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Open-shell nanographenes can be covalently bonded and still preserve their local moments, forming in-
teracting spin lattices. In the case of benzenoid nanographenes, the Ovchinnikov-Lieb rules anticipate the
spin of the ground state of the superstructure and thereby the sign of the intermolecular exchange. Here we
address the underlying microscopic mechanisms for intermolecular exchange in this type of system. We find
that, in general, three different mechanisms contribute. First, Hund’s ferromagnetic exchange that promotes
ferromagnetic interactions of electrons in overlapping orbitals. Second, superexchange driven by intermolecular
hybridization, identical to Anderson kinetic exchange, which is a decreasing function of the Hubbard-U energy
scale and is always antiferromagnetic. Third, a Coulomb-driven superexchange, that increases as a function of
U and involves virtual excitation of excited molecular orbitals that are extended over the entire structure. We
find that Coulomb-driven superexchange can be either ferro- or antiferromagnetic, accounting for Ovchinnikov-
Lieb rules. We compute these exchange energies for the case of coupled S = 1/2 phenalenyl triangulenes,
using multiconfigurational methods both with Hubbard and extended Hubbard models, thereby addressing the
influence of long-range Coulomb interactions on the exchange interactions.
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I. INTRODUCTION

The origin of intra-atomic ferromagnetic (FM) interactions
and their connection to exchange interactions was under-
stood very early on, together with the role of overlap of
the participating quantum states [1]. The understanding of
antiferromagnetic (AF) exchange between distant atoms in
magnetic insulators arrived much later [2] and highlighted
the subtle interplay between interatomic hybridizations and
on-site Coulomb repulsion [3,4].

After many decades of theoretical work on open-shell
magnetism in nanographenes (NGs) [5–21], relatively recent
progress [22–32] in experimental techniques is now paving
the way to its exploration in the laboratory. Unlike magnetism
in conventional magnetic insulators, spin moments in NGs are
hosted by nonbonding molecular orbitals (MOs) formed by
linear combinations of carbon π orbitals. Thus spin moments
in π magnetism are relatively extended, compared to the d and
f electron counterparts [18]. Importantly, experiments report-
ing magnetic excitations in different supramolecular structures
formed by covalent bonding of the same molecular building
blocks [25] calls for a rationalization of the collective spin
properties in terms of the spin interactions between the parts.

Here we focus on the case of S = 1/2 phenalenyl
molecules as building blocks for larger structures. Phenalenyl
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is the smallest member of the triangulene family [33].
Graphene triangulenes of various sizes are a prominent ex-
ample of molecular building blocks for π magnetism in
supramolecular structures [34]. For triangulenes with a lateral
dimension of n benzenes ([n]triangulenes in the following),
the spin S of the ground state (GS) satisfies 2S = n − 1
[11]. Thus phenalenyls are [2]triangulenes and their electronic
ground state has S = 1/2. On the other hand, [3]triangulene-
based structures have been reported [25,29,30], including
dimers, trimers, tetramers, and rings, but also the triply coordi-
nated structures [31] that may eventually lead to the formation
of 2D crystals. There is strong experimental evidence that the
open-shell nature of individual triangulenes is preserved in the
triangulene arrays and electronic excitations are compatible
with strong intermolecular spin exchange [25,29].

The spin of the GS of a given benzenoid molecule can
be anticipated from the Ovchinnikov rule [7] that can be
upgraded to Lieb’s theorem [35], if we model the molecules
with a Hubbard Hamiltonian [11]: We can breakdown the
carbon sites in two interpenetrating triangular lattices, A and
B, count the number of carbon atoms NA and NB in each class,
and predict the spin to be 2S = |NA − NB|. This rule naturally
accounts for the spin of triangulenes, as magnetic building
blocks, and also molecular structures formed with them. Thus
the phenalenyl dimers I and II (shown in Fig. 1) are expected
to have S = 0 GSs, whereas dimer III, in the same figure,
is expected to have S = 1. Since the molecule remains open
shell after covalent bonding, the spin of their GS automatically
gives us the sign of the intermolecular exchange. The goal of
this paper is to provide a general theory for understanding

2469-9950/2022/106(20)/205405(13) 205405-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4434-844X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.205405&domain=pdf&date_stamp=2022-11-07
https://doi.org/10.1103/PhysRevB.106.205405


JACOB AND FERNÁNDEZ-ROSSIER PHYSICAL REVIEW B 106, 205405 (2022)

FIG. 1. Three different phenalenyl dimer structures, I, II, III
studied in this work: Direct phenalenyl dimer (I); phenalenyl dimer
with a 1,4-phenylene spacer; phenalenyl dimer with a 1,3-phenylene
spacer (III). Structures I and II are sublattice balanced, whereas III
has NA = NB + 2.

the mechanisms of intermolecular spin couplings between
phenalenyls, although our theory can be easily extended to
other radical NGs, and the main principles apply to larger
triangulenes.

We find three types of exchange interactions. First, Hund’s
FM coupling for electrons in MOs that have some overlap
in real space. This mechanism is already present at the in-
tramolecular level [20] and accounts for the linear scaling of
the spin of the ground state and the size of triangulenes [11,12]
or extended triangulenes [21,23], but it may also happen for
coupled triangulenes when the coupling occurs indirectly via
a third molecule (as, e.g., a single benzene) [31]. Hund’s FM
coupling arises from the direct exchange matrix elements of
the Coulomb interaction, which ultimately are also responsi-
ble for Hund’s rule magnetism in open-shell atoms [1].

Second, we have two types of superexchange interactions.
Very much like superexchange in atomic insulators, inter-
molecular exchange (IE) depends on the interplay between
two competing interactions: on the one hand, intermolecular
hybridizations of the MOs hosting the spins promotes elec-
tron delocalization and double occupancy. On the other hand,
Coulomb repulsion opposes those processes. We refer to this
as kinetic IE. It is always AF. We note that, in some cases, such
as triangulenes and the Clar’s goblet, a nanographene diradical
with bowtie shape [36], intermolecular first-neighbor covalent
bonding does not lead to intermolecular hybridization of the
nonbonding MOs that host the spins. In these cases, kinetic
IE is governed by third neighbor hopping, t3. Delocaliza-
tion can also be promoted if the electrons occupy otherwise
empty molecular orbitals that are extended across different
molecules. This virtual occupation is driven by quasiparticle
scattering generated by Coulomb interactions. We refer to this
as Coulomb-driven IE. This type of IE can be both AF or FM.
In general, all mechanisms can coexist.

