and hence nonzero anomalous Hall conduc-
tivity. This is shown in Figs. 2(c) and 2(d). In Fig. 2(c) we
show the Hall conductivities for each valley σ K

xy, σ K ′
xy (see

Sec. II B) and in Fig. 2(d) the total anomalous Hall conductiv-
ity σxy for the same parameters as in Fig. 2(a).

B. Topological invariants

A bulk gap in the energy spectrum can be characterized by
a topological invariant, which is insensitive to deformations of
the band structure provided that the gap remains open. Topo-
logical invariants to index a topological insulator phase are

the charge Chern number and spin Chern number [1,2,42,43].
In the insulating regime when the Fermi level lies in the bulk
gap, the Hall conductivity for each spin component is given as

σ sz
xy = e2

h

∑
τ=±

Csz
τ , (20)

where Csz
τ is the spin- and valley-dependent Chern number for

a band which is evaluated as [44,45]

Csz
τ = 1

2π

∫
d2k�τ sz

n (k). (21)

In Eq. (21) �
τ sz
n (k) is the Berry curvature in the out-of-plane

direction for the nth band,

�τ sz
n (k) = −2h̄2Im

∑
n′ �=n

fnk
〈unk|vx|un′k〉〈un′k|vy|unk〉

(Enk − En′k )2 , (22)

where fnk is the Fermi function for band n, |unk〉 is the Bloch
state with energy eigenvalues Enk , and vν (ν = x, y) is the
velocity operator; the spin index has been suppressed for
brevity. The velocity matrix elements in Eq. (22) are evaluated
in Appendix C. The total Chern number is then evaluated
as C = C↑ + C↓, where C↑ = ∑

τ C↑
τ and C↓ = ∑

τ C↓
τ are the

Chern numbers for each spin sector. The charge Hall conduc-
tivity is given as σxy = σ ↑

xy + σ ↓
xy, where the Hall conductivity

for each spin component is given in Eq. (20). On the basis
of Csz

τ , the spin Chern number is defined as Cs = C↑ − C↓
[8,43,46]. The spin-Hall conductivity can then be expressed
as σ s

xy = σ ↑
xy − σ ↓

xy; it is equal to the spin Chern number up
to a normalization constant e2/h. In the presence of spin
nonconserving terms, this definition remains valid, but the
calculation of Cs relies on a decomposition of the occupied
band into two sectors via diagonalization of the spin oper-
ator [9,11]. In addition, the valley Chern number is defined
as Cv = CK − CK ′ = ∑

sz
(Csz

K − Csz

K ′ ) and the Hall conductivity
for each valley as σ τ

xy = (e2/h)Cτ .

III. CHERN NUMBERS AND TOPOLOGICAL PHASES

We first consider the regime mb < λso and identify the
topological phases as the sublattice potential V varies. We
calculate the Chern numbers, the Hall conductivities for each
spin and valley, and use them to characterize these phases. The
Rashba interaction is neglected (λR = 0) in this regime. The
Berry curvature of a valence band is calculated from Eq. (22)
together with Eqs. (C3) and (C4) of Appendix C; it is given
by

�
τ sz
− (k) = τ

2

h̄2v2
F Mτ sz(

M2
τ sz

+ ε2
k

)3/2 . (23)

Integrating over the neighborhood of the K or K ′ point, we
obtain the Chern number as

Csz
τ = τ

2
sgn(m−sz + λsoτ sz + V ), (24)

with sgn(x) the sign function, when the Fermi level EF is in-
side the insulating gap. A topological phase transition occurs
when one of the four Dirac masses vanishes.

When EF is in the conduction band we find analytically
that the Hall conductivities for each spin component are given
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FIG. 3. Evolution of the band structure of monolayer Pt2HgSe3 (a)–(e) with staggered exchange and Zeeman fields and increasing
sublattice potential V . The parameters are mb = 0.5λso, mt = 0.05λso, λso = 81.2 meV, and λR = 0. In (a) the system is a QSH insulator
for 0 < V < V1 where V1 = λso − m−. After the gap closing and reopening of the spin-up channel at the K ′ valley for V = V1 [shown in (b)],
the system enters a VPM phase, shown in (c). After the second gap closing and reopening of the spin-down channel [shown in (d) at the
K valley for V = V2 where V2 = λso + m−, the system becomes QVH insulator shown in (e). (f)–(h) Hall conductivities for the spin-up and
spin-down channels, σ ↑

xy and σ ↓
xy, respectively, as functions of εF = EF /λso. (i)–(k) Hall conductivities for each valley, σ K

xy and σ K ′
xy as functions

of εF = EF /λso.

