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Microscopic theory of excitons bound by light
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We theoretically investigate the scenario of a semiconductor quantum well in a microcavity, where the band
structure is arranged such that optically excited electron-hole pairs cannot form Coulomb-bound excitonic states.
However, it is still possible to form exciton polaritons (part-light, part-matter quasiparticles), where the excitons
are bound via the exchange of microcavity photons rather than via Coulomb interactions. Using a diagrammatic
theory, we determine the spectral response of the semiconductor microcavity, which includes exciton-polariton
resonances as well as a continuum of unbound electron-hole pairs. Our method also gives us access to the photon
fraction and the electron-hole wave function of the exciton polariton. In particular, we obtain the conditions under
which an exciton is bound by photon exchange and we show that Coulomb interactions can enhance binding
at large cavity photon frequencies. Our results for the spectral response are in good agreement with a recent
experiment on doped quantum wells [E. Cortese et al., Nat. Phys. 17, 31 (2021)].
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I. INTRODUCTION

When there is a strong coupling between light and matter
in a semiconductor microcavity, new hybrid quasiparticles
called exciton polaritons emerge, which are superpositions of
excitons (bound electron-hole pairs) and photons [1–3]. Here,
the coherent energy exchange between an exciton and cavity
photon is faster than the rate of dissipation and decoherence,
such that light and matter become entwined to the point where
they are inseparable. Exciton polaritons have enabled a range
of many-body coherent quantum phenomena to be realized,
such as Bose-Einstein condensation [4] and superfluidity [5].
Most of these phenomena have been successfully described
using a coupled oscillator model of the exciton polariton,
where the internal structure of the exciton is neglected. How-
ever, recently it has been experimentally demonstrated [6] that
excitons can be nonperturbatively modified in the so-called
very strong coupling regime [7–10], where the light-matter
coupling strength approaches the exciton binding energy. This
raises the intriguing possibility of precisely manipulating the
electron-hole wave function via the coupling to light, with
potential applications in optoelectronics [11,12].

Remarkably, in a recent experiment [13], Cortese et al. ob-
served the formation of exciton polaritons in a semiconductor
microcavity that did not support Coulomb-bound electron-
hole pairs. The quantum well in this experiment was carefully
engineered to feature an effective electron-hole Coulomb
repulsion, and therefore the observed electron-hole binding
could instead be attributed to an attractive potential origi-
nating from emission and reabsorption of cavity photons, as
originally proposed in Ref. [14]. The experimental results thus
clearly defy an explanation in terms of coupled oscillators,
as there is a priori no matter quasiparticle for the photon to
coherently couple to.

Here, we use a microscopic approach that explicitly in-
cludes the electron, hole, and photon degrees of freedom

to model excitons bound by microcavity photons. Our ap-
proach uses Feynman diagrams, and is based on the recent
microscopic description of exciton polaritons in Ref. [9]. It
allows us to calculate the light-matter coupled state numer-
ically exactly within the approximation of an inert Fermi
sea of holes, which may be viewed as a variational ansatz
similar to approaches in quantum impurity problems [15].
Our calculation gives us access to the microcavity spectral
function, including both discrete and continuous parts of the
spectrum, which we find compares well with the experimental
results [13]. Furthermore, we obtain analytic expressions for
the spectral function and electron-hole wave function under
the assumption that Coulomb interactions can be neglected
compared with the light-matter coupling strength, and we
find that these closely match the numerically exact results
in the regime of experimentally relevant parameters. Finally,
our method allows us to obtain the conditions under which
an exciton state bound by light exists in the semiconductor
microcavity.

The paper is organized as follows: The conceptual frame-
work of the quantum well microcavity and the associated
microscopic Hamiltonian is introduced in Sec. II. In Sec. III
we then calculate the spectral response of the microcavity,
analyze the photon fraction and electron-hole wave functions
contributing to the polariton state, and compare our results
with experiment. We conclude in Sec. IV.

