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Spin-valley polarized transport in a field-controllable bilayer silicene superlattice
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We have theoretically investigated the spin-valley asymmetric transport of massive Dirac fermions in the field-
controllable bilayer silicene superlattices. The spin-valley dependent ballistic transmission, conductance, and
polarization have been systematically calculated by formulating the scattering matrix method for the completed
four-band low-energy effective Hamiltonian. Our results uncover that for a single valley transport, near-perfect
spin polarization and its perfect switching could be efficiently modulated by the gate field engineering. Under
the one-dimensional periodic field modulation, two types of flat bands with less dispersion and, importantly, the
perfect contrast in the spin-dependent subbands are observed for the bilayer silicene superlattice. Together with
its larger spin-orbit coupling and better stability, these spin-valley asymmetric characteristics engineered by the
gate field indicate that the field-controllable bilayer silicene could be a potential component candidate to achieve
a fully spin-valley polarized beam for quantum logic applications.
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I. INTRODUCTION

The giant commercial achievements of silicon-based inte-
grated technologies have stimulated extensive debates on the
development of much smaller, faster, and more powerful elec-
tronic devices [1]. In its physical limitation, fabricating the
electronic devices with few-layer or even monolayer silicon
materials should be an appealing yet ultimate strategy [2].
Experimentally, following the successes in the fabrication of
graphene [3], a monolayer of carbon atoms packed closely
in a hexagonal comblike lattice, much effort has been also
paid to the synthesis of the silicon analog of graphene, namely
silicene [4]. In recent years, several groups have demonstrated
the fabrication of monolayer and multilayer silicene [5–12]
onto the metallic and semiconducting substrates, establishing
the solid bases for the development of silicene-based elec-
tronic devices.

For the construction of silicene-based logic devices, be-
sides the general charge degree of freedom, both spin and
valley degrees of freedom have also been regarded as the
potential information carriers for the spintronic (valleytronic)
devices. In such devices, the logic operation is achieved by
turning on or off the spin (valley) polarized beam. Thus,
for those applications, the efficient generation, modulation,
and detection of spin (valley) polarized transport are the fun-
damental issues to be solved. Up to now, together with its
spin-valley locking [13], field-tunable local band gap [14,15],
and stronger spin-orbit interaction, many spin-valley depen-
dent transport as well as topological quantum states like the
quantum spin Hall effect [16,17] could be accessed in the sil-
icene nanosystems at some realistic temperatures. Based upon
these experimental and theoretical demonstrations, it should
be convincing that silicene might be a potential platform for
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the development of topological quantum devices and spin-
valley logic devices [18]. Unfortunately, due to the inferior
stability of monolayer silicene, the reported field-effect tran-
sistor could only be operated at room temperature for several
minutes [19]. This implies that the stability of monolayer
silicene might also be a killer for other appealing devices
residing on the monolayer silicene.

Besides the monolayer silicene, bilayer silicene (BLS) is
another type of silicene frequently observed in experiments
[4,7]. Structurally, BLS can be regarded as the stack of two
monolayer silicenes in some orders [20,21]. This feature
makes BLS have some peculiar properties unshared by mono-
layer silicene [21,22]. For instance, due to the stack-dependent
electronic structures, it has been theoretically predicted by
Liu et al. [23] that the d + id ′ chiral superconductivity is
observable in BLS. Moreover, due to the stronger interlayer
interaction, an enhanced buckling is observed for each sub-
layer of BLS [20]. For this reason, BLS has a stronger
spin-orbit interaction and larger field-tunable local band gap
[24], all of which are highly favorable to manipulate the
charge, spin, and valley dependent transport in BLS. How-
ever, little attention has been previously concentrated onto the
electronic transport in BLS systems.

To engineer the electronic properties of BLS, imposing the
periodic potential modulations is an attractive scheme. This,
as an example, can be experimentally achieved by depositing
an array of gates on top of BLS. In such a configuration,
the electrostatic modulation of periodically arranged gates
can induce a spatially periodic potential for the electronic
transport within the BLS plane, forming the so-called BLS
superlattice. Unfortunately, although this scheme has been
well employed to construct various superlattice modulations
for monolayer silicene [25–29], demonstrating the formation
of spin and valley dependent miniband structure [28] and
enhanced valley-resolved thermoelectric transport [29], noth-
ing has been shown for its BLS counterparts. Thus, given
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that the additional interlayer interaction of BLS and its bet-
ter stability, it is highly desirable to uncover the electronic
transport of BLS under the modulation of spatially periodic
modulations.

In this work, we have theoretically investigated the
electronic transport properties of the gate-tunable BLS su-
perlattice. Our results demonstrate that (1) the ballistic
transmission probability (T ) is highly anisotropy and spin-
valley dependent, even inducing the perfect contrast between
the spin-valley dependent transport at the proper parameter
window; (2) under the top gate modulation, the spin-valley
dependent transport properties could be efficiently tailored,
providing a desirable method to control the spin-valley po-
larized transport; (3) comparing to single gate modulation,
electronic transport could be efficiently enhanced by super-
lattice modulation, indicating a multiple reversal of perfect
spin-valley polarization; and (4) the calculated miniband
structure is highly spin-valley dependent and field tunable,
implying the existence of a new spin-valley dependent yet
gapped Dirac point. These results indicate that the gate-
induced BLS superlattice could be an efficient amplifier for
the electronic transport and potential subunit for the achieve-
ment of fully spin and valley polarized transport.

The rest of this paper is organized as follows: In Sec. II
we mainly explain the considered BLS superlattice and the
scattering matrix method formulated from the completed four-
band effective Hamiltonian of BLS; the results for single gate
modulation are first explained in Sec. III for the comparisons
while those for the BLS superlattice are shown in Sec. IV;
in Sec. V we discuss the field-engineered miniband struc-
ture of the BLS superlattice and we summarize our work in
Sec. VI.

