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We study Wigner crystallization of electron systems in phosphorene quantum dots with the confinement of
an electrostatic origin with both circular and elongated geometry. The large effective masses in phosphorene
promote the separation of the electron charges already for quantum dots of relatively small size. The anisotropy
of the effective mass allows for the formation of Wigner molecules in the laboratory frame with a confined
charge density that has lower symmetry than the confinement potential. We find that in circular quantum dots
separate single-electron islands are formed for two and four confined electrons but not for three trapped carriers.
The spectral signatures of the Wigner crystallization to be resolved by transport spectroscopy are discussed.
Systems with Wigner molecule states are characterized by a nearly degenerate ground state at B = 0 and are
easily spin-polarized by the external magnetic field. In electron systems for which the single-electron islands are
not formed, a more even distribution of excited states at B = 0 is observed, and the confined system undergoes
ground-state symmetry transitions at magnetic fields of the order of 1 T. The system of five electrons in a circular
quantum dot is indicated as a special case with two charge configurations that appear in the ground state as the
magnetic field is changed: one with the single electron islands formed in the laboratory frame and the other
where only the pair-correlation function in the inner coordinates of the system has a molecular form as for
three electrons. The formation of Wigner molecules of quasi-1D form is easier for the orientation of elongated
quantum dots along the zigzag direction with heavier electron mass. The smaller electron effective mass along the
armchair direction allows for freezing out the transverse degree of freedom in the electron motion. Calculations
are performed with a version of the configuration interaction approach that uses a single-electron basis that
is preoptimized to account for the relatively large area occupied by strongly interacting electrons allowing for
convergence speed-up.
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I. INTRODUCTION

Electron gas with Coulomb interactions dominating over
the kinetic energies forms a Wigner crystal [1–4]. Its fi-
nite counterparts, e.g., Wigner molecules [5–21] are formed
in quantum dots at low electron numbers in spatially large
systems [5] or in a strong magnetic field that promotes the
single-electron localization [22,23].

The confined charge density in quantum dots defined in
materials with isotropic effective mass reproduces the sym-
metry of confinement potential. For this reason in circular
quantum dots, separation of the electrons in the Wigner phase
occurs only in the inner coordinates of the system spanned by
relative electron-electron distances [22]. For lowered symme-
try, the Wigner molecules can appear in the laboratory frame
[24], with the special case of one-dimensional systems that is
studied with much of attention [6,9,16,20,21].

Phosphorene [25–28] is a particularly interesting material
for Wigner-molecule physics due to the large electron effec-
tive masses and their strong anisotropy [29–35] Large masses
reduce the kinetic energy as compared to the electron-electron
interaction energy. Lowering the Hamiltonian symmetry by
the effective mass anisotropy is promising for observation of
the Wigner molecules in the laboratory frame.

Phosphorene quantum dots [36–43] in the form of small
flakes have been extensively studied, in particular from

the point of view of optical properties. In this work we
consider a clean electrostatic confinement that keeps the con-
fined electrons off the edge of the flake. In finite sheets of
graphene, the edges inhibit the Wigner crystallization [12].
Advanced phosphorene gating techniques have been devel-
oped [26,28,44–46] for, e.g., fabrication of the field-effect
transistors [26,44,45] and experimental studies of the quantum
Hall effects [47–50] are carried out. Therefore the formation
of clean electrostatic quantum dots [51] in phosphorene is
within experimental reach.

Ordering of the electron charge in Wigner molecules of
single-electron islands in quasi 1D systems [6,9,16,20,21]
reduces the electron-electron interaction energy at the cost of
increasing the kinetic energy due to the electron localization.
In GaAs systems with low electron band effective mass of
0.067m0, conditions for Wigner molecule formation occur
only in very long systems of hundreds of nanometers [16]
already for four electrons. On the other hand, the light electron
mass in GaAs favors the reduction of the 2D confinement to
an effectively 1D form with all the electrons occupying the
same state of quantization for the transverse motion. Hence,
the large effective masses in phosphorene are promising for
producing the Wigner molecules in systems of relatively small
sizes, but may inhibit formation of 1D confinement.

