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Valley-controlled transport in graphene WSe2 heterostructures under off-resonant polarized light
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We investigate the electronic dispersion and transport properties of graphene/WSe2 heterostructures in the
presence of a proximity-induced spin-orbit coupling λv , sublattice potential �, and an off-resonant circularly
polarized light of frequency � that renormalizes � to �̄ηp = � + ηp�� with η and p the valley and polarization
indices, respectively, and �� the gap due to the off-resonant circularly polarized light. Using a low-energy
Hamiltonian we find that the interplay between different perturbation terms leads to inverted spin-orbit coupled
bands. At high � we study the band structure and dc transport using the Floquet theory and linear response
formalism, respectively. We find that the inverted band structure transfers into the direct band one when the
off-resonant light is present. The valley-Hall conductivity behaves as an even function of the Fermi energy in
the presence and absence of this light. At �� = λv – �, a transition occurs from the valley-Hall phase to
the anomalous Hall phase. In addition, the valley-Hall conductivity switches sign when the polarization of the
off-resonant light changes. The valley polarization vanishes for �� = 0 but it is finite for �� �= 0 and reflects
the lifting of the valley degeneracy of the energy levels, for �� �= 0, when the off-resonant light is present.
The corresponding spin polarization, present for �� = 0, increases for �� �= 0. Further, pure K or K ′ valley
polarization is generated when �� changes sign. Also, the charge Hall conductivity is finite for �� �= 0 and
changes sign when the handedness of the light polarization changes.
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I. INTRODUCTION

Since its discovery graphene has attracted immense atten-
tion both theoretically and experimentally due to its peculiar
electronic and optical properties [1]. But, it has limited us-
age in the field of spintronics due to its very weak intrinsic
spin-orbit coupling (SOC). The intrinsic SOC in graphene is
theoretically predicted to be weak, 12 µeV [2]. A value of
20 µeV is reported in a recent experiment for graphene on
SiO2 substrate [3]. A lot of efforts have been made to en-
hance the strength of SOC in graphene by employing external
means, such as graphene hydrogenation [4,5] or fluorination
[6], as well as heavy adatom decoration [7,8], and bringing
it to proximity with other two-dimensional materials specif-
ically transition metal dichalcogenides (TMDCs) [9–11]. In
recent years the heterostructures of graphene and TMDCs
have become more promising because the Dirac cone of
graphene is well fit in the band gap of TMDCs, which leaves
it intact. The giant native SOC of TMDCs is transferred to
graphene via hybridization processes. Moreover, the combi-
nations of graphene with TMDCs, such as MoS2 or WSe2,
exhibit the proximity SOC on the meV scale [12–19].

Presently, SOC, induced by proximity effects, is no longer
limited to theoretical studies, as it has been demonstrated by
experimentally as well [20]. The breaking of spatial symmetry
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due to the substrate leads to an alteration of the Hamilto-
nian and spin degeneracy of graphene and opens a gap in its
massless energy dispersion. In addition, it has been verified
by experiments [19,21–23] that another type of sublattice-
resolved intrinsic SOC arises, the so-called valley-Zeeman or
staggered SOC with opposite sign on the A and B sublattices.
Further, enhancement of the Rashba SOC and creation of
staggered potentials are also unavoidable [24].

Nowadays, the optical control of functional materials has
been become a hot topic in the condensed matter physics.
In addition, it creates a bridge between condensed matter
physics [25] and ultrafast spectroscopy [26]. Many intriguing
phenomena have been realized in optically driven quan-
tum solids such as light induced superconductivity [27,28],
photo-initiated insulator-metal transition [29,30], microscopic
interactions, such as the electron-phonon one, controlled by
light [31–33], and theoretically predicted Floquet topological
phases of matters [34–38]. These Floquet phases have stim-
ulated much interest but direct evidence for electron-photon
Floquet dressed states is scarce to date [39,40] contrary to the
field of artificial lattices [41–46].

Recently, light-induced anomalous Hall effect has been
observed experimentally in monolayer graphene by using an
ultrafast transport technique [47] and predicted theoretically
using a quantum Liouville equation with relaxation [48]. Also,
graphene under the influence of light has been studied in
various frameworks [34–37,49–53] The transport properties,
especially valley-dependent dc transport, using the Floquet
theory, has not been addressed sufficiently in contrast with a
large amount of research on proximitized graphene. As far as
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transport in the presence of an off-resonant light is concerned,
we are aware only of an electron transport study in MoS2

[54], of another one on graphene and the Lieb lattice [55], and
of a thermal transport study in topological insulators in the
absence of any SOC [56]. Here we investigate theoretically
the band structure in laser-driven graphene/WSe2 heterostruc-
tures using the Floquet theory in the high-frequency regime.
Also, we study dc transport in such heterostructures in the
framework of linear response theory. We show that the in-
terplay between the proximity SOCs and off-resonant light
leads to a phase transition from the inverted band regime
to the direct one. Our results are in good agreement with
experimental results [47] in the limit of vanishing proximity
SOCs.