The rest of this work is organized as follows. In Sec. II
we introduce the model Hamiltonian used for the description
of NGs. In Sec. III we discuss the single-particle spectra of
these model Hamiltonians for the three different structures
shown in Fig. 1. In Sec. IV we describe the complete active
space method used for the solution of the many-body prob-

lem. In Sec. V we discuss and analyze in detail the different
exchange mechanisms active in open-shell NGs. A special
focus is the Coulomb-driven superexchange mechanism for
which we derive an analytic expression in second-order per-
turbation theory (Sec. V C). In Sec. VI we discuss and analyze
numerical results for the AF dimers I and II (Sec. VI B) as
well as the FM case of dimer III (Sec. VI C). In Sec. VII we
generalize and apply the perturbation theory for Coulomb-
driven superexchange to the full single-particle spectrum. In
Sec. VIII we study numerically and analytically the effect of
long-range Coulomb interactions on the different exchange
mechanisms. Finally, in Sec. IX we wrap up and present our
main conclusions.

II. MODEL

We consider an extended Hubbard model as an effective
description for the π orbitals of the carbon atoms in a NG, tak-
ing into account hopping between first and third neighbors, as
well as nonlocal parts of the Coulomb interaction in addition
to the local Hubbard-type interaction:

H = Hsp + HU + HV + HK . (1)

The first term in (1) is the single-particle part describing
hopping of electrons between different carbon lattice sites:

Hsp = Ht + Ht3 = −t
∑

〈i, j〉,σ
c†

iσ c jσ − t3
∑

〈〈〈i, j〉〉〉,σ
c†

iσ c jσ , (2)

where c†
iσ (ciσ ) creates (destroys) an electron of spin σ ∈

{↑,↓} at carbon site i, and t and t3 are the amplitudes for
first and third nearest neighbor hopping between lattice sites,
respectively. 〈i, j〉 and 〈〈〈i, j〉〉〉 indicate restriction of sites i
and j to first and third nearest neighbors, respectively. The
second neighbor hopping is usually neglected in this approach
because it breaks electron-hole symmetry, leading to an inho-
mogeneous distribution of the charge, that is counterbalanced
by long-range Coulomb interactions. The second term in (1)
is the Hubbard interaction describing repulsion ∼U between
electrons on the same site:

HU = U
∑

i

n̂i↑n̂i↓. (3)

n̂iσ = c†
iσ ciσ is the occupation number operator for carbon site

i and spin σ . We note that the Hubbard model described by the
first two terms already yields an excellent description for the
low-energy physics (e.g., Kondo physics and spin excitations)
of open-shell NGs for t = 2.7 eV and t3 = 0.1t and for U in
the range |t | � U � 3|t | [20,21].

In order to investigate the effect of the long-range (LR) part
of the Coulomb interaction, we will occasionally also include
the third and fourth term in (1), describing (i) Coulomb repul-
sion between electrons at different carbon sites,

HV =
∑
i< j

Vi, j n̂in̂ j, (4)

and (ii) direct Coulomb exchange,

HK =
∑

i< j,σ,σ ′
Ki, j c†

iσ c†
jσ ′ciσ ′c jσ . (5)
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Note that the direct exchange term gives rise to Hund-
type coupling ∼− Ki, j 	Si · 	S j between electron spins 	Si =∑

σσ ′ c†
iσ 	τσσ ′ ciσ ′ and 	S j = ∑

σσ ′ c†
jσ 	τσσ ′ c jσ ′ on different car-

bon sites, which is FM in nature (Ki, j > 0).
In order to estimate the LR Coulomb interaction parame-

ters Vi, j and Ki, j we have computed the bare Coulomb matrix
for the π orbitals of the carbon atoms in the idealized ge-
ometries shown in Fig. 1 using the quantum chemistry code
GAUSSIAN09 [37], as described in more detail in Sec. VIII and
the Appendix A.

III. SINGLE-PARTICLE STATES

We briefly discuss the properties of the single-particle
states that are most relevant for understanding intermolecular
exchange. The single-particle states are the molecular orbitals
(MOs), obtained by diagonalizing the one-body (hopping)
part of (1), i.e., Ht |ψk〉 = εk |ψk〉 and |ψk〉 = ∑

i∈sites ψk (i)|i〉,
where the expansion coefficient ψk (i) ≡ 〈ψk|i〉 is the “wave
function” of the MO in the site basis.

Because of the bipartite nature of the single-particle model
[11,20,38,39] that endows the Hamiltonian with chiral sym-
metry, the single-particle spectra have three types of states,
εk > 0, εk < 0, and εk = 0. Finite-energy states come in
electron-hole symmetric pairs, whose wave functions are re-
lated due to the chirality of the single-particle Hamiltonian
[20,39]. On the other hand, the zero-energy modes or simply
zero modes (ZMs) with εk = 0 are located inside a gap of
order t . The ZMs are usually localized at the borders of the
NG (edge states) and at charge neutrality are singly occupied,
thus giving rise to an open shell from which the magnetism of
NGs is derived.

Even for t3 = 0 the wave functions of finite energy MOs
have weight on both triangulenes and both sublatttices. In
contrast, for t3 = 0 dimers I and II have two ZMs that, on
account of the lack of global sublattice polarization, can be
chosen to be sublattice polarized [20] (note that here and
below “polarization” and “polarized” do not denote spin po-
larization but an imbalance in the number of sublattice sites,
i.e., NA �= NB). With this choice, the two ZMs are localized in
just one triangulene and one sublattice. For dimer III, the two
ZMs are polarized in the same sublattice and, because of the
the mirror symmetry of the molecule, we can find a represen-
tation where each ZM is localized in a different phenalenyl.
As we switch on t3, the ZMs of structures I and II split and
the resulting molecular orbitals become linear combinations
of the two ZMs [34]. As we show in Fig. 2 the splitting of the
ZMs, δ, scales linearly (quadratically) with t3 for structure I
(II). Specifically, the single-particle splittings of structures I
and II are given by

δI = 2 × t3
3

, δII = 0.72 × t2
3

t
, (6)

respectively. The equation for δI can be derived analytically
[34], whereas the result for δII has been obtained numerically.
For dimer I, the two ZMs have weight in sites that are third
neighbors, so that intermolecular hybridization of zero modes
is enabled directly by t3. In contrast, for dimer II, the ZMs are
farther away, so that intermolecular hybridization requires the
participation of nonzero modes via second order coupling.

FIG. 2. Single-particle splitting δ of the zero modes of structures
I, II, and III as a function of the third-neighbor hopping t3.

In contrast, for strucure III, the two ZMs keep εk = 0,
ensured by the global sublattice imbalance of this structure
[11,20]. They are both located in the majority sublattice (note
that “majority” does not refer to the majority spin but to the
sublattice type with the larger number of sites). The wave
functions of ZMs and the MOs closest in energy are shown
in the bottom panels of Fig. 3.

For later convenience, we introduce the following notation
for the localized ZMs:

|zζ 〉 =
∑

i

zζ (i)|i〉, (7)

where ζ = 1, 2 denotes the ZM localized in one of the trian-
gulenes. Furthermore, positive and negative energy states |ψk〉
will be labeled by positive and negative integers, respectively,
i.e., k ∈ {±1,±2, . . .}.