In this paper, we consider the formation of Wigner
molecules in the laboratory frame for a few electrons confined

2469-9950/2022/106(20)/205304(13) 205304-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3118-8005
https://orcid.org/0000-0001-6938-3247
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.205304&domain=pdf&date_stamp=2022-11-17
https://doi.org/10.1103/PhysRevB.106.205304


TANMAY THAKUR AND BARTŁOMIEJ SZAFRAN PHYSICAL REVIEW B 106, 205304 (2022)

in circular and elongated quantum dots for varied confine-
ment orientation and look for spectral signatures of Wigner
crystallization to be experimentally resolved. We use the
configuration interaction approach [7,52–55] that requires an
optimized single-electron basis [56–58] for convergence due
to the strong electron-electron interaction effects [59] in phos-
phorene.

This paper is organized as follows. In the Theory section,
we describe the applied computational approach. In the Re-
sults section, we first describe the results for circular quantum
dots and next the Wigner molecules in quasi-one-dimensional
confinement oriented along the zigzag and armchair crystal
directions. Section IV contains the discussion of the ex-
perimentally accessible signatures of the Wigner molecule
formation in the laboratory frame. Summary and conclusions
are given in Section V. In the Appendix, we include details
on the single-electron wave functions used for optimization of
the basis, the choice of the computational box, and the spectra
without the Zeeman interaction.

II. THEORY

In this section, we describe the finite difference method
applied to the continuum Hamiltonian of a single electron
in phosporene (Sec. II A), the model potential (Sec. II B),
and the configuration interaction approach (Sec. II C)
with optimization of the single-electron basis allowing for
faster convergence of the configuration interaction approach.
Section II D describes the formula for extraction of the charge
density and pair correlation functions for discussion of the
Wigner crystallization of the confined system.

A. Single-electron Hamiltonian

We use the single-band approximation for Hamiltonian
describing the electrons of the conduction band of monolayer
phosphorene [35,60]

H0 =
(

−ih̄
∂

∂x
+ eAx

)2

/ 2mx +
(

−ih̄
∂

∂y
+ eAy

)2

/ 2my

+W (x, y) + gμBBσz/2 , (1)

where W (x, y) is the confinement potential. In Eq. (1), we use
the effective masses mx = 0.17037m0 for the armchair crystal
direction (x) and my = 0.85327m0 for the zigzag direction (y).
The values for the masses were determined in Ref. [35] by
fitting the confined energy spectra of the continuum single-
band Hamiltonian to the results of the tight-binding method.
A detailed comparison of the spectra as obtained by the con-
tinuum model to the tight-binding ones is given in Ref. [35]
for the harmonic oscillator potential and in Ref. [60] for the
annular confinement. In Eq. (1), we take the Landé factor
g = g0 = 2 after the k · p theory of Ref. [33]. The values
of experimentally extracted g-factors vary; in particular an
increase with respect to g0 was reported [59] at low filling
factors, which is attributed [33,59] to strong electron-electron
interaction effects in black phosphorus. The electron-electron
interaction in this work is treated in an exact manner. The spin
Zeeman term leads to the spin polarization of the confined
system. The exact value of the magnetic field producing the
spin polarization is affected by the adopted g-factor value,

but no qualitative effect for the Wigner crystallization of the
charge density is expected as long as the spin-orbit coupling
is absent. The spectral features of Wigner crystallization for
g = 0 are discussed in Appendix.