In Sec. II we specify the Hamiltonian and obtain the eigen-
values and eigenfunctions of the proximity modified graphene
as well as an analytical expression for the density of states
(DOS). In Sec. III we derive analytical expressions for the
conductivities and provide numerical results. Conclusions and
a summary follow in Sec. IV.

II. FORMULATION

The real space tight-binding (TB) Hamiltonian of proxim-
itized graphene is written as [24,57,58]

H = −tJ
∑

〈i, j〉,α
c†

iαc jα + �
∑

iα

ηci c
†
iαciα

+ i

3
√

3

∑
〈〈i, j〉〉,αα′

λi
Iνi jc

†
iαc jα′ [sz]αα′

+2iλR

3

∑
〈i, j〉,αα′

c†
iαc jα′ [(s × d̂i j )z]αα′ . (1)

Here tJ is the hopping parameter, c†
iα creates an electron

with spin polarization α at site i that belongs to sublattice
A or B, and 〈i, j〉 (〈〈i, j〉〉) runs over the nearest (second
nearest) neighboring sites. The second term is a staggered
on-site potential, which takes into account the effective energy
difference experienced by atoms at the lattice sites A (ηci =
+1) and B (ηci = −1), respectively. The third and fourth
terms represent the proximity-induced enhancement of the
spin-orbit coupling (SOC) due to a weak hybridization with
the heavy atoms in TMDCs. The third term is the sublattice
resolved intrinsic SOC (λi

I with i = A, B) where νi j = +1, if
the second nearest hopping is anticlockwise, and νi j = −1 if
it is clockwise with respect to the positive z axis. The last
term is the Rashba SOC parametrized by λR. It arises because
the inversion symmetry is broken when the graphene sheet is
placed on top of TMDCs. Further, s = (sx, sy, sz ) is the Pauli
spin matrix and d̂i j is the unit vector connecting the sites i and
j in the same sublattice.

We analyze the physics of electrons near the Fermi energy
using a low-energy effective Hamiltonian derived from Eq. (1)
and a Dirac theory around K and K ′ points. It reads [59–61]

Hszη = vF (ησx px + σy py) + �σz + λR(ηsyσx − sxσy)

+1

2

[
λA

I (σz + σ0) + λB
I (σz − σ0)

]
ηsz. (2)

FIG. 1. (a) Real-space graphene with �a1 and �a2 the primitive
lattice vectors. (b) Graphene’s first Brillouin zone and high symmetry
points 	, K , K ′, and M in reciprocal space. Its primitive lattice
vectors are �b1 and �b2. (c) Schematics of graphene epitaxially grown
on a WSe2 substrate and irradiated by a left circularly polarized light.

Here η = +1(−1) denotes the valley K (K ′), � is the mass
term that breaks the inversion symmetry, λR the Rashba type
SOC strength, σ = (σx, σy, σz ) the Pauli matrix that corre-
sponds to the pseudospin (i.e., A − B sublattice), σ0 is the
unit matrix in the sublattice space, and vF (8.2 × 105 m/s)
denotes the Fermi velocity of Dirac fermions. The last term
arises due to the breaking of sublattice symmetry and can be
categorized into two groups according to its dependence on
sublattice spin: (i) λsoσzηsz when λso = (λA

I + λB
I )/2. This is

called conventional Kane-Mele (KM) type SOC, which has
a magnitude of the order of μeV in graphene/TMDCs het-
erostructures [2,24,61]. (ii) λvσ0ηsz when λv = (λA

I − λB
I )/2.

