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We develop an analytically solvable model for interacting two-dimensional Fermi liquids with separate
collisional relaxation rates for parity-odd and parity-even Fermi surface deformations. Such a disparity of
collisional lifetimes exists whenever scattering is restricted to inversion-symmetric Fermi surfaces, and should
thus be a generic feature of two-dimensional Fermi liquids. It implies an additional unanticipated “tomographic”
transport regime (in between the standard collisionless and hydrodynamic regimes) in which even-parity modes
are overdamped while odd-parity modes are collisionless. We derive expressions for both the longitudinal
and the transverse conductivity and discuss the collective mode spectrum along the collisionless-tomographic-
hydrodynamic crossover. Longitudinal modes cross over from zero sound in the collisionless regime to
hydrodynamic first sound in the tomographic and hydrodynamic regime, where odd-parity damping appears
as a subleading correction to the lifetime. In charged Fermi liquids with long-range Coulomb coupling, these
modes reduce to plasmons with a strongly suppressed odd-parity correction to the damping. The transverse
response, by contrast, has a specific tomographic transport regime with two imaginary odd-parity modes, one of
which requires a finite repulsive interaction, distinct from both the shear sound in the collisionless regime and
an overdamped diffusive current mode in the hydrodynamic limit. Our work demonstrates that there are deep
many-body aspects of interacting Fermi liquids, which are often thought to be well understood theoretically,
remaining unexplored.

DOI: 10.1103/PhysRevB.106.205412

I. INTRODUCTION

Interaction-dominated hydrodynamic electron transport
has recently become accessible in low-dimensional Fermi liq-
uids [1–13] (with important earlier work [14,15]). Observing
such a hydrodynamic transport regime requires both strong
electron interactions as well as clean samples in which the
rate of impurity scattering γi is much smaller than the electron
collision rate γ , γi � γ , i.e., electron-electron interactions
thermalize the system. Standard phase-space arguments pre-
dict γ ∼ (T/TF )2 [16–18] (for T � TF , where T is the
temperature and TF is the Fermi temperature, valid up to
logarithmic corrections [19–22]), such that electron interac-
tions dominate at higher temperatures until other mechanisms
(such as phonon scattering) become relevant; in graphene, for
example, the hydrodynamic regime exists around T = 100–
150 K [1], and in bilayer graphene around T = 50–100 K
[1,8]. Depending on the ratio between the quasiparticle scat-
tering rate γ and the characteristic transport frequency (set
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by vq, where v is the Fermi velocity and q the wave number
of an excitation), the interaction-dominated Fermi liquid is
either in a collisionless regime, γ � vq, where particle scat-
tering is not efficient to damp excitations over the timescale
of the mode, or in a hydrodynamic regime, γ � vq, where
only zero modes of the collision integral participate in the
dynamics while all other modes are overdamped. Although
such a collision-dominated hydrodynamic regime is not of
much relevance to normal metals, by virtue of TF ∼ 104 K in
regular metals, hydrodynamics should be the generic behavior
of many clean 2D materials, such as monolayer [1] and bilayer
graphene [8], and high-mobility 2D GaAs structures [23].

However, this canonical picture of Fermi liquids described
above is actually not complete for two-dimensional materi-
als. Here, the restriction of quasiparticle excitations to the
vicinity of a two-dimensional Fermi surface imposes stronger
constraints compared to the three-dimensional case [24–29].
In particular, for Fermi surfaces with inversion symmetry
p ↔ −p, the predicted quadratic temperature dependence of
the collision rate only applies to the parity-even part of the
quasiparticle distribution f+(p) = [ f (p) + f (−p)]/2 [25,30].
The parity-odd part f−(p) = [ f (p) − f (−p)]/2, by contrast,
is seen to decay much more slowly, which defines an addi-
tional collisional scale γ ′ � γ . Indeed, for a circular Fermi
surface (which we consider in this paper), one finds γ ′ ∼
(T/TF )4 [27,29], a result that on a microscopic level is in-
terpreted in terms of angle-correlated two-body scattering
on the Fermi surface [26]. The emergence of two separate
interaction-induced collisional lifetimes raises the interesting
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FIG. 1. Sketch of the distinct transport regimes in a two-
dimensional Fermi liquid with weak disorder. Here, γ , γ ′, and γi

are, respectively, the even-parity, the odd-parity, and the impurity
relaxation rate.

prospect of a completely new “tomographic” transport regime,
in which parity-even deformations of the Fermi surface are
overdamped yet all parity-odd modes are still collisionless;
see Fig. 1 for an illustration of the various limits. The system
is both collision-dominated (“even-parity”) and collision-free
(“odd-parity”) in the tomographic regime. Predicted observ-
ables include a scale-dependent shear viscosity [28], with
possible signatures reflecting a deviation from the laminar
hydrodynamic Poiseuille flow profile [12,28], or enhanced
backscattering around impurities [31].