II. MODEL

We consider the scenario investigated in the recent ex-
periment by Cortese et al. [13], namely a quantum well
that supports a single bound electronic subband and no ex-
citonic bound states. To model the experiment, we employ
the band structure illustrated in Fig. 1. It contains a sin-
gle bound two-dimensional (2D) electronic subband—with a
positive effective mass msub—which is occupied up to the
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FIG. 1. Schematic of the band structure in the electron-doped
quantum well microcavity that was used to observe excitons bound
by photon exchange [13]. The quantum well was designed to support
a single bound electronic subband, which was filled (shaded gray) up
to the Fermi momentum kF in the 2D plane. A photon (wavy line)
can ionize an electron from the bound subband into the 3D unbound
continuum (series of curves), thus resulting in an electron-hole pair.
Since, along the 2D plane, the effective electron mass is greater in the
ionization band than in the bound subband, the minimum ionization
energy Ei is on the electron Fermi surface.

Fermi momentum kF as represented by the gray shaded re-
gion. An electron from the bound subband can be ionized
into an unbound 3D continuum, represented by a series of
parallel curves, with in-plane effective mass me‖. The resulting
in-plane hole has effective mass mh‖ = −msub under the usual
electron-hole mapping. Importantly, |mh‖| < me‖ and there-
fore the total in-plane kinetic energy of the electron-hole pair
is negative, which can be seen schematically in Fig. 1 from
the shrinking ionization energy with increasing momentum.
Accordingly, the kinetic energy has the same sign as the
attractive electron-hole Coulomb interaction; i.e., the situa-
tion is formally analogous to two electrons interacting via a
repulsive Coulomb potential. This effective repulsion is what
prevents conventional exciton formation.

To describe the quantum well microcavity system, we use
a Hamiltonian that consists of contributions from the light,
matter, and light-matter coupling terms. The matter term Ĥm

describing the band structure illustrated in Fig. 1 is

Ĥm =
∑

k

[(εek + Eg/2) ê†
kêk + (εhk + Eg/2) ĥ†

kĥk]

+ 1

2

∑
kk′q

V (q)[ê†
k+qê†

k′−qêk′ êk + ĥ†
k+qĥ†

k′−qĥk′ ĥk

− 2ê†
k+qĥ†

k′−qĥk′ êk]. (1)

Here, and in the following, we work in units where the volume
and h̄ are both set to unity. In Eq. (1), the creation (annihi-
lation) operators of electrons and holes at momentum k are
written as ê†

k (êk ) and ĥ†
k (ĥk ), respectively. To account for

TABLE I. Table of parameters used for our modeling of the
experiment in Ref. [13]. Here we take the ionization energy Ei and
2D electron density n from the experiment. The Fermi momentum
kF is then obtained from n using the 2D ideal Fermi gas expression,
kF = √

2πn. GaAs effective masses for the electron meGaAs and hole
mhGaAs are taken to be standard values in the literature [23] in terms
of m0 the vacuum electron mass. The Bohr radius a0 used in the
Coulomb potential yields the expected 2D exciton binding energy
(≈10 meV) in a standard GaAs quantum well [16]. On the right,
we have the parameters specifically chosen in this work: the light-
matter coupling constant for the case with and without the Coulomb
interaction, g∗ and g, respectively, and the in-plane reduced effective
mass of the electron-hole pair for the case with and without the
Coulomb interaction, μ∗

‖ and μ‖, respectively. The photon linewidth
� is independent of whether we include Coulomb interactions, and
we include an electron-hole linewidth parameter �eh for convergence
of our numerical results.