We work with a square mesh with a spacing �x in
both the x and y directions. The Hamiltonian acting on
the wave function �μ,η = �(xμ, xη ) = �(μ�x, η�x) in the
finite-difference approach reads

H0�μ,η ≡ h̄2

2mx�x2
(2�μ,η − Cy�μ,η−1 − C∗

y ψμ,η+1)

+ h̄2

2my�x2
(2�μ,η − Cx�μ−1,η − C∗

x ψμ+1,η )

+Wμ,η�μ,η + gμBB

2
σz, (2)

where Cx = exp(−i e
h̄�xAx ) and Cy = exp(−i e

h̄�xAy) intro-
duce the Peierls phases [61] for the description of the orbital
effects of the perpendicular magnetic field (0, 0, B). For cal-
culation of the phase shifts, we use the symmetric gauge A =
(Ax, Ay, Az ) = (−By/2, Bx/2, 0). Hamiltonian (2) is diago-
nalized in a finite computational box with the infinite quantum
well set at the end of the box (see Appendix).

B. Model potential

For evaluation of a realistic confinement potential W , we
use a simple model with a phosphorene plane embedded in a
Al2O3 dielectric that fills the area between two parallel elec-
trodes [Figs. 1(a) and 1(b)]. A higher (lower) potential energy
for electrons is introduced at the top (bottom) electrode. The
bottom electrode is grounded and contains a protrusion that
approaches the phosphorene layer. As a result, the electro-
static potential within phosphorene forms a cavity that traps
the electrons of the conduction band. The model is a vari-
ation [62,63] of a gated GaAs quantum dot of Ref. [64].
Below we use two models: one with a circular protrusion
[Fig. 1(a)] and the other with a rectangular one [Fig. 1(b)].
The latter is used in the following to study the case close
to the 1D confinement. The confinement potential to be used
in the Hamiltonian is given by W (x, y) = −eV (x, y, zp), with
the electrostatic potential V that we evaluate by solving the
Laplace equation −∇2V = 0 and zp is the coordinate of the
phosphorene layer. For evaluation of the potential we use
the finite element method similar to the one applied in
Ref. [63] for a charge-neutral phosphorene plane. The con-
finement potential at the monolayer is plotted in Fig. 1(c) for
the circular protrusion of Fig. 1(a) and in Fig. 1(d) for the
rectangular protrusion of Fig. 1(b).

C. Diagonalization of the N-electron Hamiltonian

The system of N-confined electrons is described with the
Hamiltonian

HN =
N∑

i=1

H0(i) +
N∑

j>i

e2

4πε0ε ri j
. (3)

We take the dielectric constant ε = 9 assuming that the phos-
phorene is embedded in Al2O3.
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FIG. 1. Schematics of model systems for evaluation of the confinement potential. The phosphorene monolayer is embedded in a dielectric
that fills the space between electrodes of the plane capacitor configuration. The lower metal electrode contains a circular (a) or rectangular
(b) protrusion. The upper electrode is kept at a higher potential energy −eV2 = 0.25 eV for the electrons than the lower one −eV1 = 0. The
protrusion introduces an inhomogeneity of the electric field within the capacitor that forms the confinement potential for the electrons of the
conduction band. We use h1 + h2 + h3 = 150 nm and h1 = 50 nm. For the circular protrusion (a) we take h2 = 50 nm and for the rectangular
one (b) h2 = 30 nm. The radius of the protrusion in (a) is R = 50 nm, and the sides of the rectangle in (b) have lengths l1 = 80 nm and l2 = 30
nm. The confinement potential on the phosphorene plane is plotted in (c) and (d) for the circular and rectangular protrusions, respectively. The
origin in (c) and (d) is the symmetry center of the protrusion.

In the standard configuration-interaction method
[7,52–55] the N-electron Hamiltonian is diagonalized
on the basis of Slater determinants constructed with the
single-electron Hamiltonian H0 eigenstates. Each of the Slater
determinants defines a configuration, e.g., a distribution of
electrons over the single-electron states. The number of Slater
determinants to be used in the calculation is established by a
study of the convergence of the energy estimates. Reaching
convergence in the present calculation is challenging because
of the strong electron-electron interaction in phosphorene
[59]. The energy of the ground state estimated for N = 4 at
B = 0 in the circular potential of Fig. 1(c) is plotted with
the black line in Fig. 2(a) as a function of the number of the
lowest-energy single-electron states ν that span the Slater
determinant basis. The Hamiltonian HN commutes with the
operator of the z component of the total spin and also with
the parity operator due to the point symmetry of the potential.
The symmetries allow for a few-fold reduction of the number
of basis elements. In Fig. 2, the four-electron ground state
at B = 0 is the spin singlet Sz = 0 of an even spatial parity.
Only Slater determinants of these symmetries contribute
to the ground-state wave function. For ν = 60, the Slater
determinants set counts