In this work, we provide a comprehensive discussion of
collective excitations in a two-dimensional Fermi liquid along
the frequency-tuned collisionless-tomographic-hydrodynamic
crossover. To this end, we formulate an analytically solvable
model for the quasiparticle dynamics that includes impurity
scattering as well as the two collisional timescales through
a relaxation-time ansatz. The model is solvable since at
low temperatures changes in the quasiparticle distribution
function—δ fp(t, r) = fp(t, r) − f0(εp), where p is the wave
number of an excitation with single-particle energy εp and f0

the equilibrium Fermi-Dirac function—is strongly peaked at
the Fermi surface (|p| = pF for the circular Fermi surfaces
that we consider) such that the dynamics reduces to the angu-
lar dynamics of the Fermi surface deformation,

δ f (θ ; t, r) =
(

− ∂ f0

∂εp

)
δμ(θ ; t, r), (1)

where δμ is a time- and position-dependent variation in the
chemical potential and θ is the angle that parametrizes the
position of the momentum on the Fermi surface. If expanded
in angular harmonics,

δμ(θ ) =
∑

m

δμmeimθ , (2)

the continuous kinetic Fermi liquid equation reduces to a
discrete tight-binding form, where even (odd) m describe
even-parity (odd-parity) deformations of the Fermi surface,
with m = 0 describing density fluctuations and m = ±1 cur-
rent fluctuations. We consider a simple relaxation-time ansatz
in the angular components to account for the two parity-
dependent collisional relaxation times,

γm =

⎧⎪⎨
⎪⎩

0, m = 0,

γi, |m| = 1,

γ , m even, |m| � 2,

γ ′, m odd, |m| � 3,

(3)

where we impose γi < γ ′ < γ as shown in Fig. 1 as appro-
priate for a clean interaction-dominated system. In addition,
to describe short-range Fermi liquid interactions, we include
the dominant Landau parameters in our calculations, which

are the isotropic parameter F0 for the longitudinal response
(which sets the compressibility) and the dipole parameter
F1 for the transverse response (which sets the mass renor-
malization). This is of course a simplified description, but it
allows an analytic discussion of the collective mode spectrum
and it contains all salient physics. The model (3) is accu-
rate for semiconductors at low temperature or semimetals at
finite doping such as graphene [29] (with a breakdown of
the odd-even effect near charge neutrality [32,33]). Indeed,
it is straightforward to extend our model to include more
interaction parameters or more complicated relaxation terms
(as is discussed in the Appendix), and we demonstrate that the
structure of the modes remains unchanged. We note that our
formalism follows the classic prescription for describing the
interacting system using a few phenomenological parameters
following the procedure originally outlined by Landau in his
famous Landau Fermi liquid theory [34,35].

Before presenting a full derivation, we summarize in
Sec. II the main results for the collective mode spectrum
for longitudinal and transverse excitations both in charged
and neutral Fermi liquids, and discuss the behavior along
the hydrodynamic-tomographic-collisionless crossover. Our
main finding for the longitudinal collective mode is a direct
crossover from collisionless zero sound to hydrodynamic first
sound with subleading signatures of parity-dependent damp-
ing, which is replaced by a collective plasmon mode with
similar damping for charged Fermi liquids. For the transverse
collective mode, three distinct transport regimes exist, with a
collisionless shear sound mode, two imaginary tomographic
modes, and a diffusive hydrodynamic current mode. Sec-
tion III presents a detailed discussion of the kinetic description
of the Fermi liquid, derives the longitudinal and transverse
current response function, the poles of which determine the
collective modes, and discusses the causal structure of the
response. The paper concludes in Sec. IV.

II. RESULTS

We begin by discussing longitudinal collective modes, in
which the current is parallel to the direction of the wave
number. For a collisionless neutral Fermi liquid, where γi <

γ ′ < γ < vq (cf. Fig. 1), we find a weakly damped collective
zero sound mode that splits from the particle-hole continuum
for F0 � 0:

ω = ± 1 + F0√
1 + 2F0

vq − i
1

(1 + 2F0)2

(
1 + 2F0

2
γ

+ 1

2
γ ′ + 2F0(1 + F0)γi

)
+ O

(
1

q

)
. (4)

The real part is the standard zero sound mode of a two-
dimensional Fermi liquid [36–39] with an imaginary part that
sets the damping of the mode. Figure 2 (top row) shows the
corresponding Fermi surface deformation δμ(θ ) for several
values of F0, where the insets show the spectral decomposition
as a function of the angular parameter m. At small values
of F0, the zero sound mode involves all angular components
and is sharply localized around the direction of propagation.
For large F0, by contrast, the mode reduces to a pure dipole
(m = ±1) oscillation. This structure is reflected in the damp-
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FIG. 2. Fermi surface deformation for longitudinal excitations in
the collisionless regime (top row) and the tomographic and hydro-
dynamic regime (bottom row) with increasing strength of the Fermi
liquid parameter F0 (left to right). The insets show the decomposition
of the mode in angular components. In the collisionless regime, at
small parameter values the mode is strongly localized around the
direction of propagation, while at large parameters, the mode reduces
to a longitudinal dipole (m = ±1) mode. In the tomographic and
hydrodynamic regime, the mode predominantly involves the density
and current zero modes.

ing of the mode: For small F0, the leading-order damping is set
by the even-parity relaxation γ with a subleading correction
γ ′. For large F0, however, the impurity scattering is dominant
as O(1) while the even-mode relaxation term γ is suppressed
as O(1/F0) (due to the small m = ±2 component) and the
odd-mode relaxation as O(1/F 2

0 ) (due to the even smaller
m = ±3 component).