IV. COMPLETE ACTIVE SPACE

Due to the exponential growth of the many-body Hilbert
space with the number of carbon sites, the Hamiltonian (1)
cannot be diagonalized numerically for more than a few sites
(<12). For the numerical calculations we therefore restrict the
underlying one-body Hilbert space to a small subset C of MOs
around the ZMs, as shown in Fig. 3 for the three systems
considered here.

According to Lieb’s theorem the number of ZMs is pre-
cisely given by the sublattice imbalance |NA − NB| of the
NG. Additionally, we may also include the MOs closest in
energy to the ZMs, i.e., the level(s) below the highest occupied
orbital(s), HOMO-1 and HOMO-2, and the level(s) above the
lowest unoccupied orbital(s), LUMO+1 and LUMO+2, as
shown in Fig. 3.

Projecting the many-body Hamiltonian onto the restricted
subspace then yields

HC =
∑
k∈C

εk N̂k + 1

2

∑
k,k′
q,q′
σ,σ ′

Wkk′qq′ C†
kσ

C†
k′σ ′Cq′σ ′Cqσ , (8)

where C†
kσ

(Ckσ ) creates (destroys) one electron of spin σ

in MO ψk , Nk = ∑
σ C†

kσ
Ckσ measures the total occupation

of MO ψk , and Wkk′qq′ = 〈ψk, ψk′ |Ŵ |ψq, ψq′ 〉 are the matrix
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FIG. 3. Single-particle spectra for structures I, II, and III [panels (a), (b), and (c), respectively] calculated for t3 = 0 so that all three
spectra have two zero-energy states. The corresponding MOs included in the CAS(N, N) calculations are shown in panels (d), (e), and (f). The
degenerate ZMs are taken so that they are fully localized in a single phenalenyl.

elements of the total Coulomb interaction Ŵ ≡ HU + HV +
HK in the MO basis, Wkk′qq′ = Ukk′qq′ + Vkk′qq′ + Kkk′qq′ . The
Hubbard interaction part of the matrix is given by

Ukk′qq′ = 〈ψk, ψk′ |HU |ψq, ψq′ 〉
= U

∑
i∈sites

ψ∗
k (i)ψ∗

k′ (i)ψq(i)ψq′ (i). (9)

Note that in the MO basis the Hubbard interaction be-
comes generally “nonlocal” (i.e., interaction between different
MOs), even though it is local in the site basis. Furthermore, for
the matrix elements of the LR part of the Coulomb repulsion
in the MO basis we obtain

Vkk′qq′ = 〈ψk, ψk′ |HV |ψq, ψq′ 〉
=

∑
i, j∈sites

i< j

Vi, j ψ
∗
k (i)ψ∗

k′ ( j)ψq(i)ψq′ ( j), (10)

while the direct Coulomb exchange matrix elements in the
MO basis are given by

Kkk′qq′ = 〈ψk, ψk′ |HJ |ψq, ψq′ 〉
=

∑
i, j∈sites

i< j

Ki, j ψ
∗
k (i)ψ∗

k′ ( j)ψq( j)ψq′ (i). (11)

The projected Hamiltonian (8) can be diagonalized for a
fixed number of electrons Ne. The dimension of the resulting
restricted many-body Hilbert space, also called complete ac-
tive space (CAS), is completely determined by the number
NC of MOs making up the restricted one-body subspace C
and the number of electrons Ne, denoted as CAS(NC, Ne).
Here we consider always charge-neutral species, described
by a half-filled Hubbard model. Choosing the subspace C to
be symmetric around the ZMs requires N ≡ Ne = NC at half
filling.

V. INTERMOLECULAR EXCHANGE MECHANISMS

Structures I, II, and III are all formed by two identical
radical NG molecules. Depending on the bonding geometry,
they can be either sublattice balanced (I,II) or imbalanced
(III). According to the Ovchinikov-Lieb (OL) rule [7,35],
this will determine the spin of the ground state of the dimer.
Expectedly, our calculations with the Hubbard model are in
agreement with the OL rule and, for the systems considered
here, predict an open-shell structure for the dimer. Conse-
quently, the resulting low energy many-body states can be
rationalized in terms of an effective spin model:

Heff = J 	S1 · 	S2, (12)
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where the intermolecular exchange J can be either FM or
AF. As we show now, there are the following three types of
intermolecular exchange.

(1) Hund exchange, that is always FM and scales linearly
with the strength of the Coulomb interaction.

(2) Kinetic superexchange, that scales quadratically with
the intermolecular hybridization and is inversely proportional
to the strength of the Coulomb interaction. It is always AF.

(3) Coulomb-driven superexchange, that can take both
signs, and scales quadratically with the strength of the
Coulomb interaction

To a very good approximation, these three contributions
are additive in the relevant range of values for hopping and
Coulomb interactions, so that the exchange J in Eq. (12) can
be written as the sum of three terms:

J  JHund + Jkin + Jcd, (13)

where the three terms on the right hand side stand for Hund
exchange, kinetic superexchange, and Coulomb-driven su-
perexchange, respectively.

A. Hund’s exchange

This interaction arises from the reduction of the Coulomb
repulsion of electrons that overlap in space and have symmet-
ric spin wave functions. It is the same mechanism responsible
of Hund rule’s in atoms, that favor large spin for open shell
configurations. For the three cases considered here, it is only
relevant for system III when t3 > 0, as that is the only case
where wave functions of the two ZMs that host the unpaired
electrons overlap. The theory of Hund’s exchange for NG
diradicals, projecting a Hubbard model into the basis of ZMs,
was worked out by one of us elsewhere [20]. In terms of the
Hubbard matrix elements of Eq. (9), we can write

JHund = −U1221, (14)

where 1 and 2 label the ZMs localized on the phenalenyls 1
and 2. On the other hand, for the systems I and II, JHund = 0
in the Hubbard model.

B. Kinetic superexchange

The first superexchange mechanism is the well known
Anderson exchange mechanism [2]. It only involves the ZM
orbitals that host the unpaired electrons. Thus, for radical
dimers, there are two ZMs. The representation of the Hubbard
Hamiltonian in the basis of these two ZMs maps onto an
effective Hubbard model for a dimer [19].

If we take the third-neighbor hopping Ht3 as a perturbation
to the tight-binding Hamiltonian Ht , the effective hopping τ

between the two ZMs is given up to second order by

τ = 〈z1|Ht3 |z2〉 −
∑
k±

〈z1|Ht3 |k±〉〈k±|Ht3 |z2〉
εk±

. (15)

For dimer I the first order term linear in t3 dominates. For
dimer II, on the other hand, the first term is zero, since the
ZMs are too far away from each other to directly connect
via third-neighbor hopping. Thus only the second-order term
quadratic in t3 contributes in this case.

The intermolecular hybridization τ lifts the degeneracy of
the ZMs, resulting in two molecular orbitals that are linear
combinations of the ZMs of the building blocks with energies
±τ , and thus an energy splitting of δ = 2τ . Explicit expres-
sions for δ are given by Eq. (6) for dimers I and II.