as

σ sz
xy = ± e2

2h

∑
τ=±

τ (m− + λsoτ ± V )√
(m− + λsoτ ± V )2 + h̄2v2

F k2
F

, (25)

where the +(−) signs correspond to sz =↑ (↓), respectively.
We also find that the Hall conductivities for each valley take
the form

σ τ
xy = ± e2

2h

∑
sz=±

m−sz ± λsosz + V√
(m−sz ± λsosz + V )2 + h̄2v2

F k2
F

, (26)

where the +(−) signs correspond to τ = K (K ′) valleys.

A. Case V = 0, λR = 0

When V = 0, we find that the Chern numbers for each
spin channel are C↑ = C↑

K + C↑
K ′ = 1 and C↓ = C↓

K + C↓
K ′ =

−1, leading to a Chern number C = 0 and spin Chern number
Cs = 2. Thus, the gaps are topologically nontrivial for both
spin channels, and the system is T -symmetry-broken QSH
insulator, i.e., it behaves as a QSH insulator with broken T
symmetry. The Chern number contribution of each valley is
found to be CK = C↑

K + C↓
K = 0 and CK ′ = C↑

K ′ + C↓
K ′ = 0; the

valley Chern number vanishes in this case Cv = 0.

B. Case V �= 0, λR = 0

As V increases from zero, the system remains in the QSH
phase, but the gap δ

↑
K ′ of the spin-up channel at K ′ valley

shrinks, closes at V = V1, and reopens for V > V1, as shown in
Figs. 3(a)–3(c). After reopening of the gap the system enters a
VPM phase, first predicted in Ref. [42], where part of the con-
duction (valence) band at K (K ′) valley is below (above) the
Fermi level [see Fig. 3(c)]. In this phase, even though the gaps
are open at the two valleys, the system becomes metallic; it
also becomes valley polarized because electrons have moved
from the K valley to the K ′ valley. We can determine the range
of V in which the VPM phase exists by requiring E↑

K ′v > 0
and E↓

Kc < 0, where E↑
K ′v (E↓

Kc) are the spin-up (spin-down)
valence (conduction) bands at K ′(K). This gives

|V − λso| < mt (VPM). (27)

Two remarks are in order here. First, if the Zeeman exchange
were zero, i.e., m+ = 0, EF would be inside both gaps si-
multaneously. In this case, we confirmed that a spin-polarized
QAH phase [47,48] arises with C↑ = 0, C↓ = −1, Cs = 1, and
C = −1; the system has only a spin-down edge current in this
phase. Second, if the exchange field on the top Hg sublattice is
taken to be zero, mt = 0, we obtain a marginal-VPM state (not
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shown here) where the conduction and valence bands touch
the Fermi surface at the K and K ′ points, respectively.

As V increases further, the gap δ
↓
K of the spin-down channel

at the K valley shrinks, closes at V = V2, and reopens there-
after [see Figs. 3(d) and 3(e)]. After reopening of the gap, both
spin channels become topologically trivial (C↑ = C↓ = 0), but
the Chern number contribution of each valley is found to be
CK = 1 and CK ′ = −1; the system is a QVH insulator with
valley Chern number Cv = 2.

Along the phase boundaries, V = V1 and V = V2, we ob-
serve that the system can host spin-polarized SDC semimetal
states where one Dirac cone is massless and three Dirac cones
are massive [47]. Its creation needs broken T and P symme-
tries. The SDC state unszk has the Berry’s phase

γB = i
∫ 2π

0
dϕk

〈
unszk

∣∣ ∂

∂ϕk

∣∣unszk
〉 = −τπ, (28)

and the gap closing at the valleys is tunable. It can also induce
quantum Hall effect with no half-integer plateaux [49].