II. MODEL AND METHOD

The schematic lattice structure of our considered BLS is
depicted in Fig. 1(a), where one type of the silicon atom in
the bottom layer, i.e., the A2 site, is vertically bonded to the
other type of silicon atom in the top layer, namely the B1 site,
while the other type of silicon atom in one sublayer is well
located in the center of hexagonal lattice of another sublayer,
forming the so-called Bernal stacking [20,21]. With such a
configuration, there are four atoms, i.e., A1, B1, A2, and B2, in
the unit cell of BLS, further giving rise to more interatomic
interactions than monolayer silicene. Importantly, accord-
ing to the first-principle calculations, an enhanced sublattice
buckling (0.66 Å) and spin-orbit gap (10 meV) have been
theoretically predicted due to the strong interlayer covalent
interaction [24]. This provides a larger parameter window to
access the spin-valley dependent transport in the BLS system.
Moreover, to reasonably reproduce the band diagram deter-
mined from the first-principles calculations, the main tight-
binding parameters for BLS have been suggested as γ0 =
1.13 eV, γ1 = 2.025 eV, γ2 = 0.152 eV, and γ3 = 0.616 eV
[23,24].

Similarly to bilayer graphene, by neglecting the weaker
interlayer skew hopping, i.e., γ2 and γ3, and with the ba-
sis function ψ=[ψA1 , ψB1 , ψA2 , ψB2 ]†, the low-energy
electronic transport of BLS near the corner points (valleys) of
the Brillouin region could be well described by the following

FIG. 1. The schematic structure of our considered BLS and gate-
induced BLS superlattice. (a) The bottom view and side view of
lattice structure for AB-stacked BLS with nearest intralayer hopping
integral γ0 and interlayer hopping integral γ1, γ2, and γ3. (b) The
representative band structure of AB-stacked BLS without the smaller
γ2 and γ3, where a0 = 3.86 Å is the lattice constant of BLS. (c) The
sketched method to experimentally form BLS superlattice by means
of periodically gate-biased BLS. (d) The representative band align-
ment of gate-induced BLS superlattice.

effective Hamiltonian [30], reading as

Ĥ =

⎡
⎢⎣

U + δ2 h̄ν f k− 0 0
h̄ν f k+ U + δ1 γ1 0

0 γ1 U − δ1 h̄ν f k−
0 0 h̄ν f k+ U − δ2

⎤
⎥⎦, (1)

where U is the electrostatic potential, h̄ is the reduced Planck
constant, ν f ≈ 0.55 × 106 m/s is the Fermi velocity, k± =
kx ± iηky with kx(y) the x (y) component of two-dimensional
momentum, and η = ±1 the valley index, i.e., plus (minus)
for the K (K ′) valley. By referring to the vertical arrangement
of the sublattice [the inset of Fig. 1(a)] and taking the baseline
of the on-site potential at half of the interlayer separation
(h), the gate field (EZ ) tunable δ1(2) in Eq. (1) can be further
expressed as

δ1 = β1�Z + ησ�SO (2)

and

δ2 = β2�Z − ησ�SO, (3)

where �SO = 5 meV [24] is the intrinsic spin-orbit coupling,
σ = ±1 is the spin index with plus for the spin-up (⇑) orienta-
tion and minus for the spin-down (⇓)orientation, �Z = hEZ/2
is the field-tunable staggered potential between A2 site and B1

site with the interlayer distance h = 2.54 Å, and by referring
to the enhanced buckling height of each sublayer h0 = 0.66 Å,
β can be further written as β1 = 1 while β2 = 1 + 2h0/h.

The energy spectra of BLS can be further determined from
the Schrödinger equation Ĥψ = Eψ as

E = U + s

√√√√
 + l
√


2 − 4γ 2
1 δ2

2 − 4[(h̄ν f k)2 − δ1δ2]2

2
(4)
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with s = ±1 for the conduction (plus)/valence (minus)
band, l = ±1 for the upper (plus)/lower (minus) band, k =√

k2
x + k2

y , and 
 = δ2
1 + δ2

2 + 2(h̄ν f k)2 + γ 2
1 . Obviously, free

of the electric modulation, i.e., U = 0 and �Z = 0, each cal-
culated band has fourfold degeneracy. In this case, as depicted
in Fig. 1(b), a sizable local gap Eg ≈ 2�SO could be traced be-
tween the lowest conduction and highest valence band while
a much larger one, on the order of γ1, between the lower
and higher conduction (valence) band. Importantly, as can be
concluded from Eq. (3), a nonzero U shifts the whole band
diagram up and down while a nonzero �Z can effectively
enlarge or shut the local band gap. These features provide a
flexible strategy to engineer various BLS quantum structures
in an electrically controllable way.

As depicted in Fig. 1(c), we consider here the ballistic
electronic transport in BLS plane under the modulation of
top periodic gates, which can be experimentally achieved by
depositing an array of metallic gates on top of BLS plane
with a proper dielectric spacer. Each gate has a width d and
is separated from its neighbors with a separation W . Thus,
beneath the gate, the local band could be efficiently aligned
by top gate modulation, forming a periodic potential to tailor
the electronic transport in the BLS plane, i.e., x-y plane. Here
to model the gate-induced periodic potential, as illustrated in
Fig. 1(d), a rectangle-like profile is employed for simplicity,
namely a constant �Z (U ) for the domains beneath the gates
while zero for those uncovered by the gates.

By neglecting the possible intervalley scattering stimulated
by the rectangle-like step potential [31], with a given gate
modulation, in the jth domain, the resulting four-component
spinor wave function can be derived as

ψj =
∑
l,±

F l
j,±

⎛
⎜⎜⎜⎜⎝

αl
j,±
1

ρ l
j

β l
j,±

⎞
⎟⎟⎟⎟⎠e±ikl

j,x (x−x j−1 )+ikyy (5)

with ± for the forward (plus) and backward (minus) state,

x j the location of the jth interface, αl
j,± = h̄ν f (±kl

j,x−iηky )
ε j−δ2

,

β l
j,± = − (ε j−δ2 )ρl

jα
l
j,∓

ε j+δ2
, ρ l

j = ε j−δ1

γ1
− (h̄ν f )2[(kl

j,x )2+k2
y ]

γ1(ε1−δ2 ) , where

ε j = E − Uj , and the longitudinal wave vector kl
j,x can be

further derived from Eq. (4) as

kl
j,x =

√√√√√ε2
j + δ1δ2 − l

√
γ 2

1

(
ε2

j − δ2
2

) + ε2
j (δ1 + δ2)2

h̄2ν2
f

− k2
y .