(60
4

) = 487 635 elements, of which
only about 94 500 determinants correspond to Sz = 0 and
either even or odd parity. The right vertical axis in Fig. 2(a)
shows the number of Slater determinants of the spin-parity
symmetry that are compatible with and contribute to the
ground state.

The convergence of the CI method using the H0 single-
electron eigenstates (black line in Fig. 2(a)) is slow. The
electron-electron interaction has a pronounced effect on
the electron localization, since the electrons in phospho-

rene are quite heavy as compared to those in, e.g., GaAs,
and the deformation of the charge density in terms of the
single-electron energy is cheap. This in turn results in a high
numerical cost of the convergent calculations that require
a large number of single-electron states to be included in
the convergent basis. Therefore, due to the strong electron-
electron interaction, the set of H0 eigenstates is not the best
starting point for a convergent CI calculation. The literature
indicates a number of methods to speed-up the convergence,
including the HF+CI method [56–58] where the basis for
the CI method is based on the Hartree-Fock single-electron
spin-orbitals. In the HF+CI approach, the mean-field effects
of the electron-electron interaction are accounted for already
in the single-electron basis and the CI is responsible only
for description of the electron-electron correlation effects that
evade the mean-field treatment. The HF charge density in the
unrestricted version of the method breaks the symmetry of
the confinement potential and its restoration is challenging
[65,66] on its own at the CI stage. Convergence speed-up by
the choice of the single-electron basis is achieved [67,68] with
the natural orbitals [69,70] introduced by Löwdin [71].

In this work, we apply a simple approach that allows for the
convergence speed-up by replacing the potential W in H0 by
another potential that produces single-electron wave functions
of the low-energy spectrum that cover a larger area than the
ones for the bare potential W . For preparation of the single-
electron basis, we diagonalize the single-electron Hamiltonian
H ′

0 with the potential

W ′ = W + V0 exp(−(x2 + y2)/d2). (4)

The H ′
0, eigenfunctions are used for the Slater determinants

to diagonalize the Hamiltonian HN . V0 and d of Eq. (4) are
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FIG. 2. (a) Ground-state energy for four electrons confined in
circular quantum dot as a function of the number of single-electron
eigenstates used for construction of the basis for B = 0. For the
black (red) line, the eigenstates of the single-electron Hamiltonian
H0 (Hamiltonian H ′

0) with the bare confinement (confinement with
a central Gaussian with V0 = 8 meV and σ = 35 nm were used).
(b) Energy shift that appears when the states with triple or quadruple
excitations above the single-electron 32nd energy level are excluded
from the basis constructed using H0 (black) and H ′

0 (red) eigenstates.
[(c)–(k)] The ground-state charge density in the x > 0, y > 0 quarter
of the QD as obtained using the Slater determinants basis constructed
with H0 [(c), (f), and (i)], H ′

0 [(d), (g), and (j)], and H ′′
0 [(e), (h),

and (k)] Hamiltonians using ν = 24 [(c)–(e)], 40 [(f)–(h)], and 60
[(i)–(k)] lowest-energy single electron wave functions.

used as variational parameters in terms of the N-electron
energy [72]. The results for four electrons and the basis of
the H ′

0 eigenstates for optimized Gaussian parameters given
by the red line in Fig. 2(a) exhibit a substantial convergence
speed-up with respect to H0 basis. In particular, the basis of
H ′

0 eigenstates with ν = 36 and about 12 thousand elements
produce a similar ground-state energy estimate as the H0

basis with ν = 52 and as much as about 53 thousand Slater
determinants.