To illustrate further the topological transport properties of
these phases, we show in Figs. 3(f)–3(h) the Hall conductiv-
ities for the spin-up and spin-down components, σ ↑

xy and σ ↓
xy,

respectively, as functions of the dimensionless Fermi energy
εF = EF /λso. In Figs. 3(i)–3(k) we show the Hall conduc-
tivities for each valley, σ K

xy and σ K ′
xy . Figure 3(f) exhibits the

nontrivial topology of each spin channel in the QSH phase; the
spin-up and spin-down channels carry Hall conductances e2/h
and −e2/h, respectively, in the corresponding gaps. When
EF is inside both gaps simultaneously the spin-Hall conduc-
tivity is quantized as σ s

xy = 2e2/h; an in-plane electric field
drives the spin-up and spin-down electrons toward the oppo-
site transverse edges of the sample, leading to a quantized spin
Hall effect. This nontrivial topology can be traced to the distri-
bution of the Berry curvatures shown in Fig. 4(a); the spin-up
and spin-down channels have Berry curvatures of opposite
sign, while their distribution is such that their integral over the
K and K ′ points yield C↑ = 1 and C↓ = −1. We also observe
that σ K

xy and σ K ′
xy are vanishing in the corresponding gaps [see

Fig. 3(i)] as a consequence of the vanishing integrated Berry
curvature over the K or K ′ point (CK = CK ′ = 0).

In the VPM state, which occurs for V1 < V < V2, the spin-
up channel has zero Hall conductance while the spin-down
channel has Hall conductance −e2/h. The distribution of the
Berry curvature of the spin-up channel is such that its integral
over K and K ′ points vanishes, but the Berry curvature of
the spin-down channel exhibits a sharp negative dip at the K
point whose integral gives −1 [see Fig. 4(b)]. In this state,
the Fermi level does not lie inside both gaps simultaneously
and the Chern number and spin Chern number are not well
defined.

In the QVH phase, σ ↑
xy = 0 and σ ↓

xy = 0 in the correspond-

ing gaps [see Fig. 3(h)], but σ K
xy = e2/h and σ K ′

xy = −e2/h

[see Fig. 3(k)]. The valley Hall conductivity, σ v
xy = σ K

xy − σ K ′
xy ,

which characterizes the accumulation of valley-resolved elec-
trons to opposite sides of the sample is then quantized as
σ v

xy = 2e2/h when EF is inside both gaps at the same time.
We provide a phase diagram and the band gaps as func-

tions of V/λso in Fig. 4(c). Blue and red lines correspond,
respectively, to gaps at K ′ and K of spin-up and spin-down

K K
-600

-400

-200

0

(b)

V=1.2V
1

FIG. 4. Berry curvature distribution of the spin-up and spin-
down valence bands, �

↑
− and �

↓
−, respectively, around the K and

K ′ points for (a) the QSH phase and (b) the VPM phase in units of
a2, where a = 7.6 Å is the lattice constant. Other parameters are the
same as in Fig. 3. (c) The phase diagram and the band gaps vs V/λso.

channels. The QSH phase exists for 0 < V < V1, the VPM
phase for V1 < V < V2, and the QVH phase for V2 < V <

2λso. Along the phase boundaries at V = V1 � 0.78λso or
V = V2 � 1.22λso, there exist spin-polarized SDC semimetal
states where the gaps δ

↑
K ′ and δ

↓
K close.

In Fig. 5 we show the spin-Hall conductivity σ s
xy as a

function of εF = EF /λso for the same parameter values as
in Fig. 3(f) and increasing temperature which is included
through the Fermi function in Eq. (22). We do not consider
electron-phonon interactions here. For the parameters used in
this work, the plateau extends over 55 meV and is visible for
temperatures up to ∼90 K. For comparison, in unmagnetized
silicene the quantized spin Hall effect persists up to ∼10 K
[50].

-2 -1 0 1 2

F

1.0

1.5

2.0

xys
[e

2
/h

]

T=0

T=60K

T=90K

FIG. 5. Spin-Hall conductivity for the same parameters as in
Fig. 3(f) at different temperatures.
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FIG. 6. (a) Band structure near the K and K ′ valleys for mb = 1.5λso, mt = 0.05λso, λR = 0.15λso, and V = 0. (b), (c) Calculated QKs and
QK ′s as functions of the wave vector k. (d) Berry curvatures of the s = + and s = − valence bands, �−+ and �−−, near the K and K ′ valleys.
(e)–(h) The same as in (a)–(d) but with opposite exchange fields mb = −1.5λso and mt = −0.05λso.

IV. VALLEY-POLARIZED QAH EFFECT

Below we explore the second regime, mb > λso, and we
show that the system is VP-QAH insulator for 0 < V < m+.
For V > m+ it transitions first to VPM and then to QVH
insulator. The VP-QAH phase combines valleytronics and
topology, i.e., the properties of both the QAH phase and the
QVH phase coexist in one material. Importantly, we also find
that reversing the sign of the exchange interaction swaps the
topology of each valley, indicating that the Chern number is
coupled to the substrate’s magnetization. This conclusion is
promising for a magnetic manipulation of the VP-QAH effect.