Physical parameters
Experimental parameters Theoretical inputs

Ei 138 meV g 360 meV nm3/2

n 5 × 1012 cm−2 g∗ 360 meV nm3/2

meGaAs 0.063m0 μ‖ 0.63m0

mhGaAs 0.51m0 μ‖∗ 0.11m0

mez meGaAs � 5 meV
a0 16 nm �eh 2 meV

the dimensionality of the system, we separate the momenta
and effective masses into the quantum well plane and the
transverse direction labeled by ‖ and z, respectively. The total
kinetic energies of the electron and the holes become εek =

k2
‖

2me‖
+ k2

z

2mez
and εhk = k2

‖
2mh‖

, where we have accounted for the
2D nature of the bound subband by taking the transverse hole
effective mass to be infinite. We furthermore take the trans-
verse electron effective mass mez to be the bulk GaAs electron
mass meGaAs (see Table I for a summary of theory parameters),
while the in-plane effective masses me‖ and mh‖, which are
specific to the quantum well, are treated as free parameters.

The kinetic terms in Eq. (1) additionally contain the band
gap Eg defined as the energy difference between the bound
subband and the ionization band at zero momentum. However,
as illustrated in Fig. 1, the actual minimum ionization energy
Ei is obtained for excitations at the Fermi surface:

Ei = Eg + k2
F

2me‖
− k2

F

2mh‖
= Eg − k2

F

2μ‖
, (2)

where we define the (positive) mass μ‖ = 1/(m−1
h‖ − m−1

e‖ ).
Importantly, our theory described below only depends on μ‖
and not me‖ and mh‖ separately.

To describe the electronic interactions, in Eq. (1) we use
the 3D Coulomb potential V (q) = 1

2mr a0

8π
q2 which is written

in terms of the GaAs reduced effective mass mr = (m−1
eGaAs

+
m−1

hGaAs
)−1 and the Bohr radius a0 ≈ 16 nm. These parame-

ters should produce a realistic Coulomb interaction strength,
since they yield the expected 2D exciton binding energy of
≈10 meV in a standard GaAs quantum well with Coulomb-
bound exciton states [16].
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We now turn to the theoretical description of the resonant
cavity photon mode. For simplicity we consider only photons
at normal incidence. Therefore, the microcavity photon is
described by

Ĥp = ωĉ†ĉ. (3)

Here, the operators ĉ† and ĉ create and annihilate a micro-
cavity photon, respectively, with the resonant cavity photon
energy ω.

Finally, the light-matter component Ĥg describes the trans-
formation of a microcavity photon to an electron-hole pair and
vice versa:

Ĥg = g
∑

k‖,kz,k′
z

χ (k′
z ) ê†

k‖,kz
ĥ†

−k‖,k′
z
ĉ + H.c. (4)

Here we apply the rotating wave approximation, which is jus-
tified since we are working with photon energies and resonator
energies ω which are near resonant with the large band gap.
We furthermore use a momentum-independent constant g to
couple the photon and electron-hole states, where χ (kz ) is
the envelope function for the hole that is tightly bound along
the transverse z direction, with normalization

∑
kz

|χ (kz )|2 =
1. Note that conservation of momentum requires that the
electron-hole pair has zero total in-plane momentum when it
is generated by a photon at normal incidence.

The total Hamiltonian that describes matter, light, and
light-matter coupling terms is thus

Ĥ = Ĥm + Ĥp + Ĥg. (5)

Formally, this is similar to a wide range of models describing
intersubband polaritons in the strong light-matter coupling
regime [17–20]; however our model focuses on the regime
where there is only one bound subband, and it excludes the
ultrastrong light-matter coupling regime where the rotating
wave approximation breaks down. Our model is also similar
to the Hamiltonian employed in Ref. [9], which performed
a microscopic calculation of exciton polaritons in a micro-
cavity that exactly incorporated the light-induced changes of
the electron-hole wave function due to strong light-matter
coupling. In that work it was argued that the resonant cav-
ity photon frequency should be renormalized due to the use
of contact light-matter interactions, as in Eq. (4) (see also
Refs. [21,22]). However, in the present work this is not an
issue since the bound subband can only be excited at momenta
up to kF , and hence the electron-hole wave function is not
probed at arbitrarily short length scales.