The effective interaction of the Hubbard dimer, U , is given
by

U ≡ 〈zζ , zζ |HU |zζ , zζ 〉 = U
∑

i

|zζ (i)|4, (16)

where ζ = 1, 2 labels the ZMs of the building blocks.
In the cases considered here we find U � τ so that we can

use the well established mapping of the Hubbard dimer to a
Heisenberg model with AF interaction [3,4]:

Jkin = 4 τ 2

U . (17)

We thus see that the intermolecular hybridization promotes an
effective AF exchange. Of course, if intermolecular hybridiza-
tion τ is comparable to the effective Hubbard U the open-shell
picture breaks down and, in the limit where U

τ
goes to zero,

the dimer becomes a closed shell system. In the rest of the
manuscript we consider the opposite situation.

C. Coulomb-driven superexchange

The second superexchange mechanism involves molecular
orbitals different from the ZMs and can be operative even in
the absence of intermolecular hybridization (τ = 0). This is
particularly relevant in the case of system III in Fig. 1, for
which the two ZMs remain degenerate, on account of the
sublattice imbalance of that molecule.

1. Perturbation theory

The key physical process that drives Coulomb-driven su-
perexchange (CDSE) is encoded by the following matrix
elements of the Hubbard interaction in the MO basis (9):

U+ζ ζ− = U
∑

i

ψ∗
+(i) |zζ (i)|2 ψ−(i) = U−ζ ζ+, (18)

where ζ = 1, 2 denotes the ZMs of the building blocks and
ψ+ (ψ−) denotes the LUMO+1 (HOMO-1) orbital.

In order to derive how these matrix elements promote
exchange we break down the many-body Hamiltonian, rep-
resented in the MO basis, in two parts:

H = H0 + H1, (19)

H0 =
∑
k∈C

εk N̂k + 1

2

∑
k,k′,σ,σ ′

Ukk′kk′ N̂kσ N̂k′σ ′ , (20)

H1 =
∑

k,k′,q,σ,σ ′
k �=k′ �=q,σ=−σ ′

Ukqqk′ C†
kσ

C†
qσ ′Ck′σ ′Cqσ , (21)

where in the last line we have taken into account that Ukqqk′ =
Uqkk′q, thus eliminating the prefactor of 1/2. The H0 term
includes both the single-particle energy and the interaction
terms that commute with the occupation of the MO. The
second term, H1, contains the Coulomb matrix elements that
change the occupation of the MOs, giving rise to the excitation
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FIG. 4. Coulomb-driven superexchange mechanism mediated by
Coulomb matrix elements U+ζ ζ− = U−ζ ζ+ of the Hubbard interac-
tion HU given by (18) whereby the spins of the two ZMs are flipped.

of electron-hole pairs in the nonzero modes (see Fig. 4). We
now treat H1 as the perturbation.

The eigenstates of the unperturbed Hamiltonian H0

can be simply written as Slater determinants, |	m〉 =
C†

kσ
C†

k′σ ′C
†
k′′σ ′′C

†
k′′σ ′′ |0〉 with energy E (0)

m .
For a dimer with two unhybridized ZMs, the GS of the

unperturbed Hamiltonian H0 is fourfold degenerate. This is
the case of structures I, II, III provided that we take t3 = 0. In
the product basis the GS quartet is given by∣∣	σ,σ ′

0

〉 ≡ C†
1σC†

2σ ′C
†
−↑C†

−↓|0〉, (22)

i.e., the HOMO-1 is completely filled, and each of the ZMs is
carrying one electron of arbitrary spin, while the LUMO+1
is completely empty. Two of these are the initial and fi-
nal states of the second order process shown in Fig. 4. For
our purposes it is convenient to choose for the GS quartet the
eigenstates |
S;Sz 〉 of the total spin S and one of its compo-
nents Sz. First, the S = 0 state is a singlet:

|
0;0〉 = 1√
2

[|	↑,↓
0 〉 − |	↓,↑

0 〉]. (23)

On the other hand, the S = 1 states form a triplet:

|
1;−1〉 = |	↓,↓
0 〉,

|
1;+0〉 = 1√
2

[|	↑,↓
0 〉 + |	↓,↑

0 〉],

|
1;+1〉 = |	↑,↑
0 〉. (24)

If we consider unhybridized ZMs, the first order pertur-
bation H1 does not affect the eigenstates and thus does not
lift the GS degeneracy. In the case where this assumption
fails, as in the case of structure III with finite t3 or when
long-range Coulomb interactions are included, the following
results would be modified in two simple ways. First, a splitting
of the singlet-triplet manifold linear in the Coulomb repulsion
takes place. Second, the denominators in the second-order
perturbation theory have to be modified accordingly.

Because of the spin-rotational invariance of the many-body
Hamiltonian, the representation of the Löwdin second order
degenerate perturbation matrix in the basis of total spin eigen-
states |
S;Sz 〉 is diagonal. As a result, in second order the
degeneracy of the spin-singlet and spin-triplet states is lifted

according to

Jcd = E (2)
S=1 − E (2)

S=0

=
∑
m �=0

{ |〈	m|H1|
1;0〉|2
E (0)

0 − E (0)
m

− |〈	m|H1|
0;0〉|2
E (0)

0 − E (0)
m

}
, (25)

where we are comparing the energies of the S = 0 and the
S = 1, Sz = 0 states. Now, using Eq. (24) we can write the
Coulomb-driven superexchange splitting in second order as

Jcd = 2
∑
m �=0

〈	↓,↑
0 |H1|	m〉〈	m|H1|	↑,↓

0 〉
E (0)

gs − E (0)
m

. (26)

Hence, as illustrated in Fig. 4, the energy difference
between singlet and triplet states comes from the effec-
tive spin-flip |	↓,↑

0 〉 −→ |	↑,↓
0 〉 via intermediate (virtual)

states where the LUMO+1 becomes occupied, i.e., |	m〉 =
C†

+σC†
ζ σ̄C−σ̄Cζσ |	σ,σ̄

0 〉, where ζ = 1, 2.

Plugging in the matrix elements 〈	m|H1|	↓,↑
0 〉 ∼ U+ζ ζ−

and taking into account that there are only two second order
processes connecting |	↑,↓

0 〉 and |	↓,↑
0 〉 (the ones shown in

Fig. 4), we finally obtain for the Coulomb-driven superex-
change in second order:

Jcd = 4 × U+11− · U−22+
−�+−

, (27)

where �+− ≡ ε+ − ε− is the energy gap between LUMO+1
and HOMO-1, which is of the order of t .

2. Sign of Coulomb-driven kinetic exchange

We now discuss how Eq. (27) can lead both to FM and AF
superexchange. The key observation is the following identi-
ties. In the case of systems I and II, we find

U+11− = −U+22−. (28)

In contrast, in the case of system III we find

U+11− = +U+22−. (29)

These results can be understood in terms of the relation
of the molecular orbitals in electron-hole symmetric bipartite
systems [20]:

ψ± =
(

ψA

±ψB

)
, (30)

that shows that the MOs ψ+ and ψ− are the bonding and anti-
bonding states of two identical sublattice polarized orbitals.