(6)
Here since the translation invariant along the y direction is
well conserved, ky is a good quantum number and by referring
to the value at the leads, can be explicitly written as

ky = 1

h̄ν f

√
E2 − �2

SO − l
√

γ 2
1

(
E2 − �2

SO

)
sin θ (7)

with θ denoting the incident angle with respect to the x direc-
tion.

To determine the unknown coefficients F l
j,± in Eq. (5), the

boundary condition governing the wave function continuity at
each interface is employed. For example, at the jth interface,

the resulting relationship of the wave function between two
neighboring domains is given by

G jP−1
j

⎛
⎜⎜⎜⎜⎝

F+
j,+

F−
j,+

F+
j,−

F−
j,−

⎞
⎟⎟⎟⎟⎠eikyy = G j+1

⎛
⎜⎜⎜⎜⎝

F+
j+1,+

F−
j+1,+

F+
j+1,−

F−
j+1,−

⎞
⎟⎟⎟⎟⎠eikyy (8)

with

G j =

⎡
⎢⎢⎢⎣

α+
j,+ α−

j,+ α+
j,− α−

j,−
1 1 1 1

ρ+
j ρ−

j ρ+
j ρ−

j

β+
j,+ β−

j,+ β+
j,− β−

j,−

⎤
⎥⎥⎥⎦, (8a)

P j =

⎡
⎢⎢⎢⎣

e−ik+
j d j 0 0 0

0 e−ik−
j d j 0 0

0 0 eik+
j d j 0

0 0 0 eik−
j d j

⎤
⎥⎥⎥⎦. (8b)

Obviously, the column vector F j in the jth domain can be
easily related to those for ( j + 1)th counterparts as

F j = P jM j, j+1F j+1 (9)

with M j, j+1 = G−1
j G j+1. Here in order to calculate the trans-

port properties like T and conductance (G) in a much more
stable feature, the scattering matrix method [32,33] is em-
ployed. For this purpose, both P j and M j, j+1 are rewritten in
the form of the block matrix as

M j, j+1 =
[

MA( j, j + 1) MB( j, j + 1)
MC ( j, j + 1) MD( j, j + 1)

]
, (10)

where each Mτ ( j, j + 1) is a 2 × 2 block matrix with the
subscript τ = A, B,C, and D. Correspondingly, P j is rewritten
as

P j =
[

PF, j 0
0 PR, j

]
(11)

with

PF, j =
[

e−ik+
j,xd j 0

0 e−ik−
j,xd j

]
, (11a)

PR, j =
[

eik+
j,xd j 0
0 eik−

j,xd j

]
. (11b)

With this rewritten form, the coefficients of forward state
Fl

j,+ = [F+
j,+ F−

j,+]† are separated from those for the back-
ward states Fl

j,− = [F+
j,− F−

j,−]†. Unlike Eq. (9) for the
transfer matrix method, in the framework of the scattering
matrix (S) method, the coefficients in the ( j + 1)th region
should be related to those for the incident lead ( j = 0 or L)
as[

Fl
j+1,+

Fl
L,−

]
=

[
SA(L, j + 1) SB(L, j + 1)
SC (L, j + 1) SD(L, j + 1)

][
Fl

L,+
Fl

j+1,−

]
, (12)

where each Sτ (τ = A, B,C, D) is also a 2 × 2 block matrix,
which, by combining with Eq. (9), can be explicitly derived
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from those for the jth region via the following iterative ex-
pression, reading as

SA(L, j + 1) = {PF, jMA( j, j + 1) − SB(L, j)PR, j

× MC ( j, j + 1)}−1SA(L, j), (12a)

SB(L, j + 1) = {PF, jMA( j, j + 1) − SB(L, j)PR, j

× MC ( j, j + 1)}−1SB(L, j)PR, j

× MD( j, j + 1) − PF, jMB( j, j + 1),

(12b)

SC (L, j + 1) = SC (L, j) + SD(L, j)PR, jMC ( j, j + 1)

× SA(L, j + 1), (12c)

SD(L, j + 1) = SD(L, j)PR, jMC ( j, j + 1)SB(L, j + 1)

+ SD(L, j)PR, jMD( j, j + 1). (12d)

Thus, starting from the initial condition SA(L, L) =
SD(L, L) = I2 and SB(L, L) = SC (L, L) = 0, the total scatter-
ing matrix S(L, R) that relates the left lead to the right lead
can be determined. The resulting spinor-resolved transmission
probability T l,l ′

η,σ can thus be expressed as

Tl,l ′
η,σ = kl ′

R,x

kl
L,x

∣∣Sl,l ′
A (L, R)

∣∣2
. (13)

Under the zero-temperature regime, the concerned spinor-
resolved ballistic conductance Gl,l ′

η,σ can be further determined
from the Landauer-Büttiker formula as

Gl,l ′
η,σ = G0

∫ π/2

−π/2
T l,l ′

η,σ (E , θ ) cos θ dθ, (14)

where G0 = e2Ly

π2 h̄2ν f

√
E2 − �2

so +
√

γ 2
1 (E2 − �2

so) is the taken

conductance unit with e the elementary charge and Ly the
transverse length of the system.