III. EXCITONS BOUND BY STRONG COUPLING
TO MICROCAVITY PHOTONS

We now discuss the formation of exciton polaritons within
our model Hamiltonian. In particular, we use a variational
approach to determine the photon amplitude and electron-hole
wave functions, allowing us to investigate in detail the bind-
ing of electron-hole pairs. The photon amplitude furthermore
allows us to calculate the spectral response of the system
through the spectral function, which we find agrees well with
the experiment [13].

A. Formalism

To describe the bound state of an electron-hole pair due to
the strong coupling to light, we consider the state

|�〉 =
∑

k‖,kz,k′
z

χ (k′
z )φ(k‖, kz )ê†

k‖,kz
ĥ†

−k‖,k′
z
|0〉 + γ ĉ†|0〉, (6)

which is a superposition of the electron-hole and the pho-
tonic components, respectively. Here, the hole is bound
along the transverse z direction, with envelope function χ (k′

z )
like in Eq. (4). The electron-hole wave function φ and
the photon amplitude γ satisfy the normalization condition∑
k‖,kz

|φ(k‖, kz )|2 + |γ |2 = 1. Note that in Eq. (6) we treat the

Fermi sea as inert; i.e., we ignore the possibility of creating
excitations within the bound subband electron Fermi sea, in-
cluding the depolarization shift [24]. Such processes may be
expected to be suppressed when there are no bound states
associated with particles excited out of the Fermi sea. Since
we consider a truncated Hilbert space, the state in Eq. (6) may
be viewed as a variational ansatz for the ground state of the
system [25].

Projecting the Schrödinger equation Ĥ |�〉 = E |�〉 onto
the photon and electron-hole subspaces individually, we ob-
tain the coupled set of equations for the wave function and
energy E ,

(E − Eg − Ek‖,kz )φ(k‖, kz )

= −
∑
q‖,qz

nq‖Vs(k‖ − q‖, kz − qz )φ(q‖, qz ) + gγ , (7a)

(E − ω)γ = g
∑
q‖,qz

nq‖φ(q‖, qz ). (7b)

In the first of these equations, we have replaced the Coulomb
potential by its planar s-wave projection, since we are work-
ing with photons that only couple to electron-hole pairs in a
relative s state:

Vs(p − k)

=
∫ 2π

0

dϕ

2π
V (p‖ − k‖, pz − kz )

= 8π/(2mra0)√
(p2

‖ − k2
‖ )2 + 2(p2

‖ + k2
‖ )(pz − kz )2 + (pz − kz )4

,

(8)

where ϕ is the in-plane angle between the relative momen-
tum of incoming and outgoing electron-hole pairs, k and p,
respectively. We have also defined the total kinetic energy of

the electron-hole pair as Ek‖,kz = − k2
‖

2μ‖
+ k2

z

2mez
, and introduced

the Fermi-Dirac distribution of the holes in the quantum well
plane, nk‖ . In the following, we take zero temperature such
that nk‖ = �(kF − |k‖|) with � the unit step function; how-
ever our approach is straightforward to generalize to finite
temperature. We solve the set of equations in (7) numer-
ically by introducing an appropriate momentum grid and
treating it as an eigenvalue problem with eigenvalue E [26].
This approach yields a (discrete) set of photon fractions γn,
electron-hole wave functions φn, and energies En.
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FIG. 2. Diagrammatic representation of the Dyson equation (11)
satisfied by the dressed cavity photon propagator (double wavy line).
The free photon propagator G(0)

c (E ) is drawn with a single wavy line.
The photon self-energy �(E ) consists of the light-matter coupling g
(drawn as a black dot) and the full electron-hole propagator (shaded
ellipse).