Figure 2(a) contains also the results obtained with eigen-
functions of Hamiltonian H ′′

0 (green line) using potential
W ′′(x, y) = W (x)/s, where s is the scaling factor of the bare
potential with its variationally optimal value of s = 2.13. The
scaling enlarges the area covered by the low-energy single-
electron wave functions in a manner that becomes equivalent
in terms of the four-electron ground-state energy for the one
using W ′ potential for ν > 32. The low-energy single-electron
wave functions for W , W ′, and W ′′ potentials are given in
Appendix.

Figures 2(c)–2(k) shows the ground-state charge density in
the x > 0, y > 0 quarter of the QD as obtained for ν = 24
(first row of plots), 40 (second row of plots), and 60 (third
row of plots) with the H0 (left column), H ′

0 (central column),
and H ′′

0 (right column) eigenfunctions. For ν = 60 the results
are similar for all the three bases. For lower ν, the results for
H0 [Figs. 2(c) and 2(f)] and H ′′

0 [Fig. 2(e)] the islands appear
closer to the origin than in the convergent result.

In order to illustrate the role of the modified potential in
the description of the electron-electron interaction, we plotted
in Fig. 2(b) the energy overestimate that is obtained once the
basis of Slater determinants is reduced by exclusion of all
configurations with more than two electrons [56] above the
32nd single-electron energy level. For the Hamiltonian H0,
the cost of the limited basis is much larger than for H ′

0 and
grows fast with ν. For H ′

0 the overestimate is much lower. The
single-electron effects due to W ′ potential are included in the
basis, and the double excitations that stay in the basis cover
most of the electron-electron correlation effects. A similar
result is obtained in the HF+CI method [57,58].

D. Charge density and pair correlation function

For analysis of the electron localization, we extract the
charge density and the pair correlation function from the N-
electron wave function �. The charge density is obtained as

ρ(r) = 〈�|
N∑

i=1

δ(ri − r)|�〉 . (5)

The pair correlation function extracts the relative localization
of the electrons with one of the carrier positions fixed

ρ12(r, r f ) = 〈�|
N∑

i, j=1

δ(ri − r)δ(r j − r f )|�〉 . (6)

In the following, we fix the position r f of one of the electrons
near the local charge density maximum for a discussion of ρ12
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plots. The spin density can be calculated as

ραi (r) = 〈�|
N∑

i=1

δ(ri − r)|αi〉〈αi||�〉 , (7)

where the projection on the spin eigenstates uses |αi〉 that
stands for the single-electron spin eigenstate for ith elec-
tron. Similarly, the relative localization including the spin
configuration of the electron pair can be included in the ρ12

pair-correlation function. In particular, opposite spin distribu-
tion can be obtained using spin projections

ρ
↑↓
12 (r, r f ) = 〈�|

N∑
i, j=1

δ(ri − r)δ(r j − r f )

× (|αiβ f 〉〈αiβ f | + |βiα f 〉〈βiα f |)�〉, (8)

with the spin eigenstates |α〉 
= |β〉.

III. RESULTS

In this section, we first (Sec. III A) discuss case for the
circular external potential where the formation of Wigner
molecules in the laboratory frame occurs due to anisotropy
of the effective mass. Section III B contains the results for
an elongated confinement potential near the quasi 1D confine-
ment limit.

A. Circular potential

We discuss first the relatively simple case for N � 4
(Sec. III A 1) where in the low-energy states the Wigner
molecule formation in the laboratory frame is present (N =
2 and 4) or absent N = 3. Section III A 2 covers the case for
N = 5 where states of both types are present in the low-energy
part of the spectrum.