The longitudinal response does not have a distinct tomo-
graphic signature. Both in the tomographic regime, γi < γ ′ <

vq < γ , and in the hydrodynamic regime, γi < vq < γ ′ < γ ,
the mode reduces to a damped hydrodynamic first sound mode

ω = ±
√

1 + F0

2
vq − i

(
γi

2
+ (vq)2

8γ

)
+ O

(
(vq)3

γ 2

)
, (5)

which exists for all F0 � −1 above the Pomeranchuk in-
stability. The interaction contribution to the damping is of
the standard hydrodynamic form −iνq2/2, where ν = v2/4γ

is the kinetic expression for the viscosity of a 2D Fermi
liquid [40,41]. For an illustration of the collective mode struc-
ture, see the bottom plot of Fig. 2, which only involves the
zero-mode components m = 0 and m = ±1. Finally, in the
overdamped hydrodynamic limit vq < γi < γ ′ < γ , the mode
reduces to a density diffusion mode with

ω = −i
1 + F0

2

(vq)2

γi
, (6)

which is again not sensitive to the odd-parity damping γ ′.
The above discussion applies to charge-neutral systems

with short-range bare interactions, which only exist in normal

He-3 [42] and atomic quantum gases [43,44]. For charged
systems, Landau-Silin theory includes an internal polarization
field in the Fermi-liquid description that accounts for the dy-
namical screening due to the long-range Coulomb interaction.
This is essential for the convergence of the theory in the pres-
ence of long-range interactions. For a plane-wave perturbation
with wave number q, the net effect of the Coulomb interaction
is a shift in the isotropic Landau parameter F0 [41],

F0 → F0 + 2πα

λF q
, (7)

where λF is the Fermi wavelength and α = e2/κ h̄v is the
dimensionless Coulomb interaction strength (i.e., the effec-
tive “fine structure constant”) with κ a dielectric constant.
Equation (7) can be thought of as the screening introduced
by the long-range part of the Coulomb interaction, with the
long-wavelength divergence for q → 0, in going from the
Landau theory to the Landau-Silin theory. Results for neu-
tral Fermi liquids can thus be applied directly to charged
systems, for which only the limit F0 → ∞ is relevant (since
q � 1/λF within the validity of the Fermi liquid theory).
Both the zero sound mode in the collisionless regime and the
first sound mode in the hydrodynamic regime then become
a collective plasmon mode [41]. In the collisionless regime,
we have

ω = ±
√

παv2

λF

√
q − i

(
γi

2
+ γ

8πα
λF q + γ ′

32π2α2
(λF q)2

)
.

(8)

The real part is the standard plasmon frequency of a two-
dimensional electron gas [45–47], with a damping that
receives an odd-parity anomalous contribution, which is dis-
tinguished not only by a distinct temperature scaling (through
the anomalous temperature dependence of γ ′) but also by a
characteristic O(q2) momentum dependence. The hydrody-
namic plasmon is [41]

ω = ±
√

παv2

λF

√
q − i

(
γi

2
+ (vq)2

8γ

)
, (9)

with a damping that is unchanged from Eq. (5) and that has no
odd-parity correction at this order.

Let us now discuss the transverse collective mode, for
which the current flow is perpendicular to the momentum
direction. Unlike the longitudinal response, the transverse
modes do not involve a density oscillation and are thus not
sensitive to the isotropic Landau parameter F0. Our results
thus apply equally to both neutral and charged Fermi liq-
uids since screening is not a relevant consideration for the
transverse modes. The transverse response has two distinct
imaginary modes in the tomographic regime that separate the
regime from the collisionless limit, which has a collective
shear sound mode for sufficiently strong repulsion, and the
hydrodynamic limit, which has a diffusive current mode.
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FIG. 3. Fermi surface deformation for transverse excitations in
the collisionless (top row), the tomographic (middle row), and the
hydrodynamic regime (bottom row) with increasing strength of the
Fermi liquid parameter F1 (left to right). The insets show the de-
composition of the mode in angular components. In the collisionless
regime, at small parameter values the mode is strongly localized
around the direction of momentum and transverse to the direction of
propagation, while at large parameters, the mode reduces to a trans-
verse quadrupole oscillation. In the tomographic limit, even-parity
modes are overdamped with no contribution of the density mode, but
odd modes remain. Their contribution increases at large repulsion
while the contribution of the current zero mode is reduced. In the
hydrodynamic regime, only the current zero mode contributes.