For the AF case, the ZMs 1,2 belong to different sublat-
tices, A and B, respectively, and we may write

U+11− = U
∑

i

ψA(i)∗|z1(i)|2ψA(i) (31)

and

U+22− = U
∑

i

ψB(i)∗|z2(i)|2(−1)ψB(i). (32)

Now we use the fact that the inversion symmetry of molecules
I and II is identical to sublattice inversion and we obtain
Eq. (28).
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For the FM case, both ZMs z1 and z2 belong to the same
sublattice that we decide to label as A. We thus write the
matrix elements in Eq. (29) as

U+11− = U
∑

i

ψA(i)∗|z1(i)|2ψA(i) (33)

and

U+22− = U
∑

i

ψA(i)∗|z2(i)|2ψA(i). (34)

Now we use the fact that orbitals z1 and z2 are related by a
mirror symmetry so that these two matrix elements have to be
identical.

The matrix elements describe nondiagonal exchange pro-
cesses, where an electron hops from one of the ZMs to the
LUMO+1 and an electron of opposite spin coming from the
HOMO-1 hops to the emptied ZM, as well as the inverse pro-
cess. The combination of two such exchange hoppings gives
rise to the second-order process that leads to an effective spin
flip between the two ZMs, as illustrated in Fig. 4. Ultimately,
the sign is governed by the presence of a relative sign in the
sublattice.

VI. NUMERICAL RESULTS

In this section we support the theoretical framework
presented so far with numerical results for the multiconfig-
urational calculations of the three dimers of Fig. 1 using the
Hubbard model. The effect of LR Coulomb interaction will
be discussed in Sec. VIII. We make no attempt to derive the
value of U from first principles [40] and we choose instead
to plot excitation energies as a function of U . We note that U
will depend not only on the molecule but also on the substrate,
due to screening of Coulomb repulsion. Therefore, U can be
tuned, to some extent.

A. Choice of active space to isolate superexchange mechanisms

Importantly, the numerical method permits us to switch on
and off the different intermolecular exchange mechanisms. If
we restrict the active space to the minimal space of nonbond-
ing ZMs, we automatically disable the Coulomb-driven IE.
By the contrary, in the case of disconnected ZMs, where in-
termolecular hybridization is only allowed by third-neighbor
hopping, we can take t3 = 0 to disable the kinetic exchange
and include nonzero modes in the active space to allow for
Coulomb-driven IE. We can thus study the two different su-
perexchange mechanisms independently.

B. AF phenalenyl dimers

We now consider the two phenalenyl-diradicals I and II
shown in Fig. 1. Both are dimers made of two small S = 1/2
triangulenes. The lattice imbalance of these phenalenyl dimers
is |NA − NB| = 0. Thus the GS is expected to be a spin sin-
glet (S = 0), anticipating an AF coupling between the two
spin- 1

2 phenalenyl units. The main difference between these
two structures should be related to the smaller intermolecular
hybridization of structure II, reflected in the single-particle
spectrum [see Eq. (6)].
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FIG. 5. Singlet-triplet splitting �ST for the Hubbard model of
phenalenyl dimer I shown in Fig. 1 in the absence of LR Coulomb
interactions (Vi, j = Ki, j = 0) as a function of Hubbard U computed
for (a) CAS(2,2) and (b) CAS(4,4) for different values of t3. The
black dashed line in (a) shows J I

kin according to (36) for t3 = t/5.
The black dashed line in panel (b) shows Jcd given by (27). The right
vertical axis shows �ST in units of t , while the left axis shows �ST

in meV assuming t = 2.7 eV.

We start the discussion with CAS(2,2), the minimal Hilbert
space, that includes only two electrons in two ZMs. We obtain
our results numerically and compare with the analytical re-
sults obtained in Sec. V B.

For all values of U , the ground state is a singlet and the
first excited state is a triplet. In the following we focus on
their energy difference

�ST ≡ ES=1 − ES=0 (35)

as a function of U/t . This quantity is important because it can
be measured using inelastic electron tunneling spectroscopy
(IETS) [23,25,27–32]. In Fig. 5(a) we show �ST for the direct
phenalenyl dimer (structure I) for three different values of t3.
From comparison of tight-binding and first-principles calcu-
lations [34] for triangulene crystals we believe t3  0.1t is a
good estimate. The values of U/t that provide good agreement
between the predictions of the Hubbard model for NGs and
IETS experiments are in the range of 1.5 < U/t < 2, but this
is to be taken as a rough estimate.

For U = 0, the singlet-triplet splitting equals the single-
particle splitting of the ZMs, shown in Fig. 2, since the only
way to have two parallel spins is to have them in different
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orbitals. As we ramp up U the wave function of the ground
state evolves adiabatically from a closed-shell singlet, in
which states of doubly occupied ZMs have the same weight as
those with single occupancy, to an open-shell singlet, where
the weight of doubly occupied ZMs is significantly reduced
[20]. The figure of merit that controls this crossover is r =
U/τ , defined in Eqs. (15) and (16). In the strong coupling limit
(r � 1), the singlet-triplet splitting is given by Eq. (17).

The results for structure II (not shown) are qualitatively
identical to those of structure I, but with a smaller value of the
singlet-triplet splitting for all values of U and t3, on account
of the smaller intermolecular hybridization shown in Fig. 2.
The ZM splitting (6) relates to the value of the effective τ

via δ = 2τ . Thus, for U = 0, the splittings are given by 2t3/3
for structure I and by 0.72t2

3 /t for structure II. The effective
Hubbard U , U , remains almost independent of t3 for structures
I and II with U  1

6 for the relevant values of t3
In the strong coupling limit, the kinetic exchange for struc-

tures I and II is given by

J I
kin = 8

3

t32

U
, (36)

J II
kin =

(
0.71t3

t

)2 6t32

U
=

(
0.71t3

t

)2 9

4
J I

kin. (37)

We now study Coulomb-driven superexchange by en-
larging the Hilbert space in order to take into account the
HOMO-1 and LUMO+1 in addition to the ZMs. This defines
an active space of four electrons in four states [CAS(4,4)
approximation]. This is the minimal space in which Coulomb-
driven superexchange can appear. The large degeneracy of
both LUMO+2 and HOMO-2 manifolds moves the dimen-
sion of the Hilbert space out of our computational capability.
However, we can validate the analytical perturbation formulas
with CAS(4,4) and then use perturbation theory to include
higher energy MOs (see Sec. VII).