Indeed, for the considered pure electric modulation in
our two-terminal configuration, as can be concluded from
the model Hamiltonian, due to the emerging degeneracy
for Ĥ (η, σ ), i.e., Ĥ (K,⇑) = Ĥ (K ′,⇓) while Ĥ (K,⇓) =
Ĥ (K ′,⇑), no net spinor-polarized transport should be ob-
served for both spin and valley index. Thus to uncover the
fundamental effect of pure electric modulation on electronic
transport of BLS, the single-valley transport, e.g., the K val-
ley, is sampled while those for the K ′ valley could be easily
obtained by only reversing the sign. Following this approxi-
mation, the resulting spin polarization Pl,l ′

s could be further
uncovered as

Pl,l ′
s = Gl,l ′

K,⇑ − Gl,l ′
K,⇓

Gl,l ′
K,⇑ + Gl,l ′

K,⇓
. (15)

In principle, since two bands are evolved into our model,
four T l,l ′

η,σ , two for intraband transport and two for the interband
transport, should be accessible as those for bilayer graphene
[30], for which the interlayer coupling is only on the order of
∼0.4 eV. However, due to the much larger interlayer coupling
(∼2.02 eV) of BLS, the bottom of the upper band approaches
almost the top of the lower band. This implies, for the realistic
modulation and carrier concentration in the experimentally
accessible BLS [4], the expected intraband transport for the

FIG. 2. The tunneling characteristic of massive Dirac fermion
near the K valley of lower band through a single gate-induced BLS
barrier. Top panel for the contour plot of TK,⇑ (a) and TK,⇓ (b) as a
function of �Z and θ . (c) The specific comparison of �Z -dependent
TK,⇑ (solid line) and TK,⇓ (short-dashed line) with θ = 0 [vertical
dashed line in (a) and (b)]. (d) The direct comparison of θ -dependent
TK,⇑ (solid line) and TK,⇓ (short-dashed line) with �Z = 4.2�SO [top
dotted line in (a) and (b)].

upper band and two interband transports are negligible. Thus,
in the subsequent sections, only the intraband transport for
the lower band is concerned and, for brevity, the superscripts,
l and l ′, for all concerned transport properties have been
removed, namely T l,l ′

η,σ → Tη,σ , Gl,l ′
η,σ → Gη,σ , and Pl,l ′

s → Ps.

III. SINGLE BARRIER

Prior to directly showing the transport properties for the
BLS superlattice, in this section a single gate-induced mod-
ulation is first analyzed to uncover the underlying physics
for the spinor-dependent transport. Physically, as shown in
Fig. 1, under the �Z modulation, the resulting BLS barrier
is spinor dependent, which can make the transport be spin
asymmetric for a specific valley. By sampling the K valley
(η = 1), the illustrative spin-dependent TK,⇑(⇓) is depicted in
Fig. 2 as a function of θ and �Z with d = 10 nm, E =
10�SO, and U = 16�SO. As shown in Fig. 2(a) for the spin-up
state, free of the �Z modulation, the observed TK,⇑ is highly
anisotropic, only showing symmetrically a finite value around
θ = 0.22π while a prohibitive feature for the rest. By increas-
ing �Z , the required θ for the pronounced transmission is also
changed, displaying an arc-shaped evolution. Importantly, for
the proper �Z , the perfect transmission, i.e., TK,⇑ = 1, is
highly localized around θ = 0. This implies that the gate
modulation should be an effective strategy to construct a beam
collimator for the silicene-based quantum devices. More inter-
estingly, as evidenced in Fig. 2(a), an asymmetric response of
TK,⇑ is clearly observed for the �Z modulation. Thus, for the
same field strength, only reversing the direction of gate field
can give rise to giant difference in the transmission properties.
Specifically, with θ = 0, the perfect transmission could be
observed for �Z = −3.0�SO while a prohibitive scenario for
�Z = 3.0�SO. This asymmetric response enables the con-
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FIG. 3. The conductance G (a) and resulting spin polarization Ps

(b) as a function of �Z . In the right column the comparisons of spin-
resolved G-E spectra between zero and finite field modulation, (c) for
�Z = 3�SO and (d) for �Z = 5�SO; while in (e) the resulting Ps-E
spectra are compared.

struction of a quantum switch for a fully spinor-polarized
beam by only reversing the orientation of the gate field.

For the other spin state, as shown in Fig. 2(b), the similar
θ and �Z dependent evolutions are well observed, but the
calculated contour plot has been reversed vertically, making
the two plots be symmetric with respect to the zero-field
condition. To see this point more clearly, we have sampled the
cases with θ = 0, corresponding to the vertical dashed line in
(a) and (b), and explicitly depicted in Fig. 2(c) with T as a
function of �Z for both spin states. It is easily observed that,
by modifying �Z , the pronounced T for different spin states
emerges at different �Z . For the spin-up state (solid line),
the proper �Z/�SO should be controlled either in the range
of −3.6 ∼ −1.5 or in the range of 3.2 ∼ 4.6, while for the
spin-down state (short-dashed line), the corresponding ranges
are −4.6 ∼ −3.2 and 1.5 ∼ 3.6. Evidently, two spin-resolved
branches are in fact symmetric with respect to the zero point,
showing TK,⇑(�Z ) = TK,⇓(−�Z ). Owing to these asymmetric
responses of T at a given �Z , the desirable spin-polarized
transport can thus be accessed under the gate field modulation
once a single-valley transport is achieved. For instance, as
clearly depicted in Fig. 2(d) for �Z = 4.2�SO, transport for
the spin-up state is fully prohibitive in the whole forward
space while conserving a pronounced value for the spin-down
state with θ ranging from −0.1π to 0.1π . By further modu-
lating �Z , near-perfect contrast, namely T = 1 for one spin
state while 0 for the other, could be expected, which is highly
favorable for the spin-polarized transport.

In Fig. 3(a) the corresponding conductance G is further
depicted as a function of �Z for both spin states. It is re-
markably seen that, with increasing �Z , G for both spin states
shows initially some visible oscillation with a small ampli-
tude, then approaches a peak under the proper �Z , and finally
reduces to zero for the large enough �Z due to the evanescent

mode-dominated transport beneath the gate. Importantly, due
to the �Z -induced spin-dependent barrier, the observed G-�Z

spectra are also spin dependent. This feature enable us to
observe the fully polarized spin transport under the proper �Z

modulations. For instance, in Fig. 3(a), for �Z in the range of
3.8�SO to 4.8�SO, G for the spin-up state has a pronounced
value while that for the spin-down state is fully prohibited.
Consequently, within this range, the resulting spin polariza-
tion Ps can be up to 100% as explicitly depicted in Fig. 3(b).
Below this range, although some pronounced Ps can also be
traced, its visible oscillation might be less attractive for the
spin-logic applications, while beyond this range, large Ps with
less oscillation could be well observed, but the corresponding
G are negligible for both spin states, which is also unfavorable
for the realistic applications.