First, the transverse collisionless shear sound mode, which
exists for F1 � 1, is

ω = ±1 + F1

2
√

F1
vq − i

(
γ

2
+ γ ′

2F1
+ F1 − 1

2F1
γi

)
+ O

(
1

q

)
.

(10)

The speed of sound is not affected by collisions [37,48,49].
The structure of the mode is illustrated in the top row of
Fig. 3. Unlike longitudinal excitations, transverse modes are
antisymmetric and do not involve a density (m = 0) compo-
nent because the direction of current flow is perpendicular to
the momentum direction. For small Fermi liquid parameters
F1, the mode is strongly peaked in the momentum direction
with a large number of higher harmonics. With increasing
Landau parameter it reduces to a pure quadrupole (m = ±2)
oscillation. The even-parity damping in Eq. (10) is thus not
suppressed compared to the impurity damping at large F1. The

(a) (b)

FIG. 4. Damping of the two tomographic transverse modes for
γi = 0 (a) as a function of the Fermi liquid parameter F1 for fixed
qξ = 1 and (b) as a function of qξ for fixed F1 = 3. The gray shaded
area indicates the branch cut of the transverse response.

odd-parity contribution, however, is suppressed at large F1 as
before.

In the tomographic regime, the shear sound mode is
replaced by two purely imaginary low-energy modes. For
γi = 0, their dispersion is

ω = −iγ ′ 1 + F1

8F1

[
4 + (qξ )2(1 + F1)

∓ (qξ )2

√(
1 + F1 + 4

(qξ )2

)2

− 16F1

(qξ )2

]
, (11)

where we define a characteristic length scale

ξ = v√
γ γ ′ . (12)

Note that the dimensionless quantity qξ can take any positive
value in the tomographic regime, where large values approach
the collisionless limit and small values the hydrodynamic
limit; cf. Fig. 1. An impurity scattering rate γi is included
in Eq. (11) by shifting the overall dispersion by −iγi and
replacing γ ′ → γ ′ − γi. The minus sign in Eq. (11) defines
an upper branch with frequency −iγ ′ < ω < 0 that exists for
all −1 < F1, and the plus sign denotes a lower branch with fre-
quency ω < −iγ ′[1 + (qξ )2] that starts at F ∗

1 = 1 + 2/(qξ )2.
The two modes are separated by a branch cut on the imaginary
axis that extends from −iγ ′[1 + (qξ )2] to −iγ ′.

The two tomographic modes in Eq. (11) are sketched in
Fig. 4(a) for qξ = 1 and γi = 0 as a function of F1. The upper-
branch dispersion starts out linearly near F1 � −1 as

ω = −iγ ′ 1 + F1

2
(
√

1 + (qξ )2 − 1), (13)

takes at F1 = 0 the value

ω = −iγ ′ (qξ )2

4 + (qξ )2
, (14)

and behaves asymptotically for F1 → ∞ as

ω = −iγ ′. (15)

The latter limit is independent of the impurity relaxation rate
γi. The lower branch starts at the branch point −iγ ′[1 +
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(qξ )2] and diverges for large F1 as

ω = −i
F1

4

(vq)2

γ
, (16)

thus clearly separating from the upper mode, Eq. (15). Seen
as a function of qξ [Fig. 4(b)], the upper branch starts
out at small qξ with a quadratic dispersion ω = −i(1 +
F1)(vq)2/4γ characteristic of a diffusive mode, but is then
superdiffusive for larger qξ (i.e., with effective exponent α <

2) and levels off to ω = −iγ ′ at large qξ . The lower mode
approaches the branch point for smaller qξ (i.e., when ap-
proaching the hydrodynamic limit) and vanishes at a critical
value q∗ξ = √

2/(F1 − 1), such that only the upper branch
remains.

The Fermi surface deformation of the upper branch is
shown in the middle row of Fig. 3 for qξ = 1 and several
values of F1. For small F1, the mode is predominantly a dipole
mode with small weight in the odd-parity harmonics. Increas-
ing the Landau parameter F1 (or the momentum qξ ) increases
the weight of the odd-parity components such that the damp-
ing approaches the value (15). By contrast, the lower-branch
diffusion mode (not shown) is dominated by the zero-modes
m = 0,±1 at large F1 or large qξ with hydrodynamic damping
(16). As becomes clear from Figs. 3 and 4, there are two
competing damping mechanisms in the tomographic regime:
the direct damping −iγ ′ of the odd-parity modes and the
hydrodynamic damping −i(vq)2/4γ .

Finally, in the hydrodynamic limit, the upper-branch mode
in Eq. (11) reduces to a diffusive current mode

ω = −i

(
γi + 1 + F1

4

(vq)2

γ

)
+ O

(
(vq)3

γ 2

)
, (17)

with a direct damping due to impurity scattering and a hy-
drodynamic damping term ∼νq2. For γi = 0 and F1 = 0, this
result agrees with [40]. The mode structure for different F1 is
shown in the bottom row of Fig. 3, which only involves the
current components and hence does not change with F1. Just
as the longitudinal hydrodynamic first sound mode, the trans-
verse hydrodynamic mode is not sensitive to the odd-parity
damping at this order.