The spectral response of the quantum well microcavity is
encoded in the spectral function [27,28]

A(E ) = − 1

π
Im[Gc(E )], (9)

with dressed cavity photon propagator

Gc(E ) = 〈0|ĉ 1

E − Ĥ + i�
ĉ†|0〉, (10)

where we have introduced i� as the photon linewidth pa-
rameter, which also serves to shift the pole structure of
the propagator to the lower half of the complex plane. As
discussed in Ref. [9], this in turn satisfies the Dyson equa-
tion illustrated in Fig. 2:

Gc(E ) = G(0)
c (E ) + G(0)

c (E )�(E )Gc(E ). (11)

Here G(0)
c (E ) = 1/(E − ω + i�) is the free photon propaga-

tor, i.e., in the absence of light-matter coupling, while the
self-energy from the coupling to matter is

�(E ) = 〈0|ĉĤg
1

E − Ĥm + i�eh
Ĥgĉ†|0〉. (12)

For a detailed derivation, see the Appendix. Note that we have
introduced a separate linewidth �eh for the electron-hole part
to account for any dissipation in the quantum well and to aid
the numerical calculations.

Formally, the Schrödinger equation in Eq. (7) provides an
approximate treatment of the self-energy within the Dyson
equation, and its solution can be employed to yield the discrete
version of the dressed photon propagator,

Gc(E ) =
∑

n

|γn|2
E − En + i|γn|2� + i(1 − |γn|2)�eh

. (13)

In general, we will assume that both � and �eh are small
such that they only negligibly affect the analytic results that
we derive; i.e., we will effectively take them to vanish in all
analytic expressions below.

A useful approximation is to assume that the strength of
the light-matter coupling is such that the Coulomb interaction
only provides a small correction to the results. In particular,
completely neglecting the Coulomb interaction allows us to
calculate Gc(E ) analytically by solving Eq. (7) for the photon

amplitude γ :

Gc(E ) =
(

E − ω − g2
∑
k,kz

nk‖

E + i0 − Eg − Ek‖,kz

+ i0

)−1

=
[

E − ω − g2μ‖
√

mez√
2π

(
√

Ei − E − i0 −

√
Eg − E − i0) + i0

]−1

. (14)

This is a key result of this work, and it allows us to gain insight
into the spectrum of the microcavity, as discussed below in
Sec. III B. In particular, Eq. (14) explicitly shows how the
coupling to matter can be enhanced by increasing the in-plane
electron-hole reduced mass μ‖. Moreover, in the absence of
doping, we see that the photon completely decouples from the
subband and the propagator reduces to the free case G(0)

c (E ),
since Eg and Ei coincide in the limit kF → 0 [see Eq. (2)].

B. Results

Figure 3 shows our results for the microcavity spectral
function and photon fraction at a fixed electron density in
the bound subband, calculated with and without Coulomb
interactions. To determine the spectra, we have used the ex-
perimental parameters from Ref. [13], along with estimated
parameters for the light-matter coupling strength g and the
reduced electron-hole mass μ‖; see Table I. We stress that
our results remain qualitatively unchanged for a wide range
of possible values of these two parameters. Furthermore, the
strength of the light-matter coupling is comparable to previous
estimates in the context of intersubband polaritons [18]. Be-
low the ionization energy at 138 meV, the spectral function in
Figs. 3(a) and 3(b) features a prominent discrete peak which
is strongly shifted by more than 10 meV from the bare photon
resonance. This is due to the existence of a single pole in the
dressed photon propagator when [Gc(E = Ep)]−1 = 0 (taking
for simplicity � = �eh = 0), corresponding to the energy Ep

of the exciton-polariton quasiparticle.
In Fig. 4 we show the experimentally measured reflectance

spectrum from Ref. [13]. We see that this compares well with
our calculated spectral functions in Fig. 3. In particular, we
find that the position of our exciton-polariton quasiparticle
peak below the ionization threshold is in excellent agreement
with that extracted from the measured reflectance.