It is called valley-Zeeman or staggered SOC and has been
experimentally confirmed in graphene on TMDCs [19,21–
23]; it occurs only for λA

I = −λB
I . Further, Refs. [2,24,61]

show that λso is negligibly small or zero. In view of that,
we treat only the regime λv � λso and neglect λso altogether.
As shown in Fig. 1, monolayer graphene, irradiated by off-
resonant circularly polarized light, is grown on WSe2 that
provides a staggered potential and induces SOC in graphene.
We study the changes induced by circularly polarized light
in graphene/WSe2 in the presence of a perpendicular electric
field E . We describe the monochromatic light through a time-
dependent vector potential �A(t ) = (E0/�)(cos �t, p sin �t )
with � its frequency, E0 the amplitude of the field E , and
p = +1(−1) for left (right) circular polarization. The vector
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potential is periodic in time A(t + T ) = A(t ) with T = 2π/�.
For high frequencies h̄� � tJ and low light intensities, i.e.,
A2 << 1 with A = evF E0/h̄� characterizing the intensity of
light, Eq. (2) gives the Hamiltonian

Hsη(t ) = H0
sη + V (t ), (3)

with

H0
szη

= vF (ησx px + σy py) + �σz + λvσ0ηsz

+λR(ηsyσx − sxσy),

V (t ) = −(evF /h̄)[ησxAx(t ) + σyAy(t )]. (4)

For h̄� � tJ and A2 << 1, Eq. (3) can be reduced to an
effective, time-independent Hamiltonian H eff

szη
(t ) using Flo-

quet theory [35]. H eff
sη (t ) is defined through the time evolution

operator over one period

Û = T̂ exp[−i
∫ T

0
Hszη(t )dt] = exp

[ − iH eff
szη

T
]
, (5)

where T̂ is time ordering operator. Using perturbation theory
and expanding Û in the limit of large frequency �, we obtain

H eff
szη

= H0
szη

+ [V−1,V1]/h̄� + O(�−2), (6)

where Vm = (1/T )
∫ T

0 e−im�tV (t )dt is the mth Fourier har-
monic of the time-periodic Hamiltonian and [V−1,V1] the
commutator between V−1 and V1. Corrections to Eq. (6), to
all orders of 1/�, can be obtained by the method of Ref. [55].
Here we neglect them because we treat only the case h̄� � tJ .
Using Eqs. (3) and (6) we obtain

H eff
szη

= vF [ησx px + σy py] + �̄ηpσz + λvσ0ηsz

+λR(ηsyσx − sxσy), (7)

where �̄ηp = � + ηp�� with �� = v2
F e2E2

0 /h̄�3; �̄ηp is
the renormalized mass term due to the circularly polarized
light, which creates a gap �� in pure graphene, i.e., for
� = 0, see Ref. [35].

The diagonalization of Eq. (7) gives the dispersion

Eηp
ξ (k) = l

{
Gη + 2λ2

R + ε2
k + 2s

√
ϒ

}1/2
, (8)

where ξ = {l, s} and Gη = λ2
v + �̄2

ηp, ϒ = ε2
k λ̄

2 + (λ2
R −

λv�̄ηp)2 with εk = h̄vF k, �̄ηp = � + ηp�� and λ̄2 = λ2
R +

λ2
v . Further, l = +1(−1) denotes the conduction (valence)

band and s = +1(−1) represents the spin-up (spin-down)
branches and is not a Pauli matrix sz. The normalized eigen-
functions for both valleys are

ψ
+p
ξ (k) = N+p

ξ√
S0

⎛
⎜⎜⎜⎝

1

Aηp
ξ eiφ

−iBηp
ξ eiφ

−iCηp
ξ e2iφ

⎞
⎟⎟⎟⎠eik·r, (9)

ψ
−p
ξ (k) = N−p

ξ√
S0

⎛
⎜⎜⎜⎝

−Aηp
ξ eiφ

1

iCηp
ξ e2iφ

−iBηp
ξ eiφ

⎞
⎟⎟⎟⎠eik·r, (10)

FIG. 2. Energy dispersion curves around K and K ′ of a
graphene/WSe2 heterostructure for � = 1 meV, λv = 4 meV, and
λR = 2 meV. The left panel shows the inverted band regime, with
strong spin mixing of different states, obtained for �� < � + λv .
The right panel shows the direct band regime, with nearly full spin
polarization, obtained for �� > � + λv . The marking of all curves
resulting from Eq. (8), with p = 1 for all of them, is shown inside the
panels. The solid-black (red) curves are for η = +1 and s = +1(−1)
and the dashed-black (red) ones for η = −1 and s = +1(−1).

respectively, with

Nηp
ξ = l

[
1 + (

Aηp
ξ

)2 + (
Bηp

ξ

)2 + (
Cηp

ξ

)2]−1/2
, (11)