III. FERMI LIQUID MODEL

In this section, we review the kinetic Fermi-liquid de-
scription of the angular dynamics (Sec. III A) and derive
analytical expressions for the longitudinal and transverse op-
tical conductivity (Sec. III B), the poles of which determine
the collective modes discussed in the previous section. In
addition, Sec. III C provides further details on the analytic
structure of the response functions.

A. Kinetic equation and tight-binding form

The time evolution of δ f (θ ; t, r) is governed by the quasi-
particle kinetic equation [16,18]

∂δ f (θ )

∂t
− ∂ε̃

∂r
· ∂δ f (θ )

∂p
+ ∂ε̃

∂p
· ∂δ f (θ )

∂r
= J [δ f (θ )], (18)

where the left-hand side describes free phase space evolution
based on the local quasiparticle energy

ε̃θ (t, r) = εp +
∫ 2π

0

dθ ′

2π
F (θ − θ ′)δμ(θ ′; t, r), (19)

which includes a mean field shift due to (short-range) in-
teractions parametrized by the Landau function F (θ ). The
right-hand side J [δ fθ ] of Eq. (18) is the collision integral,
which captures gains and losses due to scattering between
particles or particles and impurities. Substituting Eq. (19) in
Eq. (18) gives

∂

∂t
δ f (θ ) + vθ · ∂

∂r
δ f̄ (θ ) + ∂ f0

∂p
· (−eE) = J [δ f (θ )], (20)

where vθ = ∂εp/∂p|pF is the Fermi velocity, δ f̄ (θ ) = f (θ ) −
f0(ε̃θ ) is the deviation from local thermodynamic equilibrium,
which is determined by the local quasiparticle energy (19),
and we include an external field E that generates a driving
force. Explicitly, in terms of the chemical potential variation
δ f̄ (θ ) = (−∂ f0/∂εp)δμ̄(θ ),

δμ̄(θ ) = δμ(θ ) +
∫ 2π

0

dθ ′

2π
F (θ − θ ′)δμ(θ ′). (21)

For a plane-wave perturbation

Eext (t, r) = E0 e−iωt+iq·r (22)

with corresponding Fermi surface response δμ(θ ; t, r) =
e−iωt+iq·rδμ(θ ), the kinetic equation reduces to (q is aligned
along the x axis)

(−ω + vq cos θ )δμ(θ ) − ivE0 cos(θ − θE )

+ vq cos θ

∫ 2π

0

dθ ′

2π
F̃ (θ − θ ′) δμ(θ ′) = −iL[δμ], (23)

where L[δμ] = J [δ f (θ )]/(−∂ f0/∂εp) is the linearized colli-
sion integral and θE the angle between the external field and
the x axis.

The kinetic equation (23) is converted to a tight-binding
form by expanding in angular harmonics as in Eq. (2), ex-
panding the Landau function in the same way as

F (θ ) =
∑

m

Fmeimθ , (24)

as well as replacing the linearized collision integral by its
smallest eigenvalue,

L[δμm] = −γmδμm. (25)

This gives

(−ω − iγm)δμm + vq

2
(1 + Fm−1)δμm−1

+ vq

2
(1 + Fm+1)δμm+1

= − ivE0

2
(e−iθE δm,+1 + eiθE δm,−1). (26)

Formally, this equation takes the form of a one-dimensional
tight-binding Hamiltonian with lattice sites m and wave func-
tion δμm, where the term (−ω − iγm) is a complex on-site
energy and the vq(1 + Fm±1)/2 terms are tunneling ampli-
tudes between nearest neighbors from site m ± 1 to m. A
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single nonzero Fermi liquid parameter modifies the hopping
amplitude between two sites and is interpreted as a bond
impurity. Increasing F0, for example, increases the hopping
from site 0 to sites ±1, while increasing F1 increases the
hopping from site ±1 to the sites 0 and ±2. This structure
is immediately apparent in the solutions shown in Figs. 2
and 3. The general numerical solution of the tight-binding
equation (26) is discussed in the Appendix.

B. Response functions

The current j induced in response to an applied electric
field is linked to the deviation from local thermodynamic
equilibrium [16,18],

j =
∫

dp
(2π )2

vpδ f̄p(t, r)

= ν0
v

2
(1 + F1)

(
δμ+1 + δμ−1

i(δμ+1 − δμ−1)

)
, (27)

where ν0 = m∗/π is the 2D density of states and m∗ the
effective mass. Note that Galilean invariance implies m∗/m =
1 + F1. We extract δμ±1 from the kinetic equation (26) re-
stricted to the hydrodynamic modes m = 0,±1,⎛

⎝−ω − iγi + vq
2 x2

vq
2 (1 + F0) 0

vq
2 (1 + F1) −ω

vq
2 (1 + F1)