Figures 3(c) and 3(d) further compare the spin-dependent
G-E spectra for the finite �Z modulation, (c) for �Z = 3�SO,
and (d) for �Z = 5�SO, with those for �Z = 0. It is evidently
viewed that the G-E spectra for zero �Z are spin indepen-
dent due to the vanishing spin-dependent barrier, while for
the nonzero �Z , G become spin dependent, showing some
spin-dependent G peaks at different E . Importantly, at these
cases, as can be seen from the G-E spectra, there are several E
regions showing a finite G for one spin state while a prohibited
value for the other, implying different spin-polarized trans-
ports could be expected for different energy states. Thus, as
depicted in Fig. 3(e) for the resulting Ps, the multiple reversal
in Ps can be observed, and with increasing �Z the appealing
near-perfect Ps platform has been lowered from E/�SO =
11 ∼ 13 for �Z = 3�SO to 8 ∼ 10 for �Z = 5�SO. This
electric-controllable strategy in tailoring the spinor-dependent
transport is highly favorable for the BLS-based quantum logic
applications.

IV. BLS SUPERLATTICES

To further enhance the spinor-dependent transport, increas-
ing the number of top gates and inducing the multiple BLS
barriers might be an effective strategy. By sampling θ = 0,
Fig. 4 depicts the spin-dependent T as a function of �Z under
the modulation of multiple BLS barriers with d = W = 10
nm, E = 10�SO, and U = 16�SO. It is evidently observed
that, with increasing n, the lower threshold of the T band
for the spin-down state has been slightly shifted toward larger
�Z , while that for the higher counterpart is oppositely shifted
toward lower �Z . For the spin-up state, a much weaker
but similar evolution is conserved. Due to this asymmetric
displacement, the T band for both spins has been slightly nar-
rowed, making two spin-dependent bands be well separated.
Comparing to single barrier, this enhanced separation of spin-
dependent T band for multiple barriers might be favorable to
observe the perfect switch of spin-polarized beam. Indeed, be-
side this near-perfect T band, an additional T band, consisting
of a series of T peaks induced by the quantum well resonance,
can be also traced for the spin-down state in the prohibitive
zone of the single gate modulation. Moreover, unlike the
spin-down state, the increasing n induces much stronger
oscillation in the observed T band for the spin-up state, having
a series of better-resolved T peaks. From these observations,
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FIG. 4. The spin-dependent T as a function of �Z with d =
W = 10 nm, E = 10�SO, U = 16�SO, and θ = 0. In each panel, the
number of BLS barriers n has also been marked.

the enhanced modulation of spin-dependent transport should
be convinced for the multiple BLS barriers.

Still with E = 10�SO and U = 16�SO, in Fig. 5 the spe-
cific conductance G (left panel) and resulting spin polarization
Ps (right panel) are depicted as a function of �Z for sev-
eral representative BLS superlattices. As shown in Fig. 5(a1)
for n = 10 and d = W = 10 nm, with the increasing �Z ,
the evolution of G for both spin states is highly similar to
that for n = 1 [see Fig. 2(c)]; e.g., the remarkable G bands
for both spin states are still well located in the range of
�Z/�SO = 2.4 ∼ 3.2 for spin-down state while 3.6 ∼ 4.5 for
spin-up state. Due to the multiple modulation of BLS barri-
ers, much stronger oscillation with more visible conductance
peaks could be easily observed in the obtained G-�Z spectra.
Importantly, unlike the single barrier, the improving �Z for
multiple barriers induces several attractive windows that has a

FIG. 5. The conductance G (left panel) and resulting spin po-
larization Ps (right panel) as a function of �Z for the shown BLS
superlattices.

near-zero conductance for one spin state while an observable
value for the other state. Owing to this spin-dependent con-
trast, as can be seen from Fig. 5(a2), several perfect platforms
with spin polarization up to 100% could be easily traced.
For instance, for �Z/�SO = 3.2 ∼ 3.6 and 3.8 ∼ 4.4, a fully
polarized beam should be accessed for the spin-up state. Fur-
thermore, it is also observed that, under the �Z modulation,
several perfect transitions unshared by single barrier, namely
reversing the fully polarized spin beam from one spin state
to the other, could also be observed, making the construction
of the electric-controllable spin switch in the BLS system be
highly expectable.

As a control case, by further increasing n up to 20,
Fig. 5(b1) depicts the corresponding G as a function of �Z . It
is observed that, besides denser G peaks in the derived G-�Z

spectra, the whole evolutions of G are almost identical to those
for n = 10 for both cases. Thus as can be seen from Fig. 5(b2)
for the resulting Ps, a similar response could be traced when
comparing to that for n = 10. The increasing n only induces
the enhanced oscillations for �Z/�SO ranging from 2.4 to
3.1. Thus, to reasonably access spin-dependent transport in
the biased BLS nanostructures, only a finite number of BLS
barriers should be employed.

However, differently from the n-insensitive modulation,
the evolution of G is strongly sensitive to its cell size. As
evidenced in Fig. 5(c1) with n = 20, by increasing the sep-
aration of top gates, i.e., the well width W of a unit cell,
from 10 nm to 50 nm, more well separated G bands could
be explicitly observed for each spin state. This can be as-
cribed to the formation of more spin-dependent quantum well
states induced by the quantum-size effect. Attractively, due
to the misalignment of spin-dependent G-�Z spectra, more
desirable �Z windows, namely a visible G for one spin state
while a prohibited value for the other, could be well traced.
Consequently, as shown in Fig. 5(c2), the corresponding Ps

displays also more appealing regions for perfect spin po-
larization and perfect polarization switching. Different from
the spin-dependent evanescent transport for a single barrier,
these observations indicate that the transport through the spin-
resolved minibands is a dominant mechanism for the multiple
barriers. When the carrier transport is well located in the
miniband for one spin state while out for the other, a perfect
spin polarization could be observed. By switching the in-band
transport for spin states, the perfect transition could be further
traced. Thus, for a proper BLS superlattice, multiple perfect
reversals of the spin-polarized state could be easily achieved
by carefully tuning the strength of the gate field.