For resonator frequencies far below the ionization en-
ergy, we find that the polariton quasiparticle is almost purely
photonic. However, the polariton becomes matter dominated,
i.e., excitonic, as the resonator energy approaches the ioniza-
tion energy. To see this, we note that in the vicinity of the
pole, the dressed photon propagator takes the form Gc(E 

Ep) = |γ |2/(E − Ep + i|γ |2�), according to Eq. (13). Taylor-
expanding the denominator of the approximation in Eq. (14)
to first order in E − Ep, we obtain the analytic expression for
the photon fraction in the absence of Coulomb interactions,

|γ |2 =
(

1 − g2μ‖
√

mez

2
√

2π
[(Eg − Ep)−

1
2 − (Ei − Ep)−

1
2 ]

)−1

.

(15)
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FIG. 3. (a), (b) Spectral function (in arbitrary units) calculated with (a) and without (b) Coulomb interactions. The dashed yellow line is
the bare cavity photon frequency. (c), (d) Photon fraction (blue) and matter fraction (purple, dashed) of the exciton polariton for the cases with
(c) and without (d) Coulomb interaction. All results are obtained using the physical parameters in Table I.

This explicitly shows that when Ep is far below Ei we have
|γ |2 → 1, whereas when Ep → Ei we have |γ |2 → 0. This
behavior is illustrated in Figs. 3(c) and 3(d).

FIG. 4. The measured reflectance spectrum (in arbitrary units)
from the experiment in Ref. [13]. The onset of the continuum (at
138 meV) and the bare photon energy are displayed as dashed black
and dashed yellow lines, respectively. The experimentally extracted
peak positions (blue dots) agree well with our predictions for the
polariton energy, both with (dashed white) and without (solid white)
Coulomb interactions.

As the polariton approaches the ionization energy, there is a
qualitative difference between the calculations with and with-
out Coulomb interactions. Indeed, we find that formally an
electron-hole bound state is always present when we include
Coulomb interactions, although it is extremely weakly bound
for large resonator frequencies, with an associated negligible
photon fraction. This is due to the Coulomb potential being ef-
fectively attractive along the transverse direction. By contrast,
in the absence of Coulomb interactions the exciton polariton
enters the ionization continuum at a finite value of the cavity
mode energy, as can be seen from the abrupt decrease in the
photon fraction to zero in Fig. 3(d). To understand this, we set
Ep = Ei and solve for the pole of the dressed photon propa-
gator in Eq. (14) (taking again � = �eh = 0 for simplicity):

ω = Ei + g2√μ‖mez kF

2π
. (16)

The shift from the value ω = Ei in the absence of doping can
be viewed as a measure of the strength of the light-matter
coupling, and we see that this is on the order of 30 meV.
Importantly, Eq. (16) shows that the shift is proportional to kF ;
i.e., it would disappear in the absence of doping, as expected.
In spite of this qualitative difference between the two cases,
the polariton quasiparticle peaks look qualitatively similar in
Figs. 3(a) and 3(b).
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FIG. 5. Spectral function (in arbitrary units) versus doping for
the resonator energies of 130 meV (a) and 150 meV (b). We show
the result of the analytic calculation (14) where we ignore Coulomb
interactions.

Above the ionization energy, the quasiparticle enters a
continuum, and it becomes diffuse. Here, the qualitative dif-
ference between the cases with/without Coulomb interactions
in Figs. 3(a) and 3(b) mainly stems from the different esti-
mated values of μ‖, which imply that the energy widths of the
2D continuum, Eg − Ei, are different [see Eq. (2)]. In panel
(a), the upper edge of this continuum is not visible, whereas
in panel (b) this is at approximately 160 meV (above which
we still have a continuum of 3D scattering states).

In Fig. 5, we instead show the spectral function as a func-
tion of electron density, calculated in the analytic case where
we ignore the Coulomb interaction. Panels (a) and (b) show
the cases where the cavity mode is set below and above the
ionization energy, respectively, at 130 meV and 150 meV. In
both cases, we can interpret the resulting spectrum as being
due to an avoided crossing between the cavity mode and the
edge of the 2D continuum. Again we see that the light-matter
coupling can be quite large at experimentally realistic electron
densities.