S0 = LxLy the area of the sample, and φ = tan−1(ky/kx ).
Further, Aηp

ξ = {Eηp
ξ − ηα

η

1 }/εk , Bηp
ξ = 2λR{(Eηp

ξ )2 −
(αη

1 )2}/εk{(Eηp
ξ + ηα

η

1 )(Eηp
ξ − ηα

η

2 ) − ε2
k }, and Cηp

ξ =
2λR{Eηp

ξ − ηα
η

1 }/{(Eηp
ξ + ηα

η

1 )(Eηp
ξ − ηα

η

2 ) − ε2
k } with

α
η

1 = �̄ηp + λv , and α
η

2 = �̄ηp − λv .
In numerical calculations throughout the paper, we use

values of the parameters �, λv , and λR somewhat larger than
those of [57] to have well-resolved spin and valley splittings
since the overall physics of the system is not changed when
we do so. As for the values of ��, it is known that the off-
resonant light does not directly excite the electrons; instead, it
modifies the electron bands through virtual photon absorption
processes. To study the topological transitions of bands, this
light must satisfy the condition h̄� � tJ and A2 << 1. Ac-
cordingly, we will use the values of �� from Refs. [35,47,54].

The typical band structure (8) for both valleys is illustrated
in Fig. 2 for p = +1, �� < � + λv (inverted band regime),
and �� > � + λv (direct band regime). The left panel shows
the inverted band regime. The inversion occurs due to the
anticrossing of the bands with opposite spins and in the pres-
ence of the Rashba SOC. The right panel depicts the direct
band regime with simple parabolic dispersion. It is found that
the spin and valley degeneracies are completely lifted when
�� > � + λv , whereas the valley degeneracy is restored in
the opposite limit similar to silicene [62]. The valleys are
interchanged if proximitized graphene is irradiated by a right
circularly polarized light p = −1 (not shown here).

A. Limiting cases and density of states (DOS)

(i) Setting � = 0 in Eq. (8), we obtain

Eηp
ξ (k) = l

{
λ2

v + �2
� + 2λ2

R + ε2
k + 2s

√
Y

}1/2
, (12)

with Y = ε2
k λ̄

2 + (λ2
R − ηλv��)

2
.
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FIG. 3. Density of states for two values of ��, as indicated, and
	 = 0.01 meV. The left panel shows the valley components of the
DOS, with both spins included, whereas the right panel shows the
spin components of the DOS, with both valleys included. In both
panels the curves indicated by arrows show the total DOS. The
parameters �, λv , and λR are the same as in Fig. 2. The marking
of the curves is shown inside the panels. In the left panel both spin
contributions are included, in the right one both valley contributions
are included.

(ii) In the limit λR = 0, Eq. (8) reduces

Eηp
ξ (k) = l

[
ε2

k + �̄2
ηp

]1/2 + sλv. (13)

The DOS per unit area corresponding to Eq. (8) is given by

D(E ) = |E |v−2
F

2π h̄2

∑
ηp

[
θ
(|E | − ∣∣Eηp

1g

∣∣)
1 − λ̄/M+ + θ

(|E | − ∣∣Eηp
2g

∣∣)
1 + λ̄/M−

]
, (14)

with

Eηp
1g = λv + �̄ηp, Eηp

2g = [
(λv − �̄ηp)2 + 4λ2

R

]1/2
,

M± = [
(λ2

R − λv�̄ηp)2 + h̄2v2
F λ̄2ε±

]1/2
, (15)

h̄2v2
F ε± = E2 + λ2

v − �̄2
ηp ± 2

[
λ̄2E2 − λ2

R(λv + �̄ηp)2]1/2
.

In Fig. 3 we plot the DOS given by Eq. (14). The two
jumps in the DOS indicate that two gaps open at each val-
ley, displaying the clear signature of lifting the spin and
valley degeneracies, when graphene on WSe2 substrate is
in the direct band regime. The spin and valley degeneracies
are completely lifted in the direct band regime while only
the spin degeneracy is lifted in the inverted band regime.
Note that the DOS diverges in the inverted band regime as
D(E ) ∝ (E − �1)−1/2 with �1 = λR(λv + �)/(λ2

R + λ2
v )1/2

(see green curves in both panels). This divergence is due to
the Mexican-hat energy dispersion [63], cf. Fig. 2. In passing
we may add that this behavior of the DOS remains the same
as the broadened one provided the level width 	 is small,
	 < 0.5 meV. For higher 	 the small structure of the DOS
curves is smoothened out.