V. SUPERLATTICE SUBBANDS

Having seen the attractive spin-dependent transport
through the finite BLG barriers, in this section the specific
subband structures of the rigorous BLS superlattice are further
analyzed. This can be performed by applying the Kronig-
Penney model [34] for the structure depicted in Fig. 1(d).
Due to the one-dimensional periodical modulation, the system
wave function should be taken in the form of Bloch’s wave
function, reading as

ψ (x + �) = eiKx�ψ (x), (16)
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FIG. 6. The subbands of BLS superlattice with d = W = 10 nm
under different �Z modulation: (a) �Z/�SO = 0, (b) �Z/�SO = 2,
(c) �Z/�SO = 4, and (d) �Z/�SO = 8, where solid lines are for
spin-up state while dotted lines for spin-down state.

where Kx is the Bloch wave vector and � = d + W is the
length of the unit cell. By combining with Eq. (16) and the
spinor wave function, i.e., Eq. (5), for the barriers and wells,
as sampled in Fig. 1(d), matching the wave function at the
boundary x = m� + d and x = (m + 1)�, one can obtain the
following matrix equation, given by[

GW −GB

GW P−1
W −GBPBeiKx�

][
FW

FB

]
= 0, (17)

where the corresponding submatrices GW (B) and PW (B) are
respectively the same as Eqs. (8a) and (8b) with the sub-
script W (B) denoting the well (barrier) region, while FW (B)

is the same column vector as shown in Eq. (8) for the well
(barrier). Starting from Eq. (17), the concerned subband dis-
persion could be numerically determined from the condition
governing the determinant of the coefficient matrix being zero
through the Newton method. In Fig. 6 the specific subband
dispersion of the BLS superlattice is explicitly depicted for
different �Z by taking d = W = 10 nm and U = 16�SO. As
shown in Fig. 6(a) for zero �Z , within the confined regime
(gray-colored block), the whole structure could be regarded
as a cascaded structure of the n-p junction and seven gapped
subbands are observable with three negative-bowing subbands
and four positive-bowing subbands. Depending on the order of
subbands, different gaps could be observed for two neighbor-
ing subbands. For instance, near E/�SO = 8, the minimum
intersubband gap could be traced at the boundary of the Bril-
louin zone. Differently from these observations, for both the
n-n regime (E > U) and p-p regime (E < 0), the normal order
of subbands is well conserved and each subband shows a
much stronger dispersion, making the cloning of gapped Dirac
points expectable for the periodic modulation. Importantly,
without the gate field modulation, the subbands are actually
spin independent.

To turn on the spin-dependent subband dispersion, a
nonzero �Z should be applied. As shown in Fig. 6(b) for
�Z = 2�SO, the nonzero field modulation breaks the spin
degeneracy, making the resulting subbands be strongly spin

dependent. Remarkably, for the proper E , e.g., subband near
E/�SO = 7.0 and 10.5 for the spin-down state (see olive
dotted lines) while E/�SO = 13 and 18 for the spin-up state
(see pink solid lines), only a single subband for a given
spin state could be observed. This enables the observation
of perfectly spin-polarized transport in the field-tunable BLS
system. Moreover, due to the field-enhanced local gap of BLS
barriers, the subband dispersion tends to be weakened in the
confined regime.

By further increasing �Z to 4�SO [see Fig. 6(c)], be-
sides the well-conserved spin-dependent subband structures,
another remarkable feature is the emergence of several dis-
persionless subbands, very much resembling the flat band or
atomic-like level. In this case, the dispersionless subbands
for E/�SO ranging from 14 to 21 can be ascribed to the
suppressed interwell coupling since transport through the BLS
barrier is evanescent, while those for E/�SO ranging from 1
to 4 are mainly induced by the momentum mismatch between
the electron-like state in the well and hole-like state in the
biased barrier, for which the propagating mode should be
expected. These can be also clearly evidenced in Fig. 6(d)
for �Z = 8�SO, where evanescent mode-dominant transport
in the biased barrier still gives rise to the flat band while that
relating to the propagating mode in the biased barrier recovers
again its dispersion characteristics. These diverse responses of
spin-dependent transport in the biased BLS barrier or super-
lattice provide flexibly the desirable strategies for BLS-based
spinor-electronic applications.

So far with a single-valley approximation, we have demon-
strated the field-tunable spin transport in the biased BLS
superlattice, but the net signals observed here should cancel
each other when both valleys are taken into account. Thus,
to rigorously access the spinor-polarized transport in the BLS
structures, additional valley or spin-contrasting mechanisms
should be included. As far as valley-contrasting mechanisms
are concerned, by including the exchange field or circularly
polarized light irradiation, it has been theoretically shown
for monolayer silicene that the valley-polarized metal phase
[35] and even single Dirac cone state [36] are available.
Following these demonstrations, the single-valley transport
should be also expectable for our BLS system by engineering
a fully valley-polarized source via the similar mechanism.
Indeed, as recently demonstrated by An et al. [31] for the
graphene superlattice, the intervalley scattering induced by the
rectangle superlattice barrier results in an unexpected valley-
selective Klein tunneling, the valley-contrasting transport, not
considered here, and even near-perfected single-valley trans-
port should also be expected for our BLS superlattice by
including the intervalley scattering mechanism. As far as the
spin-contrasting mechanism is concerned, the incorporation
of the ferromagnetic unit, e.g., ferromagnetic BLS induced
by the magnetic proximity effect or the use of ferromagnetic
electrodes [28,37–39], is a popular method. With a ferromag-
netic unit, depending on its magnetization direction, different
electrical responses should be recorded for different spin
states at a given valley, further providing a direct method to
measure the spin-resolved properties when comparing to the
valley-dependent optical response [40]. Finally, together with
the great achievements for the spin injection and spin-valley
locking, our considered structure should also be an efficient
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valley modulator once the injection of the spin-polarized beam
is achieved.