For CAS(4,4) the GS also has S = 0 and the first excited
state S = 1 for both structures I and II. In Fig. 5(b) we plot
�ST as a function of U , for three values of t3. For t3 = 0
the kinetic exchange is eliminated. As a result, the t3 = 0
curve shows the magnitude of the CDSE associated to the
virtual processes of Fig. 4. It is apparent that, for moderate
values of U/t < 2, the exact calculation and the perturbation
theory result [dashed line in 5(b)] are in good agreement. This
validates the perturbation theory.

The excitation energies with finite t3 and CAS(4,4) are very
well approximated by the sum of the CAS(2,2) and the t3 = 0
curve of CAS(4,4), as long as t3 remains much smaller than
t . Therefore, we conclude that these contributions are addi-
tive, for moderate values of U/t . Since kinetic exchange and
CDSE have opposite dependence with U , the resulting �ST

curves are nonmonotonic functions of U . For small values
of U they are dominated by the single-particle splitting. As
U increases, local moments develop, CDSE takes over, and
kinetic exchange fades away according to Eq. (17).

We now compare the excitation energies �ST for structures
I and II in the CAS(4,4) approximation for different values of
t3. The results are shown in Fig. 6. It is apparent that, for all
values of U , �ST is smaller for structure II than for structure
I, for a given value of t3. This can be understood as follows.
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t = 2.7 eV.

First, kinetic exchange is smaller for structure II on account of
the smaller intermolecular hybridization τ ; see Fig. 2. As a re-
sult, the crossover to the open-shell regime happens for much
smaller values of U/t and the kinetic exchange (∝τ 2/U ) is
dramatically smaller. Second, also the CDSE is considerably
smaller for structure II than for structure I, as is evident by
comparing the results of both structures for t3 = 0 in Fig. 6
when the kinetic superexchange is absent. The reason is the
smaller overlap of the ZMs with the HOMO-1 and LUMO+1
orbitals in structure II than in structure I [cf. Figs. 3(d) and
3(e)], leading to smaller Coulomb matrix elements U+ζ ζ− and
consequently smaller CDSE.

C. FM phenalenyl dimer

We now discuss the case of structure III where, as in
structure II, two phenalenyl molecules are coupled indirectly
via the central benzene molecule. But in contrast to structure
II the two phenalenyl units now form a 120◦ angle instead
of 180◦; see Fig. 1. In this case the lattice imbalance of the
combined system is |NA − NB| = 2. Thus by Lieb’s theorem
the GS is expected to have spin S = 1, anticipating a FM IE
between the spin- 1

2 of individual phenalenyl units. The crucial
difference with AF phenalenyl dimers considered before in
Sec. VI B is that now the two ZMs localized at the edges of
the phenalenyl units are on the same sublattice.

Figure 3(c) shows the single-particle spectrum obtained
from diagonalization of the hopping Hamiltonian (2) in the
absence of third neighbor hopping (t3 = 0). As in the case
of structures I and II there are two ZMs, each localized on
one of the phenalenyl units, shown in the two center panels
of Fig. 3(e). In contrast to structures I and II, the HOMO-2,
LUMO+2 are nondegenerate, so that we can include them
in the active space and check the convergence of the energy
spectrum as more MOs are included. Their wave functions are
shown in Fig. 3(f).

In the CAS(2,2) approximation, taking into account only
the two ZMs, only the Hund’s exchange is active, as the
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intermolecular hybridization is warranted to vanish on ac-
count of the sublattice imbalance. For t3 = 0 there is no
overlap of the ZMs so that JHund = 0. Turning t3 on keeps
the ZMs degenerate, but their wave functions spread a bit
and overlap, giving rise to finite Hund’s exchange (see purple
curves in Fig. 7). In the top panel, with t3 = 0, �ST is strictly
zero. On the other hand, for finite t3 shown in the bottom
panel, we find a finite �ST approximately linear in U . The
negative sign accounts for the fact that the GS has S = 1
and the first excited state has S = 0, complying with Lieb
theorem. Thus structure III has FM intermolecular exchange.
We note that JHund = 0 for structures I and II in the Hubbard
approximation, as there the ZMs live in opposite sublattices
and thus the ZMs have zero overlap.

Taking into account the HOMO-1 and LUMO+1 in addi-
tion to the ZMs leads to a CAS(4,4) calculation and enables
CDSE. We find that, even for t3 = 0, a spin excitation gap
opens, as can be seen in Fig. 7(a). It is apparent that the CDSE
mediated by the HOMO-1 and LUMO+1 intermediate states
gives a FM contribution, different from structures I and II dis-
cussed in the previous subsection. For CAS(4,4) and finite t3
the contributions coming from the direct exchange mechanism
linear in U and from the FM superexchange quadratic in U
approximately add up, giving rise to approximately linear plus
quadratic behavior, as can be seen in Fig. 7(b).

On the other hand, including also the HOMO-2 and
LUMO+2 MOs in a CAS(6,6) calculation, we find that the
spin excitation gap decreases with respect to CAS(4,4); see
the green and blue curves in Figs. 7(a) and 7(b). Thus the con-
tribution of these additional MOs to the CDSE is of opposite
sign than the one of the HOMO-1 LUMO+1 pair; i.e., it is AF,
but smaller in magnitude, so that overall, the CDSE remains
FM. This sign can be understood again by looking at the
phases of all intermediate MOs in Fig. 3(f). Now the phases of
the combined wave functions ψ+(i) ψ−2(i) and ψ−(i) ψ+2(i)
have different signs in both phenalenyl units. Since the energy
difference between HOMO-2 and LUMO+1, and HOMO-1
and LUMO+2, is larger than the energy difference between
HOMO-1 and LUMO+1, ε+ − ε−2 = ε+2 − ε− > �+−, this
AF contribution to the exchange coupling is smaller in mag-
nitude than the FM contribution.

Finally, we note that the two FM exchange mechanisms
described here probably account for the formation of the high-
spin GS in a triangulene-trimer coupled via a central benzene
ring, reported recently in Ref. [31].

VII. PERTURBATION THEORY OF SUPEREXCHANGE
WITH ENTIRE SINGLE-PARTICLE SPECTRUM

The comparison of CAS(4,4) and CAS(6,6) for structure
III shows a large variation of the singlet-triplet splitting �ST.
The inclusion of additional single-particle states in the CAS
calculation faces the problem of exponential growth of the
Hilbert space. On the other hand, the comparison of results for
CAS(4,4) with perturbation theory for structure I shows very
good agreement between these two methods for U < 1.5t ,
when only the HOMO-1, LUMO+1 orbitals are included in
the perturbative calculation. Therefore, we now calculate the
perturbative result including all MOs of the single-particle
spectrum. This allows us to assess the contributions of excited
states that are excluded from the active space.

The generalization of Eq. (27) for an arbitrary number of
excited states is straightforward:

J full
cd = −4

∑
k+=+1,+2,...

k−=−1,−2,...

Uk+11k−Uk−22k+

εk+ − εk−
. (38)

Note that the number of terms in this sum only grows
quadratically with the number of excited single-particle states,
compared to the exponential scaling of CAS(N,N) calculation.