We compute the Chern numbers from Eq. (19), where the
Berry curvature is expressed as

�ns(k) = i〈∇kunsk| × |∇kunsk〉, (29)

with unsk denoting the Bloch state for a band labeled by n
and s; they are given in Eqs. (14) and (15). This expression
for the Berry curvature is computationally more convenient
here. Using the polar coordinate system, we find that the Berry
curvature for a valence band (n = −) with s = ± is expressed
as

�−s(k) = 1

k

∂

∂k
Q−s(k), (30)

with

QK
−s(k) = N2

[(
E−sk − γ

↓
2

εk

)2

−2

(
εkeiϕk η

E−sk − γ
↑
1

)2

−e2iϕk η2

]
,

(31)

for the K valley and

QK ′
−s(k) = −Ñ2ε2

k

[(
η̃

E−sk − γ
↑
2

)2

+
(

1

E−sk − γ
↓
1

)2]
,

(32)
for the K ′ valley. In the following, we will omit the − sign for
a valence band and write QKs and QK ′s for brevity. Substituting

�−s(k) from Eq. (30) into Eq. (21) we find

CK (K ′ )s = [QK (K ′ )s(∞) − QK (K ′ )s(0)]. (33)

A. Case V = 0, λR �= 0

In Fig. 6(a) we show the band structure around the K
and K ′ valleys for mb = 1.5λso, mt = 0.05λso, λR = 0.15λso,
and V = 0. Numerical calculation shows that QK+(∞) �
1.5, QK−(∞) � 0.5, and QK+(0) = QK−(0) = 1, as shown in
Fig. 6(b). Then Eq. (33) gives

CK± � ±0.5. (34)

The individual Chern numbers CK± are not exactly quantized
but depend numerically on the value of λR. However, the two
contributions always sum up to 0 so the Chern number of
valley K is CK = 0. For the K ′ valley we find QK ′±(∞) �
±0.5, QK ′+(0) = −1, and QK ′−(0) = 0, as shown in Fig. 6(c).
Therefore,

CK ′+ � 1.5, CK ′− � −0.5, (35)

and the Chern number of valley K ′ is CK ′ = 1. It follows that
the gap at K (K ′) is topologically trivial (nontrivial) with total
Chern number C = 1. In addition, the different Chern numbers
of valleys K and K ′ give rise to nonzero valley Chern number
Cv = −1, indicating the existence of VP-QAH effect with a
single edge mode. The topologically different responses of
valleys K and K ′ arise from the strong intrinsic SOC and the
fact that the gaps are valley-dependent.

In Fig. 6(d) we show the distribution of the Berry curvature
around the K and K ′ valleys for each band. We notice that
the Berry curvatures of the two bands at the K valley, �−+
and �−−, are exactly equal and opposite such that their k-
space integrals yield CK+ = −CK− � 0.5 leading to CK = 0.
The Berry curvatures of the two bands at the K ′ valley are
obviously different from those near the K valley with unequal
Chern numbers, and exhibit sharp peaks and dips. Their dis-
tribution is such that their integrals yield CK ′ = 1.
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FIG. 7. (a) Chern numbers for each valence band (s = ±1) in the
topological gap at the K ′ valley as a function of λR for fixed mb =
1.5λso. Their sum is always CK ′ = CK ′+ + CK ′− = 1 (solid, brown
line). (b) Chern numbers for each valence band (s = ±1) at the K ′

valley as a function of the exchange field in the bottom sublattice mb

for fixed Rashba SOC λR = 0.54λso. Their sum is again CK ′ = 1.

In Fig. 6(e) we show the band structure with the sign
of the exchange interaction reversed. In this case, we find
QK+(∞) � 0.5, QK−(∞) � 1.5, QK+(0) = 2, and QK−(0) =
1, as shown in Fig. 6(f). It follows that

CK+ � −1.5, CK− � 0.5, (36)

and the Chern number of valley K is CK = −1. For the K ′ val-
ley [see Fig. 6(g)] we find QK ′±(∞) � ∓0.5, and QK ′+(0) =
QK ′−(0) = 0, which yield

CK ′± � ∓0.5, (37)

and the Chern number of valley K ′ is CK ′ = 0. Therefore, the
gap at K (K ′) is topologically nontrivial (trivial) with Chern
number C = −1 and valley Chern number Cv = −1; the topol-
ogy is swapped between the two valleys, and the opposite sign
of the Chern number indicates that the chirality of the edge
state is reversed.