0 vq
2 (1 + F0) −ω − iγi + vq

2 x2

⎞
⎠

×
⎛
⎝ δμ1

δμ0

δμ−1

⎞
⎠ = −v

2

⎛
⎝ eiθE

0
e−iθE

⎞
⎠E0, (28)

where x2 = δμ2/δμ1 incorporates the coupling to higher har-
monics. As discussed below, x2 follows from the kinetic
equation (26) without reference to the source terms, where
x2 = 0 defines the hydrodynamic limit. In terms of this quan-
tity, the longitudinal and transverse conductivity read

σ‖(ω, q)

ν0
= −q2v2(1 + F1)

2

× 1

−ω(ω + iγi ) + c2
1q2 + vq

2 ωx2
, (29)

σ⊥(ω, q)

ν0
= +ω2v2(1 + F1)

2

1

−ω(ω + iγi) + vq
2 ωx2

, (30)

where we define the speed of first sound

c2
1

v2
= (1 + F0)(1 + F1)

2
. (31)

To obtain the full analytic response functions, it is sufficient
to compute the coefficient x2 with the damping (3). In general
form, the kinetic equation (26) for m � 2 yields a continued
fraction representation of x2. This representation of the tight-
binding problem can be solved for any damping γm with only
minor numerical cost as discussed in the Appendix. For the
odd-even damping given in Eq. (3) that we discuss in this
work, it is even possible to obtain an analytical result: In this

case, x2 is written in the form

x2 = −
vq
2 (1 + F1)

−ω − iγ + −(
vq
2

)2

−ω − iγ ′ + −(
vq
2

)2

−ω − iγ + . . .

= −
vq
2 (1 + F1)

−ω − iγ + A
, (32)

where A fulfills

A = −(
vq
2

)2

−ω − iγ ′ + −(
vq
2

)2

−ω − iγ + A

. (33)

The solution is

A = 1

2

(
ω + iγ −

√
(ω + iγ )2 − v2q2

ω + iγ

ω + iγ ′

)
, (34)

which in turn yields

x2 = vq(1 + F1)

ω + iγ +
√

(ω + iγ )2 − v2q2 ω+iγ
ω+iγ ′

. (35)

The poles of the response functions (29) and (30) evaluated
with the expression (35) yield the collective modes discussed
in Sec. II. In deriving these results, it is helpful to use dimen-
sionless scaling variables s = ω/vq, � = γ /vq, �′ = γ ′/vq,
and �i = γi/vq.

C. Analytic structure

In addition to the main results for the collective mode
spectrum presented in Sec. II, we include in this section a
discussion of the analytic structure of the response func-
tions (29) and (30) in the complex frequency plane. Through
Eq. (35), the response contains a square-root function of the
frequency. This function has a two-sheeted Riemann surface
with a physical sheet on which the square-root function has
positive real part and an unphysical sheet with negative real
part [50]. Poles on the physical sheet are located in the lower
half of the complex plane to ensure causality.

In the collisionless regime, the response function has two
branch points at ±vq − i(γ + γ ′)/2 with branch cuts that ex-
tends to infinity. An additional branch cut extends from −iγ ′
to −iγ on the imaginary axis. This structure is shown in Fig. 5,
where Fig. 5(a) shows the longitudinal collective modes for all
F0 as orange lines and Fig. 5(b) shows the transverse collective
modes for all F1 as green lines, where arrows indicate the
direction of increasing Landau parameter. Full lines indicate
the zero sound and shear sound modes above the branch cut
stated in Eqs. (4) and (10), respectively. These modes show
up as resonances in the response and are separated from the
particle-hole continuum. For smaller values of the interaction
(−1/2 < F0 < 0 and 0 < F1 < 1, respectively), the modes are
strongly overdamped sound modes that lie behind the branch
cut. Such modes were dubbed “hidden modes” in Ref. [50].
Note that even though the mode for 0 < F1 < 1 in Fig. 5(b)
crosses the branch cut, it lies on the unphysical sheet and
is thus still hidden. They will not show up as a resonance
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FIG. 5. Analytic structure of the (a) longitudinal and (b) trans-
verse response in the collisionless limit γi � γ ′ � γ � vq. Thick
gray lines indicate the branch cuts, and orange and green lines
show the zero sound and shear sound poles as a function of the
Landau parameters F0 and F1, respectively. For attractive interactions
−1 < F0 < −1/2 and −1 < F1 < 0, the modes are purely imaginary
and lie on the physical and unphysical sheet. For −1/2 < F0 < 0
and 0 < F1 < 1, sound modes exists but they are hidden behind the
branch cut and do not give rise to a resonance in the response function
(transparent lines). At F0 = 0 and F1 = 1, the modes cross the branch
points and become the zero sound and shear sound modes discussed
in Sec. II (full lines).

(i.e., “overdamped”) in the response but they will impact the
time evolution of perturbations and thus could be observed
in pump-probe experiments. For even smaller values above
the Pomeranchuk instability F0/1 > −1, the modes lie on the
imaginary axis, both in the negative complex plane on the
physical sheet and on the positive complex plane on the un-
physical sheet.