The results for structures I, II, and III are shown in Fig. 8.
We plot Jcd as a function of the number of MO pairs in-
cluded in the calculation. Note that these increase at least by
two units, on account of the electron-hole symmetry, and in
some cases in larger steps, on account of the degeneracies
of the single-particle spectrum associated to the symmetries
of the molecules. We plot Jcd normalized to the contribution
of the HOMO-1/LUMO+1 pair.

We observe that including more orbitals may increase or
decrease the magnitude of the exchange coupling, indicating
that the extra contributions coming from adding new orbitals
may have different signs. This can be understood again by
analyzing the symmetries of the MOs involved in electron-
hole pair excitations with respect to the sublattice polarization
of the ZMs. We note that terms with “diagonal” electron-hole
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pair excitations k− → k+ = −k− always have the same sign
as the lowest order term (N = 4), i.e., AF for structures I and
II and FM for structure III.

The change in magnitude of including MOs beyond the
HOMO-1/LUMO+1 pair cannot be neglected. Especially in
the FM case, structure III, the exchange coupling changes
substantially right up to the inclusion of the last term. Note
that although the magnitude of the exchange coupling for
this structure decreases by two orders of magnitude compared
to only including the HOMO-1/LUMO+1 contribution, it
does not become zero and remains FM. Also for the two AF
structures (I,II) the exchange coupling keeps changing right to
the end, although not as drastically as in the FM case (III). In
the case of structure I the magnitude of the exchange coupling
is reduced to about 60% and in the case of structure II to about
20% of its value at N = 4.

Hence contributions from electron-hole pair excitations of
higher energy MOs to the CDSE can generally not be ne-
glected, at least on a quantitative level. It should be noted,
however, for structure I in the experimentally relevant pa-
rameter regime (t = 2.7 eV, t3 = t/10, and U ∼ t), kinetic
superexchange is the dominant mechanism (Jkin ∼ 70 meV)
compared to CDSE (Jcd ∼ 15 meV). On the other hand, our
generalized perturbation expression (38) allows us to actually
calculate the missing contribution δJcd to the CDSE coupling
due to higher energy orbitals, which could then be incorpo-
rated, e.g., by an effective Heisenberg interaction, δJcd 	S1 · 	S2,
into our model, similar to our earlier work [21].

VIII. ROLE OF LR COULOMB INTERACTIONS

So far we have treated Coulomb interaction in the Hubbard
approximation. We now address the role of LR Coulomb
interactions [17] on the spin excitations and consider the ex-
tended Hubbard model, including the LR part of the Coulomb
repulsion and direct Coulomb exchange given by (4) and (5),
respectively.

In order to obtain realistic parameters for Vi, j and Ki, j

relative to the on-site Hubbard interaction U , we have com-

puted the full Coulomb matrix for the π orbitals φi(r) of
the carbon atoms using the quantum chemistry code GAUS-
SIAN09 [37] and a minimal basis set (see the Appendix A
for more details). This yields the bare Coulomb interaction
vbare

i jkl = 〈φi, φ j |v̂c|φk, φl〉, where v̂c = 1/r. However, the ef-
fective Coulomb interaction for our π orbital only model
must generally be considerably lower than the bare one due
to screening by the other orbitals. On the lowest level of
approximation we can include screening effects by a dielec-
tric constant ε, scaling all matrix elements equally, vscr

i jkl =
ε−1 vbare

i jkl . Specifically, in this approximation the on-site Hub-
bard interaction U is given by U = vscr

iiii = ε−1 vbare
iiii and hence

ε−1 = U/vbare
iiii . We can then parametrize the other interactions

in terms of the Hubbard U , namely the intersite repulsion
becomes Vi, j = vscr

i ji j = (U/vbare
iiii ) vbare

i ji j and the direct intersite
exchange becomes Ki, j = vscr

i j ji = (U/vbare
iiii ) vbare

i j ji . This allows
us to continue using the Hubbard U as a parameter in our
model. But effectively it means we are tuning the screening
parameter ε, allowing us to simulate in an approximate way
the screening effect of different substrates on the LR part of
the Coulomb interaction and exploring its effect on the spin
excitation gap.

A. Effect of LR Coulomb on kinetic exchange

We first discuss the effect of LR Coulomb interaction on
the kinetic exchange mechanism. Figure 9(a) shows the spin
excitation gap for CAS(2,2) (only kinetic exchange is active).
Clearly, by inclusion of the intersite repulsion Vi, j into the
model the kinetic exchange is reduced, while the inclusion of
direct exchange Ki, j does not have any effect. The latter is eas-
ily understood, since the direct exchange decays exponentially
and thus is only appreciable for nearest neighbors; see Fig. 10.
But since the sites making up the ZMs are third neighbors at
least, see Fig. 3(d), direct exchange cannot be effective in this
case.

For the Hubbard model, the kinetic exchange is given by
Eq. (17). It is straightforward to generalize this expression
for the extended Hubbard model including intersite Coulomb
repulsion Vi, j . In the presence of LR repulsion the energy cost
for transferring an electron from one molecule to the other
becomes

δE = U + V11 − V12 > U , (39)

where Vζ ζ = ∑
i �= j Vi, j |zζ (i)|2|zζ ( j)|2 is the contribution of

the LR repulsion to the intraorbital Coulomb repulsion (or
effective Hubbard U ) within a localized ZM, while V12 =∑

i, j Vi, j |z1(i)|2|z2( j)|2 is the interorbital Coulomb repulsion
between two ZMs, localized on different molecules.

Thus the LR repulsion leads to an increase of the double
occupancy energy compared to simply U in the Hubbard
model, since Vζ ζ > V12 always, as sites i, j on the different
molecules are farther away on average than when both sites
are on the same molecule. In the presence of LR Coulomb
repulsion the kinetic exchange (17) is thus reduced in com-
parison to the Hubbard model according to

JLR
kin = 4τ 2

U + Vζ ζ − V12
< Jkin = 4τ 2

U . (40)
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B. Effect of LR Coulomb on Coulomb-driven superexchange

We now discuss the effect of LR Coulomb interactions on
the CDSE. Figure 9(b) compares the spin excitation gap for
CAS(4,4) as a function of the Hubbard interaction U when
different parts of the Coulomb interaction are included. In-
cluding the intersite repulsion Vi, j reduces the spin excitation
gap considerably, similar to the case of CAS(2,2) considered
before when only kinetic exchange is active, but even more
strongly so. Different from the case of CAS(2,2), now also the
inclusion of direct exchange Ki, j reduces the spin excitation
gap.