III. CONDUCTIVITIES

We consider a many-body system described by the Hamil-
tonian H = H0 + HI − R · F(t), where H0 is the unperturbed
part, HI = λV is a binary-type interaction (e.g., between elec-
trons and impurities or phonons) of strength λ, and −R · F(t )
is the interaction of the system with the external field F (t )
[64]. For conductivity problems we have F(t ) = eE(t ), where

E(t ) is the electric field, e the electron charge, R = ∑
i ri,

and ri the position operator of electron i. In the representa-
tion in which H0 is diagonal the many-body density operator
ρ = ρd + ρnd has a diagonal part ρd and a nondiagonal part
ρnd . Using ρ = e−βH and H = H0 + λV , all operators were
evaluated in the van Hove limit, λ → 0, t → ∞ but λ2t finite,
and all averages < X >= Tr{Xρ} in the representation in
which H0 is diagonal. In this representation λV is assumed
nondiagonal; if it has a diagonal part, it’s included in H0.
Correspondingly, for weak electric fields and weak scattering
potentials, for which the first Born approximation applies, the
conductivity tensor has a diagonal part σ d

μν and a nondiagonal
part σ nd

μν ; the total conductivity is σ tot
μν = σ d

μν + σ nd
μν , μ, ν =

x, y. For further details see Ref. [64].
In general we have two kinds of currents, diffusive and

hopping, with σ d
μν = σ

di f
μν + σ col

μν , but usually only one of
them is present. The term σ col

μν was introduced in Ref. [64] to
distinguish collisional current contributions that are different
from the standard diffusive ones valid for elastic scattering
and characterized by a relaxation time τ . As such, this is the
main term for transport in a magnetic field when the diffusion
contributions vanish. It also describes hopping between local-
ized states. If no magnetic field is present, the hopping term
σ col

μν vanishes identically and only the term σ
di f
μν survives. For

elastic scattering it is given by [64]

σ d
μν = βe2

S0

∑
ζ

fζ (1 − fζ )vνζ vμζ τζ , (16)

with τζ the momentum relaxation time, and vμζ the diagonal
matrix elements of the velocity operator. Further, fζ = [1 +
exp[β(Eζ − EF )]]

−1
is the Fermi-Dirac distribution function,

β = 1/kBT , and T the temperature.
Regarding the contribution σ nd

μν one can use the iden-
tity fζ (1 − fζ ′ )[1 − exp[β(Eζ − Eζ ′ )]] = fζ − fζ ′ and cast
the original form [64] in the more familiar one

σ nd
μν = ih̄e2

S0

∑
ζ �=ζ ′

( fζ − fζ ′ ) vνζζ ′ vμζζ ′

(Eζ − Eζ ′ )(Eζ − Eζ ′ − i	)
, (17)

where the sum runs over all quantum numbers ζ and ζ ′ with
ζ �= ζ ′. The infinitesimal quantity ε, in the original form of
the conductivity, has been replaced by 	ζ to phenomenolog-
ically account for the broadening of the energy levels. One
should keep in mind that a strong disorder may modify the
Hall conductivity considerably. However, this problem is not
studied here. In Eq. (17) vνζζ ′ and vμζζ ′ are the off-diagonal
matrix elements of the velocity operator. The relevant veloc-
ity operators are given by vx = ∂H/h̄∂kx and vy = ∂H/h̄∂ky.
With ζ = {l, s, k, η, p} = {ξ, k, η, p} for brevity, they read

〈ζ |vx|ζ ′〉 = vF Nηp
ξ Nηp

ξ ′
(
Dηp

ξ,ξ ′eiφ + F ηp
ξ,ξ ′e−iφ

)
δη,η′δk,k′ , (18)

〈ζ ′|vy|ζ 〉 = ivF Nηp
ξ Nηp

ξ ′
(
Dηp

ξ,ξ ′e−iφ − F ηp
ξ,ξ ′eiφ

)
δη,η′δk,k′ , (19)

where Dηp
ξ,ξ ′ = Aηp

ξ ′ + Bηp
ξ Cηp

ξ ′ and F ηp
ξ,ξ ′ = Aηp

ξ + Bηp
ξ ′ Cηp

ξ .
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The diagonal velocity matrix elements vxζ = ∂Eηp
ξ /h̄∂kx

from Eq. (8) can be readily found

vxζ = l h̄v2
F kx

Eηp
ξ

[
1 + sλ̄2

√
ϒ

]
. (20)