The branch cut structure depends on the wave number of
the excitation and thus changes for the different transport
regimes. In the tomographic regime, the only branch cut that
remains at low energies lies on the imaginary axis and extends
from −iγ ′ to −iγ ′[1 + (qξ )2] as discussed after Eq. (12)
[the other branch cut remains of order O(−iγ )]. The corre-
sponding trajectory of tomographic modes is shown in the top
row of Fig. 6, where the orange lines indicate the first sound
mode (5) and the green lines the upper and lower transverse
tomographic modes (11).

A natural question is whether this analytic structure
survives more complicated damping terms. For example,
Ref. [28] proposes an m-dependent odd-parity relaxation rate
of the form

γm, odd = γ ′mp, (36)

valid at least for small m, which reflects an effective angu-
lar relaxation dynamics of the odd-parity distribution [26].
For diffusive dynamics p = 2, and for subdiffusive dynamics
p = 4. For p �= 0, an analytic solution for the collective mode
spectrum does not exist, but a numerical solution as outlined
in the Appendix is straightforward. Our calculations confirm
that the structure of the response and the tomographic modes
do not change: We find a branch cut in the response that
extends on the negative imaginary axis between −ip2γ ′ and
−iγ ′[p2 + (qξ )2]. An upper branch exists for all −1 < F1

FIG. 6. Top row: Complex structure of the (a) longitudinal and
(b) transverse response in the tomographic limit γi � γ ′ � vq � γ .
Thick gray lines indicate the branch cut, and orange and green
lines show the first sound and diffusive poles as a function of the
Landau parameters F0 and F1, respectively. The longitudinal first
sound mode has a fixed damping independent of the Landau pa-
rameter, and the transverse response has two diffusive modes with
an upper and a lower branch separated by a branch cut that ex-
tends between (γ ′, γ ′ + (vq)2/γ ). Bottom row: Frequency of the
diffusive transverse modes as a function of F1 for three different odd-
parity damping mechanisms: (a) γm,odd = γ ′ (as discussed in Sec. II),
(b) γm,odd = γ ′m2, and (c) γm,odd = γ ′m4, with similar results.

with the same structure as discussed in Sec. II, leveling off to
−ip2γ ′. The lower branch decouples from the lower branch
point at F ∗

1 = 1 + 2p2/(qξ )2. This structure is illustrated in
the bottom row of Fig. 6, which shows the tomographic modes
for three damping models (a) p = 0 (discussed in Sec. II),
(b) p = 2, and (c) p = 4. This illustrates that the excitation
spectrum is accurately predicted by the analytically solvable
model discussed in this paper.

IV. SUMMARY

We have discussed an analytically solvable model for an
interaction-dominated two-dimensional Fermi liquid that in-
cludes a parity-dependent collisional relaxation rate, which is
solved in closed form since the quasiparticle dynamics at low
temperatures reduces to the angular dynamics of the Fermi
surface deformation. In formulating the model, we have of
course simplified the theoretical description and neglected, for
example, additional Landau parameters or more complicated
relaxation rates. However, as demonstrated in this paper, it is
straightforward, if necessary, to include such modifications in
a numerical solution, which only yields quantitative correc-
tions. Additional corrections to the model discussed here arise
at higher temperatures for which the energy dependence of
the Fermi surface deformation δμ can no longer be absorbed
in an effective relaxation-time ansatz for the γm. Extending
the present analysis using a systematic basis expansion that
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includes this energy dependence of Fermi surface perturba-
tions [29] is an interesting prospect for further study.

Let us briefly comment on the possible observability of our
predictions. For neutral Fermi liquids, longitudinal sound and
sound damping have been measured in He-3 [42] as well as
atomic Fermi gases [51,52]. Likewise, the plasmon disper-
sion and their damping in charged two-dimensional systems
has been observed using a variety of techniques [53–60].
However, the predicted signatures arising from two separate
parity-dependent collisional scales are subleading corrections
to the damping and thus likely difficult to extract. By contrast,
these signatures are more pronounced in the transverse re-
sponse, for which we predict a separate tomographic transport
regime. Shear sound in a collisionless 3D Fermi liquid has
been measured in He-3 [61], although these results are de-
bated [62]. The excitation and detection of transverse modes
remains a challenge as they do not involve a charge exci-
tation (and hence do not easily couple to external probes),
although recent proposals suggest that they strongly modify
the conductivity in narrow channels [63], including a strong
enhancement of transmission of terahertz radiation [64]. In
the tomographic regime, the upper-branch mode is predicted
to exist for all values of the Landau parameter and should
thus be a generic feature of two-dimensional Fermi liquids
that does not require any fine tuning. The lower-branch to-
mographic mode requires strong repulsion F1 > 1 + 2/(qξ )2,
corresponding to a many-body Fermi velocity renormalization
of at least by a factor of 2 in the short-wavelength limit. How-
ever, this criterion is no worse than that for the observability
of standard shear sound [37] and indeed much smaller than
the critical interaction strength in three-dimensional systems
[64]. In addition, our results indicate that the two compet-
ing timescales τ1 = 1/γ ′ and τ2 = γ /(vq)2 in the transverse
tomographic response could be revealed in pump-probe ex-
periments, which detect the real-time evolution of the current:
The real-time current j(t ) following a quench is given by the
Fourier transform of Eq. (30), and the long-time behavior will
thus be determined by the low-energy poles and branch cuts
of the response [50]. The two timescales τ1 and τ2, which can
be varied by changing both wave number and temperature, set
the decay rate of the current at early and late times.