What is the reason behind the reduction of the CDSE by the
LR part of the Coulomb repulsion Vi, j and the direct exchange
Ki, j? First, since the densities of the HOMO-1 and LUMO+1
orbitals are the same, i.e., |ψ+(i)|2 = |ψ−(i)|2, it is easy to
see that the energy difference between the GS (HOMO-1
full and LUMO+1 empty) and the intermediate excited states
(HOMO-1 and LUMO+1) half filled, entering in the denomi-
nator in (27) is not affected by the LR Coulomb repulsion Vi, j .
On the other hand, direct exchange Ki, j increases the energy
of the intermediate state, since the spins in the HOMO-1 and
LUMO+1 are antiparallel to the spins of both ZMs, see Fig. 4,
leading to an energy penalty of 4Kζ++ζ = 4Kζ−−ζ (where
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FIG. 10. LR part of Coulomb interaction as a function of distance
Ri j between two carbon sites i and j in units of the on-site (Hub-
bard) interaction U . (a) Coulomb repulsion Vi, j ≡ 〈φi, φ j |v̂c|φi, φ j〉.
(b) Direct Coulomb exchange Ki, j ≡ 〈φi, φ j |v̂c|φ j, φi〉.

ζ = 1, 2 denotes the ZM) due to the FM nature of the direct
exchange. Hence the denominator in (27) is altered according
to E (0)

0 − E (0)
m = −�+− − 4Kζ++ζ , leading to a reduction of

Jcd.
On the other hand, the “exchange hopping” matrix ele-

ments of the Coulomb interaction driving the superexchange
are obviously directly affected by the introduction of LR
repulsion: W+ζ ζ− = U+ζ ζ− + V+ζ ζ−, where ζ = 1, 2 denotes
ZM1 or ZM2, respectively. Importantly, the LR corrections
V+ζ ζ− = ∑

i< j Vi, j ψ
∗
+(i)ψ∗

ζ ( j)ψζ (i)ψ−( j) have just the op-
posite sign of the corresponding matrix elements of the
Hubbard interaction U+ζ ζ− = U

∑
i ψ

∗
+(i)|ψζ (i)|2ψ−(i) such

that |W+ζ ζ−| < |U+ζ ζ−|. The reason behind the opposite signs
of Hubbard and LR contributions to the “exchange hopping”
matrix elements are the alternating phases of the ZM wave
functions; see Fig. 3(d). Hence the CDSE is also reduced by
the LR part of the Coulomb repulsion compared to (27). In
summary, CDSE is altered by both LR Coulomb repulsion and
direct exchange:

JLR
cd = 4

|U+11− + V+11−|2
�+− + 4K1++1

< Jcd, (41)

where we have already taken into account that W+11− =
−W+22−.

Finally, we note that the influence of the LR part of the
Coulomb interaction on the spin excitation energies has a sim-
ilar effect for structures II and III for CAS(2,2) and CAS(4,4)
(not shown). Even though the LR Coulomb interaction be-
tween both molecules is weaker in these cases, since both
molecules are farther away, the relative change is similar
to structure I, as both kinetic exchange and CDSE are also
reduced by the larger distance between the coupled molecules.
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IX. DISCUSSION AND CONCLUSIONS

The main goal of this work is to provide a framework to
understand intermolecular exchange interactions for S = 1/2
triangulenes. However, the results of this paper can be directly
applied to other S = 1/2 NGs, such as Clar’s goblet [26].
We have discussed three different intermolecular exchange
interactions. We have shown how intermolecular hybridiza-
tion and the sub-lattice imbalance determine the magnitude
and the sign of intermolecular exchange. Our theory should
help to choose molecules with tailored exchange proper-
ties when it comes to designing supramolecular structures
that realize spin lattice models, in the spirit of the real-
ization of the Haldane spin chain with S = 1 triangulenes
[29].

Our analysis shows that a quantitative prediction of ex-
change interactions is very hard for two reasons. First, the
convergence of CAS calculations as the dimension of the
active space is increased is not obtained within our computa-
tional capabilities. Perturbation theory, discussed in Sec. VII,
shows a slow convergence of the contribution of higher-
energy molecular orbitals, questioning the use of that indicator
to truncate the Hilbert space. This calls for the use of
other strategies, such as density matrix renormalization group
(DMRG) methods, to provide alternative methods to sample
the Hilbert space [10].

The second source of uncertainty is the strength of the
Coulomb interaction in the experimentally relevant situation
of molecules deposited on a substrate. A quantitative de-
termination of screening would be needed. Our calculations
show that going beyond the Hubbard approximation for the
electron-electron interactions changes quantitatively the com-
puted values of intermolecular exchange. We cannot rule out
that in some limit, full-fledged long-range Coulomb inter-
action can lead to a failure of the OL rules. For instance,
for graphene in the quantum Hall regime at half filling, the
Hubbard model predicts a S = 0 GS, whereas long-range
Coulomb interactions predict a quantum Hall ferromagnet
[41]. Both the issue of the Hilbert space truncation and the
choice of the proper screened Coulomb interaction deserve
future attention. Comparison of theoretical prediction with ex-
perimental results is also made difficult by the renormalization
of excitation energies due to Kondo interactions, studied by us
in a previous work [21].

Importantly, our theory of Coulomb-driven superexchange
interactions and the demonstration that these can be either
ferromagnetic or AF provide a microscopic explanation of the
physical mechanisms that enforce the OL rules [7,35]. Note
that our CDSE mechanism is analogous to the double spin po-
larization described for binuclear transition metal complexes
[42,43].

Finally, the present work serves as a first step towards
the study of intermolecular exchange for multiradicals, such
as [n]triangulenes with n>2. It has been established that
in the case of S =1 triangulenes the effective intermolecular
spin coupling includes higher order terms such as (	S1 · 	S2)2

[29,44,45]. The approach of the present work applied to these
systems should provide a microscopic understanding of their
origin, as demonstrated already on the level of toy models
[44].

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with R. Ortiz, G.
Catarina, and A. Costa. We acknowledge financial support
from the Ministry of Science and Innovation of Spain (Grants
No. PID2020-112811GB-I00 and No. PID2019-109539GB-
41), from Eusko Jaurlaritza (Grant No. IT1453-22), from
Generalitat Valenciana (Grant No. Prometeo2021/017),
from Fundacao Para a Ciencia e a Tecnologia, Portugal
(Grant No. PTDC/FIS-MAC/2045/2021), from the Swiss
National Science Foundation, Pimag grant, and from
FEDER/Junta de Andalucía—Consejería de Transformación
Económica, Industria, Conocimiento y Universidades (Grant
No. P18-FR-4834).

APPENDIX: LR COULOMB INTERACTION

In Fig. 10 we show the LR part of the Coulomb interaction
as a function of the distance between carbon sites computed
for the pz orbitals of the phenalenyl dimer (see below) us-
ing GAUSSIAN09 [37] with the LANL2MB minimal basis
set. For distances larger than or equal to nearest neighbors
the Coulomb repulsion follows in good approximation the
1/r dependence of the bare Coulomb potential. The direct
Coulomb exchange, on the other hand, decays exponentially
with the distance, rendering all matrix Ki, j elements beyond
first neighbors (Ri j > a) negligible.
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