The above mentioned general expressions for conductiv-
ities are modified for Floquet theory [34] but are still valid
for driven systems in the limit of large frequencies and weak
intensity of light (A << 1) since only the zeroth level of the
Floquet states contributes [35], cf. Sec. III. Thus, these states
can be taken as the eigenstates of Eq. (6). In addition, although
Eq. (6) is perturbative in �, the above Hall conductivities
expressions are nonperturbative in �; that is, an infinitesi-
mal gap �̄ηp is sufficient to yield a topological band with a
quantized Hall conductance in units of 2e2/h [35]. Further, the
Fermi distribution is nonuniversal for systems, which are out
of equilibrium but for some cases of system-bath couplings
[65], the steady-state distribution becomes thermal, and we
restrict our results to such cases. Additionally, the electrode
chemical potential will be small, for linear responses, com-
pared to the intrinsic chemical potential of the system, and so
we ignore the electrode chemical potential in our calculations.
This allows us to write the chemical potential in the Kubo
formalism as a constant, i.e., without accounting for sources at
the boundaries. Also, it is worth pointing out that our approach
for evaluating the conductivity tensor is the same or similar
with that followed in Refs. [54] for MoS2, [66,67] for silicene,
and [68] for WSe2. In all of them a perpendicular electric field,
not the source-to-drain one, was included in H0. This is similar
to our inclusion of the off-resonant light term V (t ) in H0, as in
the present paper, and was also the case of Ref. [56].

We now calculate the conductivity σ nd
yx given by Eq. (17).

Further, the velocity matrix elements (18) and (19) are diago-
nal in k, therefore k will be suppressed in order to simplify the
notation. The summation in Eq. (17) runs over all quantum
numbers ξ , ξ ′, η, η′, and k. The parameter 	ζ = 	

ξξ ′
ηη′ , that

takes into account the level broadening, is assumed indepen-
dent of the band and valley indices, i.e., 	

ξξ ′
ηη′ = 	. Using

Eqs. (18) and (19) we can express Eq. (17) as

Reσ nd
yx (ξ, ξ ′, η, p) = 2e2h̄2v2

F

h

∫
dkk

(
Nηp

ξ Nηp
ξ ′

)2(
f ηp
ξk − f ηp

ξ ′k

)
(�ηp

ξξ ′ )2 + 	2

×[(
Dηp

ξ,ξ ′
)2 − (

F ηp
ξ,ξ ′

)2]
,

Imσ nd
yx (ξ, ξ ′, η, p) = 0, (21)

where �
ηp
ξξ ′ = Eηp

ξk − Eηp
ξ ′k .

For λ = � = �� = 0 and λR �= 0, Eq. (21) vanishes be-
cause the factor (Dηp

ξ,ξ ′ )2 − (F ηp
ξ,ξ ′ )2 becomes zero. Ignoring

skew and intervalley scatterings, the valley-Hall conductivity
(σ v

yx ) obtained from Eq. (21) can be evaluated as

σ v
yx =

∑
ξξ ′ p

[
σ nd

yx (ξ, ξ ′,+, p) − σ nd
yx (ξ, ξ ′,−, p)

]
, (22)

where we set Reσ nd
yx (ξ, ξ ′, η, p) ≡ σ nd

yx (ξ, ξ ′, η, p). The spin-
Hall conductivity σ s

yx corresponding to Eq. (21) is finite only
when both KM and staggered SOCs are present [69]. There-
fore, σ s

yx vanishes even in the presence of Rashba SOC. Even

if it does not in graphene on WSe2, it is assumed negligible in
the regime λv � λso that we treat and we neglect it altogether,
see also Sec. II, above Eq. (3). As usual, we have to multiply
σ v

yx by 1/2e [58].
We can find a simple analytical result from Eq. (22) for the

specific case λv, λR = 0 in the low temperature limit. It is

σ v
yx =

⎧⎪⎪⎨
⎪⎪⎩

e

2h
, −(� + ηp��) < EF < � + ηp��

e

2h

η� + p��

EF
, EF > � + ηp��.

(23)

Equations (16) and (17) of Ref. [54] in the limit λ → 0
are similar to Eq. (23). For �� → 0, Eq. (23) reduces to a
result reported in Ref. [70]. Further, we find the charge Hall
conductivity

σ c
yx =

∑
pηη′ξξ ′

σ nd
yx (ξ, ξ ′, η, η′, p) =

{
0, �� = 0

�= 0, �� �= 0.

(24)
In the limit �� → 0, σ c

yx vanishes.
We now consider the diagonal component σ d

xx given by
Eq. (16). Using Eq. (18), with ξ = ξ ′, we obtain

σ d
xx(ξ, η, p) = e2v2

F β

π

∫
dkk

(
Nηp

ξ

)4
f ηp
ξk

(
1 − f ηp

ξk

)

×(
Aηp

ξ + Bηp
ξ Cηp

ξ

)2
τ

ηp
ξk . (25)

At very low temperatures we can make the ap-
proximation β f ηp

ξk (1 − f ηp
ξk ) ≈ δ(Eηp

ξ − EF ) and τ
ηp
ξk = τ

ηp
ξkF

.
We find r = σ nd

xx (ξ, η, p)/σ d
xx(ξ, η, p) << 1, mainly because

σ nd
xx (ξ, η, p) ∝ 	. The precise value of r depends on the scat-

tering strength through 	 and τ appearing in σ d
xx(ξ, η, p). In

what follows we neglect σ nd
xx (ξ, η, p).