Note added. Recently version 3 of Ref. [65] appeared,
which discusses collective modes in a model restricted to
m = 1 and m = 3 harmonics.
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APPENDIX: NUMERICAL SOLUTION

In this Appendix, we outline a general numerical solution
method for the kinetic Fermi liquid equation without uncon-
trolled truncation errors. The method is valid for arbitrary
damping and thus applicable even if an analytical solution
cannot be found. The key is a continued fraction represen-
tation of the tight-binding form (26) of the kinetic equation,

for which efficient exact numerical methods exist. For further
details and related applications, we refer to the discussion in
Ref. [66].

Formally, the kinetic equation (26) is a linear system of
equations of the form

γ −
m δμm−1 + αmδμm + γ +

m δμm+1 = β1δm,1 + β−1δm,−1,

(A1)

where the coefficients are defined implicitly from Eq. (26).
The left-hand side is a sparse matrix with entries on the diago-
nal and the first upper and lower bands. In principle, one could
truncate this matrix equation at a large cutoff index ±mmax

setting δμ±mmax = 0 and iterate backward, which however
introduces uncontrolled truncation errors and will certainly
fail in the collisionless and tomographic transport regime in
which there is a significant contribution of higher modes (cf.
Figs. 2 and 3). To construct the full solution, consider first the
homogenous components for |m| � 2 and define

xm =

⎧⎪⎨
⎪⎩

δμm

δμm−1
, m � 2,

δμm

δμm+1
, m � −2,

(A2)

in terms of which Eq. (A1) reads

γ −
m

xm
+ αm + γ +

m xm+1 = 0, m � 2, (A3)

γ −
m xm−1 + αm + γ +

m

xm
= 0, m � −2. (A4)

These two equations can be written as a continued fraction for
a given m:

xm =

⎧⎪⎪⎨
⎪⎪⎩

−γ −
m

αm + γ +
m xm+1

, m � 2,

−γ +
m

αm + γ −
m xm−1

, m � −2,

(A5)

or, in general form,

xm = b0 + a1

b1 + a2

b2 + a3

b3 + . . .

(A6)

with coefficients (where m � 2)

bp =
{

0, p = 0,

αm+(p−1), p > 0,
(A7)

ap =
{−γ −

m , p = 1,

−γ +
m+(p−1)γ

−
m+p, p > 1,

(A8)

and for m � −2,

bp =
{

0, p = 0,

αm−(p−1), p > 0,
(A9)

ap =
{−γ +

m , p = 1,

−γ −
m−(p−1)γ

+
m−p, p > 1.

(A10)

This continued fraction is solved exactly using the modified
Lentz method [67], which we summarize in the following:
Define by x(n)

m the approximate solution for xm obtained by
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truncating the partial fraction expansion for xm at some index
m + n, xn+m = 0. For a given m, this approximation may be
expressed as a rational fraction (suppressing all m indices in
the following)

x(n) = An

Bn
(A11)

with

An = bnAn−1 + anAn−2, (A12)

Bn = bnBn−1 + anBn−2, (A13)

and initial conditions A−1 = 1, A0 = b0, B−1 = 0, and B0 =
1 (the proof of the above statement proceeds by induction).
Introduce the ratios

Cn = An

An−1
, (A14)

Dn = Bn−1

Bn
, (A15)

which obey the recurrence relations [that follow by combining
Eqs. (A14) and (A15) with Eqs. (A12) and (A13)]

Cn = bn + an

Cn−1
, (A16)

Dn = 1

bn + anDn−1
, (A17)

with initial conditions C0 = b0 and D0 = 0. They are linked
to the original x(n) by

x(n) = x(n−1)CnDn. (A18)

Cn and Dn can be computed iteratively starting with the
initial value C0 and D0. In each step of the iteration, the
new x(n) is computed and the iteration is terminated once
the change is below some threshold value, |x(n) − x(n−1)| =
|CnDn − 1| < ε. In this way, an essentially arbitrary number
of xm (where m �= 0,±1) can be computed. In particular, with
x±2 known, we can solve the three equations with source terms
as discussed in the main text, which gives the components
δμ−1, δμ0, and δμ1. The remaining δμm then follow from the
simple recursion

δμm =
{

xmxm−1 . . . x2δμ1, m � 2,

xmxm+1 . . . x−2δμ−1, m � −2.
(A19)
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