The swapping of the VP-QAH phase between the two
valleys is also reflected in the Berry curvatures around the K
and K ′ points, as shown in Fig. 6(h). We observe that they have
opposite signs from those in Fig. 6(d), and they have also been
switched between the two valleys.

From the above results, the Hall conductivity for V = 0 can
be expressed as

σxy =
{

e2/hsgn(mb), |mb| > λso

0, |mb| < λso
, (38)

where the contribution to the conductivity comes only from
the K ′ valley when mb > λso, whereas for mb < −λso the
contribution comes only from the K valley. The valley-Hall
conductivity, σ v

xy = σ K
xy − σ K ′

xy , which characterizes the accu-
mulation of valley-resolved electrons to opposite sides of the
sample is then given by

σ v
xy =

{−e2/h, |mb| > λso

0, |mb| < λso
. (39)

The Chern number contribution of each valence band and
the total Chern number are shown in Fig. 7 as functions of
Rashba SOC λR and exchange field mb for the K ′ valley. In
Fig. 7(a) the exchange field is fixed at mb = 1.5λso and in
Fig. 7(b) the Rashba SOC is fixed at λR = 0.54λso. In Fig. 7(a)
we notice that in the limit λR → 0, the Chern number for the

valence band with s = −1 is negatively half quantized, i.e.,
CK ′− = −0.5, and that for the valence band with s = +1 is
one and half quantized, i.e., CK ′+ = 1.5. For increasing values
of λR, their absolute values, |CK ′+| and |CK ′−|, reduce but
their sum is always one, i.e., CK ′ = CK ′+ + CK ′− = 1 (solid,
brown line). In Fig. 7(b) one observes that for mb → 2λso the
contributions are CK ′− = −0.5 and CK ′+ = 1.5. For smaller
values of mb their absolute values reduce, but their sum is
again always one, CK ′ = 1.

B. Case V �= 0, λR �= 0

As V increases from zero [see Fig. 8(a)] up to V = m+,
the gap δ

↓↑
K remains open with C = 0 and the gap δ

↓↑
K ′ remains

topological with CK ′ = 1 suggesting that the VP-QAH phase
is robust against the staggered sublattice potential, i.e., for
0 < V < m+. The gap δ

↓↑
K ′ closes at V = m+, and reopens

for V > m+ as shown in Figs. 8(b) and 8(c), and the system
undergoes a phase transition from a VP-QAH phase to VPM
phase (see also Fig. 9). As V increases further, the gap δ

↓
K of

the spin-down channel decreases, closes at V = V2 = λso +
m−, and reopens for V > V2, as shown in Figs. 8(d) and 8(e).
After reopening of the gap, the Chern number contribution
of each valley is CK = 1 and CK ′ = −1; the system becomes
QVH insulator with valley Chern number Cv = 2.

In Fig. 9 we show the topological phases and band gaps as
functions of V/λso. The VP-QAH phase exists for 0 < V <

m+ (m+ � 0.75λso). Along the phase boundary at V = m+,
there exists a single-valley topological metal (TM) state; the
bands touch parabolically in this state; see Fig. 8(b). At the
phase boundary at V = V2 = λso + m− � 1.7λso there exists a
SDC state. The violet line corresponds to the topological gap
δ

↓↑
K ′ at the K ′ valley. It decreases for 0 < V < m+, becomes

zero at V = m+, and increases thereafter. The gap δ
↓
K of the

spin-down channel (red line) closes and reopens at V = V2.

V. SUMMARY AND CONCLUSIONS

We investigated topological phases in monolayer jacutin-
gaite with exchange fields, staggered sublattice potential, and
Rashba SOC. Jacutingaite is a naturally occuring layered min-
eral and its monolayer displays the KM physics but at a much
higher energy scale than other 2D honeycomb materials like
graphene, silicene, germanene, and stanene. Our analysis is
based on topological invariants and reveals that the system
exhibits QSH, VPM, VP-QAH, and QVH phases, that are tun-
able by the exchange fields and/or an external electric field.
We also demonstrate that these phases can be characterized
and distinguished by the spin- and valley-Hall conductivities.