After evaluating the integral over k, Eq. (25) becomes

σ d
xx(ξ, η, p) = e2τF EF

π h̄2

[
Qηp

ξ

θ (EF − Eηp
1g )

1 − λ̄2/M

∣∣∣
ε+F

+ Qηp
ξ

θ (EF − Eηp
2g )

1 + λ̄2/M

∣∣∣
ε−F

]
, (26)

where Qηp
ξ = (Aηp

ξ + Bηp
ξ Cηp

ξ )2(Nηp
ξ )4 and τF ≡ τ

ηp
ξkF

is the re-
laxation time evaluated at the Fermi level. As indicated, the
1st and 2nd line in the square brackets are to be evaluated
at ε+F and ε−F , respectively, where ε±F is obtained from
Eq. (15) for E = EF . To evaluate Eq. (25) numerically we
used a Lorentzian broadening of δ(Eηp

ξ − EF ).
The valley Pv and spin Ps polarizations, corresponding to

Eq. (25), are

Pv =
∑
ξ p

σ d
xx(l, s,+, p) − σ d

xx(l, s,−, p)

σ d
xx(l, s,+, p) + σ d

xx(l, s,−, p)
, (27)

and

Ps =
∑
ηpl

σ d
xx(l,+, η, p) − σ d

xx(l,−, η, p)

σ d
xx(l,+, η, p) + σ d

xx(l,−, η, p)
. (28)

In Fig. 4 we plot the conductivity, given by Eq. (25),
as a function of the Fermi energy EF by evaluating the
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FIG. 4. Longitudinal conductivity vs Fermi energy EF for T =
0 K, and τF = 1 × 10−15 sec. The other parameters are the same as
in Fig. 2.

integral over k numerically for two values of the parame-
ter �� and p = +1. Further, the left panel represents the
valley-dependent contribution of Eq. (25), with both spins
included, whereas the right one depicts its spin-dependent
contribution with both valleys included. To display the result
clearly, we set � = 1 meV, λR = 2 meV, λv = 4 meV, and
τF = 1 × 10−15 sec. We find that σ d

xx(ξ, η, p) vanishes when
EF is in the gap while it increases linearly when EF is outside
the gap. The kink appears when EF crosses the conduction
band (Eη+

++). Moreover, we find σ d
xx(ξ,+,+) = σ d

xx(ξ,−,+)
in the inverted band regime (�� = 0) while σ d

xx(ξ,+,+) �=
σ d

xx(ξ,−,+) in the direct band regime (�� �= 0). We also
verified that the analytical result [Eq. (26)] agrees well with
the numerical one obtained from Eq. (25).

We plot the total longitudinal conductivity, with both val-
leys and spins included, in Fig. 5 for different values of ��.
As expected, σ d

xx is an even function of ��. In addition, the
band gap increases with ��.

FIG. 5. Total longitudinal conductivity vs Fermi energy EF . The
parameters are � = 0.54 meV, λR = 0.56 meV, and λv = 1.22 meV
[57].

FIG. 6. Valley Pv and spin Ps polarization vs EF for different
values of ��, as indicated, and λR = 4 meV. The other parameters
are the same as in Fig. 4. Notice that Pv = 0 for �� = 0 while
Ps �= 0.

The valley Pv and spin Ps polarizations versus EF are
shown in Fig. 6 for λR = 4 meV and three different values of
��. It can be seen that Pv = 0 in the inverted band regime
while Pv �= 0 in the direct band one. In other words, the valley
polarization can be switched on and off by controlling the pa-
rameter ��. On the other hand, Ps �= 0 in both band regimes.
It is interesting to study Pv in the direct band regime (�� �=
0). The contribution of σ d

xx(ξ,+) to Pv is zero in the range
λv + � − �� � EF < λv + � + ��. Thus, Pv = 1, which is
a pure K ′ valley polarization for �� �= 0. When we change the
polarization of light to p = −1, a pure K valley polarization is
obtained. That is, one can easily reverse the valley polarization
by reversing that of the circularly polarized light. This result
may be useful in valleytronics applications, such as making
valley valves [71].