VI. CONCLUSIONS

We have theoretically investigated electronic transport of
massive Dirac fermions in the biased bilayer silicene superlat-
tice in the framework of the four-band effective Hamiltonian.
Following the formulated scattering matrix method and
single-valley approximation, the field-tunable ballistic trans-
mission probability, conductance, and spin polarization have
been systematically studied for the single biased barrier and
multiple barriers or the superlattice residing on the bilayer
silicene. It is demonstrated that near-perfect polarization and
polarization switching could be achieved in the biased bilayer
silicene nanostructures via a proper gate field engineering.

Under the one-dimensional periodic field modulation, both
the evanescent mode-controlled flat band and propagating
mode-controlled flat band are uncovered for the superlattice
subbands, and even the perfectly spin-dependent contrast is
traced for the spin-dependent subbands of bilayer silicene su-
perlattices. These observations provide the diverse strategies
to modulate the spin-valley transport in bilayer silicene for
quantum logic applications.

ACKNOWLEDGMENTS

This work was financially supported by the National Nat-
ural Science Foundation of China with Grant No. 11464024
and the Yunnan Ten-Thousand Talents plan Young & Elite
Talents Project under Grant No. YNWR-QNBJ-2018-226.

[1] M. M. Waldrop, The chips are down for Moore’s law, Nature
(London) 530, 144 (2016).

[2] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D.
Neumaier, A. Seabaugh, S. K. Baberjee, and L. Colombo, Elec-
tronics based on two-dimensional materials, Nat. Nanotechnol.
9, 768 (2014).

[3] A. K. Geim and K. S. Novoselov, The rise of graphene, Nat.
Mater. 6, 183 (2007).

[4] J. J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C.
Liu, H. Zhong, and N. Han, Rise of silicene: A competitive 2D
material, Prog. Mater. Sci. 83, 24 (2016).

[5] P. Vogt, P. De Padova, C. Quaresima, J. Aila, E. Frantzeskakis,
M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Sil-
icene: Compelling Experimental Evidence for Graphenelike
Two-Dimensional Silicon, Phys. Rev. Lett. 108, 155501
(2012).

[6] A. Fleurence, R. Friedlein, T. Ozake, H. Kawai, Y. Wang, and
T. Yamada-Takamura, Experimental Evidence for Epitaxial Sil-
icene on Diboride Thin Films, Phys. Rev. Lett. 108, 245501
(2012).

[7] B. J. Feng, Z. Ding, S. Meng, Y. G. Yao, X. Y. He, P. Cheng,
L. Chen, and K. H. Wu, Evidence of silicene in honeycomb
structures of silicon on Ag(111), Nano Lett. 12, 3507 (2012).

[8] L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang,
G. Li, H. Zhou, W. A. Hofer, and H. J. Gao, Buckled silicene
formation on Ir(111), Nano Lett. 13, 685 (2013).

[9] P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C.
Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T.
Shirai, S. Hasegawa, M. C. Asensio, and G. Le Lay, Evidence
of Dirac fermions in multilayer silicene, Appl. Phys. Lett. 102,
163106 (2013).

[10] E. Noguchi, K. Sugawara, R. Yaokawa, T. Hitosugi, H. Nakano,
and T. Takahashi, Direct observation of Dirac cone in multilayer
silicene intercalation compound CaSi2, Adv. Mater. 27, 856
(2015).

[11] P. De Padova, A. Generosi, B. Paci, C. Ottaviani, C. Quaresima,
B. Olivieri, E. Salomon, T. Angot, and G. Le Lay, Multilayer
silicene: Clear evidence, 2D Mater. 3, 031011 (2016).

[12] D. Chiappe, E. Scalise, E. Cinquanta, C. Grazianetti, B. van
den Broek, M. Fanciulli, M. Houssa, and A. Molle, Two-
dimensional Si nanosheets with local hexagonal structure on a
MoS2 surface, Adv. Mater. 26, 2096 (2014).

[13] C. C. Liu, H. Jiang and Y. G. Yao, Low-energy effective
Hamiltonian involving spin-orbit coupling in silicene and two-
dimensional germanium and tin, Phys. Rev. B 84, 195430
(2011).

[14] N. D. Drummond, V. Zolyomi, and V. I. Fal’ko, Electri-
cally tunable band gap in silicene, Phys. Rev. B 85, 075423
(2012).

[15] Z. Y. Ni, Q. H. Liu, K. C. Tang, J. X. Zheng, J. Zhou, R. Qin,
Z. X. Gao, D. P. Yu, and J. Lu, Tunable bandgap in silicene and
germanene, Nano Lett. 12, 113 (2012).

[16] C. C. Liu, W. X. Feng, and Y. G. Yao, Quantum Spin Hall Effect
in Silicene and Two-Dimensional Germanium, Phys. Rev. Lett.
107, 076802 (2011).

[17] M. Ezawa, Monolayer topological insulators: Silicene, ger-
manene, and stanene, J. Phys. Soc. Jpn. 84, 121003
(2015).

[18] M. Ezawa, spin-valley tronics in silicene: Quantum spin
Hall–quantum anomalous Hall insulators and single-valley
semimetals, Phys. Rev. B 87, 155415 (2013).

[19] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli,
M. Dubey, A. Molle, and D. Akinwande, Silicene field-effect
transistors operating at room temperature, Nat. Nanotechnol.
10, 227 (2015).

[20] H. X. Fu, J. Zhang, Z. J. Ding, H. Li, and S. Meng, Stacking-
dependent electronic structure of bilayer silicene, Appl. Phys.
Lett. 104, 131904 (2014).

[21] M. Ezawa, Quasi-topological insulator and trigonal warping in
gated bilayer silicene, J. Phys. Soc. Jpn. 81, 104713 (2012).