In particular, for mb < λso and 0 < V < V1, we find that
the system exhibits a quantized spin-Hall effect with spin-Hall
conductivity σ s

xy = 2e2/h, despite the broken T symmetry.
For V1 < V < V2 it is VPM, and for V > V2 it exhibits a quan-
tized valley-Hall effect with valley-Hall conductivity σ v

xy =
2e2/h. Along the phase boundaries we find that SDC states
emerge.

For mb > λso and finite Rashba SOC, our analysis shows
that the system is VP-QAH insulator with quantized Chern
number C = 1 and quantized valley Chern number Cv = −1,
i.e., it exhibits simultaneously the properties of the QAH
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FIG. 8. (a–e) Evolution of the band structure with increasing V for λR = 0.15λso. The other parameters are the same as in Fig. 6(a). For
0 < V < m+ the system is VP-QAH insulator whereas for m+ < V < V2 it is VPM. At V = V2 the gap δ

↓
K of the spin-down channel at the K

valley closes and reopens and the system becomes QVH insulator.

effect and the QVH effect. The VP-QAH phase is robust
against the staggered sublattice potential and exists for 0 <

V < m+. Further, we show that reversing the sign of the
exchange interactions switches the topological properties be-
tween the two valleys; for mb < −λso the valley polarization
is switched and the Chern number is C = −1. The apparent
coupling of the Chern number to the substrate’s magnetization
can lead to the magnetic manipulation of the VP-QAH phase.
As V increases further, the system exhibits VPM and QVH
phases. The intriguing possibility of realizing the VP-QAH
insulator can lead to topological valleytronics applications,
e.g., the topological valley field-effect transistor [51].

We remark that valley-contrasted topological thermo-
electric transport in the system described here can be an
interesting research direction as well. Topological valley-
dependent anomalous thermoelectric transport in bilayer
transition metal dichalcogenides has been recently investi-
gated in Ref. [52].

In experiments the exchange fields can be generated us-
ing a bulk magnetic insulator, for example, EuO or EuS.
However, electrical switching and tuning the substrate mag-
netization is challenging to achieve in traditional 3D magnets.
Currently, there is an intense focus on 2D magnetic crystals

FIG. 9. (a) The phase diagram and the band gaps as functions
of V/λso. In the VP-QAH phase, which exist for 0 < V < m+, the
Chern number and valley Chern number are C = 1 and Cv = −1. In
the QVH phase, which exists for V > V2, C = 0 and Cv = 2. Violet
and red lines correspond to band gaps at the K ′ and K valleys.

which allow electrical, magnetic, and optical control [53–55],
which makes them engineerable and integrable into vdW het-
erostructures. Recently, it was experimentally demonstrated
that 2D chromium sulfide bromide (CrSBr) (an air-stable vdW
semiconductor with band gap ∼1.5 eV and interlayer antifer-
romagnetic ordering up to relatively high Néel temperature
of ∼132 K [56]), provides graphene with strong exchange
interaction and considerable spin-splitting of ∼20 meV [57].
Monolayer CrSBr is a ferromagnet with a predicted Curie
temperature of ∼168 K (potentially even higher) and gate-
tunable magnetization [56]. These properties make CrSBr a
promising 2D magnet for the realization of the VP-QAH
effect which should be stable up to high temperature. This
temperature stability is an important parameter for realistic
applications of the VP-QAH effect.

Besides CrSBr, other magnetic crystals are possible can-
didates, for example CrI3 [54,55], which shows Ising-type
magnetization down to mono- and bilayer limits and al-
lows electrical control of the magnetization [58]. It is also
promising as substrate material to realize these topological
properties.

Finally, we note that the VP-QAH phase was also found
in the vdW heterostructure Pt2HgSe3/CrI3 investigated in
Ref. [30]. However, in this work the authors focus only on the
regime mb > λso with mt = 0, whereas the effect of staggered
sublattice potential was not considered.
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APPENDIX A: INVARIANCE OF m−σzsz UNDER PT
SYMMETRY

Under inversion symmetry, r → −r, p → −p, and s → s.
Inversion is represented by a unitary operator,

P = σxτx, (A1)

where τx switches the valleys. Under time reversal, r → r,
p → −p, and s → −s. The time reversal symmetry for spin
1/2 particles is represented by the operator,