In Fig. 7 we show the numerically evaluated valley-Hall
conductivity σ v

yx, from Eq. (22), in the inverted (�� = 0) and
direct (�� �= 0) band regimes for l = l ′ with s �= s′, as well
as for l �= l ′ with s = s′ and s �= s′. We used a sufficiently low
temperature (T = 1 K) to ensure that thermal vibrations of
atoms have a negligible contribution to the electron transport.
σ v

yx is quantized and has the universal value 2e2/h when the
Fermi level is in the gap −1 meV � EF � 1 meV (see green
curve, compare with the DOS in Fig. 2). Its absolute value
is reduced outside the gap as EF increases. The two peaks,
to the left and right of the gap, at EF ≈ ±1.5 meV, appear
due to the inverted band structure or the Mexican hat-like
dispersion as can be seen in the inset of Fig. 7. σ v

yx vanishes
when EF is in the gap in the direct band regime �� �= 0 as
the blue curve shows. The reason is that in this case elec-
trons from both valleys flow in opposite directions and their
contributions to the valley current exactly cancel each other.
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FIG. 7. Valley-Hall conductivity vs EF for T = 1 K and 	 = 0.
The other parameters are � = 0.54 meV, λR = 0.56 meV, and λv =
1.22 meV [57]. The green curve is measured in units of e/h and
the blue one in units of e/10h. The inset is a blowup of the region
−2 meV � EF � 2 meV.

A non zero valley-Hall current is produced when EF crosses
the conduction and valence bands. When EF grows further,
the conductivity decreases. It is also worth noticing that the
valley conductivity changes sign (not shown) if proximitized
graphene is irradiated by a right circularly polarized light
(p = −1).

For �� = 0 a quantized valley-Hall conductivity of 2e2/h
is obtained in the band gap as can be seen from the green
curve in the inset of Fig. 7. On the other hand, for �� �= 0 the
valley-Hall conductivity is quenched to zero within the band
gap (see the blue curve of Fig. 7), while a quantized charge
Hall conductivity of 2e2/h and −2e2/h is obtained for the left-
and right-handed circularly polarized light, respectively, as
shown in Fig. 8. The reason for the change 2e2/h → −2e2/h
is that this nondiagonal contribution to the conductivity is an
odd function of ��.

IV. SUMMARY AND CONCLUSIONS

We investigated the valley-dependent dc transport by em-
ploying the linear response formalism and Floquet theory in
the high-frequency limit as well as the energy dispersion in
the presence of proximity-induced gaps. We derived analyt-
ical expressions for the energy dispersion relation of Dirac
fermions, the DOS, and the diagonal and nondiagonal parts
of the conductivity. We found that a transition occurs from an
inverted band regime to a direct one for �� > � + λv (see
Fig. 2). In addition, the energy dispersion shows a complete
lifting of the fourfold spin and valley degeneracies in the direct
band structure while it has a twofold valley degeneracy in the
inverted band phase. We demonstrated that the DOS exhibits

FIG. 8. Charge Hall conductivity vs EF for different values of
��. The other parameters are the same as in Fig. 7. It vanishes for
�� = 0 and changes sign when �� is changed to −��.

a van Hove singularity due to the inverted band structure,
which remained unchanged as long as �� < � + λv . The
four jumps in the DOS are due to the lifting of the fourfold
spin and valley degeneracy in the direct band regime in con-
trast to pristine graphene, cf. Fig. 3.

We showed that the valley polarization Pv vanishes for
�� < � + λv while for �� > � + λv it is finite, Pv �= 0;
this might be useful in the design of valleytronics devices
such as optically controlled valley filters and valves based
on proxitimized graphene. On the other hand, Ps �= 0 in both
band regimes. Further, 100% K or K ′ valley polarization is
achieved in the range λv + � − �� � EF < λv + � + ��

when the handedness of the light polarization changes.
We found that, when EF in the gap, σ v

yx = 2e2/h in the
invert band regime while σ v

yx = 0 in the direct band regime.
Peaks are found in the curve of σ v

yx versus EF when EF crosses
the inverted dispersion, see the green curve in Fig. 7. More-
over, for �� > � + λv , we have σ v

yx �= 0 when EF crosses the
conduction and valence bands. The valley-Hall conductivity
tends to σ v

yx = 0 for both invert and direct band regimes in
the limit EF → ±∞. A last finding is that the charge Hall
conductivity is finite for �� �= 0 and changes sign when the
handedness of the light polarization changes.

Our results may be pertinent to developing future spin-
tronics and valleytronics devices such as field-effect tunneling
transistors, memory devices, phototransistors, etc.
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