[22] B. Huang, H. X. Deng, H. Lee, M. Yoon, B. G. Sumpter, F.
Liu, S. C. Simth, and S. H. Wei, Exceptional Optoelectronic
Properties of Hydrogenated Bilayer Silicene, Phys. Rev. X 4,
021029 (2014).

[23] F. Liu, C. C. Liu, K. H. Wu, F. Yang, and Y. G. Yao, d + id ′

Chiral Superconductivity in Bilayer Silicene, Phys. Rev. Lett.
111, 066804 (2013).

[24] J. J. Liu and W. G. Zhang, Bilayer silicene with an electrically-
tunable wide band gap, RSC Adv. 3, 21943 (2013).

[25] J. G. Rojas-Briseño, M. A. Flores-Carranza, P. Villasana-
Mercado, S. Molina-Valdovinos, and I. Rodríguez-Vargas,
Tunneling magnetoresistance and spin-valley polarization in
magnetic silicene superlattices, Phys. Rev. B 103, 155431
(2021).

205409-8

https://doi.org/10.1038/530144a
https://doi.org/10.1038/nnano.2014.207
https://doi.org/10.1038/nmat1849
https://doi.org/10.1016/j.pmatsci.2016.04.001
https://doi.org/10.1103/PhysRevLett.108.155501
https://doi.org/10.1103/PhysRevLett.108.245501
https://doi.org/10.1021/nl301047g
https://doi.org/10.1021/nl304347w
https://doi.org/10.1063/1.4802782
https://doi.org/10.1002/adma.201403077
https://doi.org/10.1088/2053-1583/3/3/031011
https://doi.org/10.1002/adma.201304783
https://doi.org/10.1103/PhysRevB.84.195430
https://doi.org/10.1103/PhysRevB.85.075423
https://doi.org/10.1021/nl203065e
https://doi.org/10.1103/PhysRevLett.107.076802
https://doi.org/10.7566/JPSJ.84.121003
https://doi.org/10.1103/PhysRevB.87.155415
https://doi.org/10.1038/nnano.2014.325
https://doi.org/10.1063/1.4870534
https://doi.org/10.1143/JPSJ.81.104713
https://doi.org/10.1103/PhysRevX.4.021029
https://doi.org/10.1103/PhysRevLett.111.066804
https://doi.org/10.1039/c3ra44392b
https://doi.org/10.1103/PhysRevB.103.155431


SPIN-VALLEY POLARIZED TRANSPORT IN A … PHYSICAL REVIEW B 106, 205409 (2022)

[26] Kh. Shakouri, P. Vasilopoulos, V. Varqiamidis, G.-Q. Hai, and
F. M. Peeters, Spin- and valley-dependent commensurability
oscillations and electric-field-induced quantum Hall plateaus in
periodically modulated silicene, Appl. Phys. Lett. 104, 213109
(2014).

[27] Q. T. Zhang, K. S. Chan, and J. B. Li, Electrically controllable
sudden reversals in spin and valley polarization in silicene,
Sci. Rep. 6, 33701 (2016).

[28] N. Missault, P. Vasilopoulos, F. M. Peeters, B. Van Duppen,
Spin- and valley-dependent miniband structure and transport in
silicene superlattices, Phys. Rev. B 93, 125425 (2016).

[29] Z. P. Niu, Y. M. Zhang, and S. H. Dong, Enhanced valley-
resolved thermoelectric transport in a magnetic silicene super-
lattice, New J. Phys. 17, 073026 (2015).

[30] B. Van Duppen and F. M. Peeters, Four-band tunneling in bi-
layer graphene, Phys. Rev. B 87, 205427 (2013).

[31] X. T. An and W. Yao, Valley-Selective Klein Tunneling through
a Superlattice Barrier in Graphene, Phys. Rev. Appl. 14, 014039
(2020).

[32] H. Q. Xu, Scattering-matrix method for ballistic electron trans-
port: Theory and an application to quantum antidot arrays,
Phys. Rev. B 50, 8469 (1994).

[33] T. Ando, Quantum point contacts in magnetic fields, Phys. Rev.
B 44, 8017 (1991).

[34] Y. Wang, Transfer matrix theory of monolayer graphene/bilayer
graphene heterostructure superlattice, J. Appl. Phys. 116,
164317 (2014).

[35] M. Ezawa, Valley-Polarized Metals and Quantum Anomalous
Hall Effect in Silicene, Phys. Rev. Lett. 109, 055502 (2012).

[36] M. Ezawa, Photoinduced Topological Phase Transition and
a Single Dirac-Cone State in Silicene, Phys. Rev. Lett. 110,
026603 (2013).

[37] Y. Wang, Resonant spin and valley polarization in ferromag-
netic silicene quantum well, Appl. Phys. Lett. 104, 032105
(2014).

[38] D. L. Wang, Z. Y. Huang, Y. Y. Zhang, and G. J. Jin, Spin-valley
filter and tunnel magnetoresistance in asymmetrical silicene
magnetic tunnel junctions, Phys. Rev. B 93, 195425 (2016).

[39] X. F. Ouyang, Z. Y. Song, and Y. Z. Zhang, Fully spin-polarized
current in gated bilayer silicene, Phys. Rev. B 98, 075435
(2018).

[40] W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics
from inversion symmetry breaking, Phys. Rev. B 77, 235406
(2008).

205409-9

https://doi.org/10.1063/1.4878509
https://doi.org/10.1038/srep33701
https://doi.org/10.1103/PhysRevB.93.125425
https://doi.org/10.1088/1367-2630/17/7/073026
https://doi.org/10.1103/PhysRevB.87.205427
https://doi.org/10.1103/PhysRevApplied.14.014039
https://doi.org/10.1103/PhysRevB.50.8469
https://doi.org/10.1103/PhysRevB.44.8017
https://doi.org/10.1063/1.4900731
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1103/PhysRevLett.110.026603
https://doi.org/10.1063/1.4863091
https://doi.org/10.1103/PhysRevB.93.195425
https://doi.org/10.1103/PhysRevB.98.075435
https://doi.org/10.1103/PhysRevB.77.235406