T = τxisyKc, (A2)
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where isy produces reversal of the electron spin, and Kc is the
complex conjugation. For spin 1/2 electrons, T has the prop-
erty T 2 = −1. The preservation of m−σzsz under the operator
product of inversion and time reversal, PT , is shown readily
using the standard anticommutation relations {σi, σ j} = 2δi j :

PT (m−σzsz )(PT )−1 = σxisy(m−σzsz )σxis∗
y

= −σx(m−σzsz )syσxsy

= (m−σzsz )σ 2
x s2

y

= m−σzsz. (A3)

APPENDIX B: BAND GAPS BETWEEN OPPOSITE
SPIN BANDS

The gaps between spin-down conduction band and spin-up
valence band at K and K ′ valleys, δ

↓↑
K and δ

↓↑
K ′ , respectively,

are given by

δ
↓↑
K = −2m+ + |λso + m− − V | + |λso + m− + V |, (B1)

δ
↓↑
K ′ = −2m+ + |λso − m− + V | + |λso − m− − V |. (B2)

For mb > λso and assuming mt < λso, we find that

δ
↓↑
K = 2(λso − mt ), 0 < V < λso + m−, (B3)

δ
↓↑
K = 2(V − m+), λso + m− < V. (B4)

In both cases δ
↓↑
K > 0 because m+ < λso + m−. For the gap

δ
↓↑
K ′ we find

δ
↓↑
K ′ = 2(λso − mb) < 0, 0 < V < λso − m−, (B5)

δ
↓↑
K ′ = 2(V − m+), λso − m− < V < λso + m−. (B6)

Thus, we conclude that δ
↓↑
K ′ < 0 in the range 0 < V < m+.

Note that λso − m− < m+ < λso + m−. Further, for λso +
m− < V , we find δ

↓↑
K = δ

↓↑
K ′ = 2(V − m+) > 0.

APPENDIX C: VELOCITY OPERATOR MATRIX
ELEMENTS

When λR = 0, the x and y components of the velocity
operator vν = ∂H/h̄∂kν (ν = x, y) read

vx = τvF σx, vy = vF σy. (C1)

For the evaluation of the velocity matrix elements in Eq. (22)
we introduce the notation

〈unk|vν |un′k〉 = vν,nn′ (k). (C2)

The calculations are done for a specific valley and spin state.
Using Eq. (6) they are readily evaluated and read

vx,+−(k) = −(
h̄v2

F /εkε
)
(iετky + Mkx ), (C3)

vy,+−(k) = (
h̄v2

F /εkε
)
(iετkx − Mky). (C4)

Note that vν,−+(k) = v∗
ν,+−(k) due to the Hermiticity of the

velocity operator.
For λR �= 0 the velocity operator reads

vx = τvF σx1s, vy = vF σy1s. (C5)

In the following we suppress the spin chirality index. Using
Eq. (14), the velocity matrix elements for the K valley are
readily evaluated and read

vK
x,nn′ (k) = P

[(
εkeiϕk

Enk − γ
↑
1

+ εke−iϕk

En′k − γ
↑
1

)
η∗

nkηn′k

+ Enk − γ
↓
2

εke−iϕk
+ En′k − γ

↓
2

εkeiϕk

]
, (C6)

where P = N∗
nkNn′kvF and

vK
y,nn′ (k) = iP

[(
− εkeiϕk

Enk − γ
↑
1

+ εke−iϕk

En′k − γ
↑
1

)
η∗

nkηn′k

− Enk − γ
↓
2

εke−iϕk
+ En′k − γ

↓
2

εkeiϕk

]
. (C7)

Using Eq. (15), the velocity matrix elements for the K ′ valley
are similarly evaluated and read

vK ′
x,nn′ (k) = P̃

[(
εke−iϕk

En′k − γ
↑
2

+ εkeiϕk

Enk − γ
↑
2

)
η̃∗

nk η̃n′k

+ εke−iϕk

Enk − γ
↓
1

+ εkeiϕk

En′k − γ
↓
1

]
, (C8)

P̃ = Ñ∗
nkÑn′kvF , and

vK ′
y,nn′ (k) = iP̃

[(
εke−iϕk

En′k − γ
↑
2

− εkeiϕk

Enk − γ
↑
2

)
η̃∗

nk η̃n′k

+ εke−iϕk

Enk − γ
↓
1

− εkeiϕk

En′k − γ
↓
1

]
. (C9)

The above matrix elements are used in the calculation of the
Berry curvatures.
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