Apart from the spectrum, our approach also allows us
to directly extract the electron-hole wave function from the
solution of the Schrödinger equation (7). In the general case,

these must be obtained numerically. However, in the absence
of Coulomb interactions, the momentum space wave func-
tion is simply obtained from rearranging Eq. (7a). We then
obtain analytic position-space expressions in two limits: in
the photon-dominated regime far away from the continuum

where (Ep − Ei ) � k2
F

2μ‖
, and in the excitonic regime where

Ep 
 Ei. We write these as φ(C) and φ(X ), labeling the photon-
dominated and exciton-dominated regimes, respectively. In
the photon-dominated regime, we use the approximation that
k2

F /2μ‖ � Ei − Ep and project onto coordinate space along
the in-plane radial direction r and transverse direction z sepa-
rately to find

φ(C)(r, 0) = 1√
N

gγ
√

mez

2
√

2π
√

Ei − Ep

kF J1(kF r)

r
,

φ(C)(0, z) = 1√
N

gγ
√

mez

4
√

2π
√

Ei − Ep

k2
F e−

√
2mez (Ei−Ep)z. (17)

Here Jn is the Bessel function of the first kind and the nor-
malization N = (gγ )2√mezk2

F

8
√

2π (Ei−Ep)3/2 . Now we proceed in a similar

manner for Ep = Ei, obtaining just the functional form of the
wave function φ(X ) since it is not formally normalizable right
at the continuum:

φ(X )(r, 0) = sin(kF r)

kF r
,

φ(X )(0, z) = 1 − e
−

√
mez
μ‖ kF z

√
mez

μ‖
kF z

. (18)

The resulting electron-hole wave functions are shown in
Fig. 6, both as a function of in-plane electron-hole separa-
tion, and as a function of transverse separation. Interestingly,
in the in-plane direction the wave function is seen to have
nodes, which is different from the usual behavior expected
from a ground state. We attribute this to the negative reduced
effective mass of the electron-hole pair, and the presence of
the Fermi momentum which means that the Fourier transform
is performed on a restricted range of k‖. Conversely, along
the transverse direction, the exciton wave function appears
without nodes due to the positive reduced effective mass of the
electron-hole pair along this direction. The analytic approxi-
mations are seen to match the numerics well in their respective
energy ranges; in particular, φ(C) (17) compares well with the
full wave function at lower energies, and the wave function
φ(X ) (18) fits better near the continuum.

IV. CONCLUSION

To conclude, we have introduced a versatile microscopic
formalism to model the scenario of an electron-hole pair that
can become bound due to the strong coupling to microcavity
photons. Using a diagrammatic approach based on Green’s
functions and including Coulomb interactions, we have ob-
tained the spectral function that includes both a discrete
exciton-polariton resonance and an unbound electron-hole
continuum. Our results compare well with the recent experi-
ment in Ref. [13] when we use physically realistic parameters
for the semiconductor quantum well in the microcavity. Fur-
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FIG. 6. Electron-hole wave functions along the in-plane (top) and transverse (bottom) directions. The wave functions with (purple) and
without (blue) the Coulomb potential are shown for resonator energies 130 meV, 150 meV, and 168 meV from left to right. We compare these
with the analytic approximations φ (C) (black short dashed) and φ (X ) (black long dashed). To focus on the functional form of the wave functions,
we have normalized them by their value at the origin.

thermore, by neglecting Coulomb interactions, we were able
to obtain analytical results for the spectrum and the electron-
hole wave function, which compared well with our numerics
for the full problem. In particular, we found that the main
effect of the Coulomb potential between electrons and holes
was the formation of a weakly bound excitonic state at all
resonator energies due to the effective attraction along the
transverse direction. This is in contrast to previous theories of
excitons bound by photon exchange, which predict a critical
value of the resonator energy at which the electron-hole pair
unbinds [13,14].

The exciton polaritons investigated in this work carry a
formal similarity to intersubband polaritons [29] and polaron-
polaritons [30]. In the former case, the strong coupling to an
intersubband transition can be described using similar mod-
els [17,19,20]; however while intersubband polaritons feature
(at least) two bound nearly parallel subbands, resulting in a
narrow optical transition [29,31], in the present scenario there
is only the one bound subband leading to the presence of a
broad continuum. In the polaron-polariton case, an exciton
polariton is coherently dressed by particle-hole excitations of
a Fermi sea [30,32], leading to the formation of attractive and
repulsive polariton quasiparticles. By analogy, in the present
scenario the discrete resonance below the ionization energy
may be viewed as an attractive photon polaron, while the
resonance in the continuum may be viewed as a metastable
repulsive photon polaron [15]. In the future, it would be
interesting to explore this analogy further, for instance to
investigate the nature of interactions between such photon
polarons due to their electronic constituents [33]. In particular,
the interactions between conventional exciton polaritons have
been shown to depend strongly upon the light-matter coupling
strength [34], and likewise the interactions between photon

polarons would be expected to depend strongly and nontriv-
ially on the quantum well doping.
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APPENDIX: DERIVATION OF PHOTON PROPAGATOR

We start by defining the Green’s operator

Ĝ(E ) = 1

E+ − Ĥp − Ĥm − Ĥg
, (A1)

where we have introduced an infinitesimal imaginary part
such that E+ = E + i0. Expanding in the light-matter cou-
pling term Ĥg gives the infinite series

Ĝ(E ) = 1

E+ − Ĥp − Ĥm

+ 1

E+ − Ĥp − Ĥm
Ĥg

1

E+ − Ĥp − Ĥm
+ · · · . (A2)

To obtain the photon propagator, we must take the expectation
value of the Green’s operator with the cavity photon state,
yielding Gc(E ) = 〈0|ĉ Ĝ(E )ĉ†|0〉. The term Ĥg in Eq. (A2) is
responsible for transforming the photon state to an electron-
hole state and vice versa. Evaluating odd powers of Ĥg

between photon states results in an inner product between a
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photon state and an electron-hole state, which evaluates to
zero, leaving only the even terms in the expansion. Without
explicitly evaluating the photon states, we therefore write the
photon propagator in its operator form as

Ĝc(E ) = 1

E+ − Ĥp

+ 1

E+ − Ĥp
Ĥg

1

E+ − Ĥm
Ĥg

1

E+ − Ĥp
+ · · · . (A3)

Here, we have used the fact that the matter term Ĥm evaluates
to zero when the photon state is applied to the left- and right-
most terms. In addition, the Ĥg term transforms the photon
into an electron-hole state, which in turn allows us to drop the
photon term Ĥp in the denominator of the middle propagator
in the second line of Eq. (A3). This results in alternating Ĥp

and Ĥm terms in the denominators within the series. Writing
1

E+−Ĥp
as the free photon propagator Ĝ(0)

c (E ) and 1
E+−Ĥm

as

the full electron-hole propagator Ĝm(E ) (which includes the

Coulomb potential), the dressed photon propagator in operator
form is

Ĝc(E ) = Ĝ(0)
c (E ) + Ĝ(0)

c (E )ĤgĜm(E )ĤgĜ(0)
c (E )

+ Ĝ(0)
c (E )ĤgĜm(E )ĤgĜ(0)

c (E )ĤgĜm(E )ĤgĜ(0)
c (E )

+ · · · . (A4)

The infinite expansion in Eq. (A4) can be resummed to give
the final equation

Ĝc(E ) = 1

Ĝ(0)
c (E )−1 − ĤgĜm(E )Ĥg

= 1

Ĝ(0)
c (E )−1 − �̂(E )

, (A5)

where the term ĤgĜm(E )Ĥg is the self-energy �̂(E ). This
corresponds to the Dyson equation [35] of Gc(E ),

Ĝc(E ) = Ĝ(0)
c (E ) + Ĝ(0)

c (E )�̂(E )Ĝc(E ), (A6)

which we illustrate in Fig. 2.
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