1. Results for N � 4 electrons

The energy spectra for the circular potential [see Fig. 1(c)]
are plotted in Fig. 3. For N = 1 [Fig. 3(a)], the energy lev-
els for B = 0 are degenerate with respect to spin. For N =
2 [Fig. 3(b)], the ground state is an even parity spin sin-
glet which is replaced by an odd-parity spin-polarized triplet
for B � 0.25 T. The energy spacing between the lowest-
energy states in Figs. 3(b)–3(f) are much smaller than for
the single-electron spectra, which is a signature of strong
electron-electron interaction [73]. The spin triplets that we
find correspond to odd spatial parity which is characteristic
to the two-electron system [19].

For N = 3 electrons [Fig. 3(c)], three different symmetry
states appear in the ground state starting from an odd-parity
spin doublet for B = 0. Above 1 T the ground state becomes
spin-polarized first in the odd parity and next, above �4 T, in
the even parity state.

For N = 4 [Fig. 3(d)], the ground state at B = 0 is nearly
degenerate with respect to the parity and the spin. The ground
state at B = 0 is an even parity singlet. The spin polarization
in the ground state appears already for B � 0.03 T.

The results for N ∈ [2, 4] can be summarized in the fol-
lowing manner.

FIG. 3. Spectra for circular potential for N = 1 (a), 2 (b), 3 (c),
4 (d), and 5 (e) electrons. In (a), even and odd parity energy levels
are plotted with blue and green lines, respectively. In (b)–(e), the
even parity energy levels are plotted with the solid lines and the odd
parity energy levels with the dotted lines. In (e), the symbols of ’+’
and ’o’ mark the states with (1,4) and (0,4) charge configurations,
respectively (see text). The color scale is separate for each figure and
given to the right of the plot.
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FIG. 4. The ground-state charge density in the circular confine-
ment for N = 2 [(a) and (b)], 3 [(c) and (d)], and 4 [(e) and (f)] for
B = 0.01 (left column) and 5 T (right column).

(i) For even N the spectrum at B = 0 contains a few nearly
degenerate energy levels near the ground state. Already a low
magnetic field of a fraction of tesla leads to a complete spin
polarization in the ground state. The systems with N = 2 and
4 are also similar from the point of view of the Wigner molec-
ular charge density, which contains separate N single-electron
islands [Figs. 4(a), 4(b) and 4(e), 4(f)].

(ii) For N = 3 the ground state at B = 0 is exactly twofold
degenerate with respect to the spin, and a few ground-state
transitions appear in the field of the order of a few tesla before
the high field symmetry is established. The charge density
exhibits 4 local charge maxima Figs. 4(c) and 4(d). These are
not the single-electron islands. Furthermore, the charge den-
sity is smeared over the area between the maxima [Figs. 4(c)
and 4(d)] and does not vanish as effectively as for even N
[Figs. 4(a) and 4(b)] The three-electron charge density is not
ordered in the Wigner-molecule form.

The effects of the electron-electron correlation in the local-
ization of the carriers can be observed in the pair-correlation
function plots given in Fig. 5. For these plots, we fix the posi-
tion of one of the electrons [see r f in Eq. (6)] that is marked
by the cross in each panel of Fig. 5. For illustration of the
system reaction to the electron position, we fixed one of the
electrons slightly off the local density maxima of Fig. 5 near
the left (top) edge of the charge distribution in the left (right)
column of Fig. 5. For three electrons [Figs. 5(a) and 5(b)]

FIG. 5. Pair correlation function plots for the circular confine-
ment potential. The spin-polarized ground state at B = 5 T is
considered. The crosses indicate the position of the fixed electron
[see Eq. (6)].

the conditional probability exhibits two separate maxima. The
maxima move once the fixed electron position is changed
[cf. Figs. 5(a) and 5(b)], which corresponds to the ringlike
charge distribution in Figs. 4(c) and 4(d). On the other hand,
for N = 4, the probability maxima at the right and bottom
edges of the quantum dot stay in the same place when the
fixed electron position is changed [Figs. 5(c) and 5(d)]. Note
that for N = 4, the charge density produces the pronounced
single-electron maxima [Figs. 4(e) and 4(f)].

For N = 3, the single-electron islands forming a Wigner
molecule in the real space are not observed since the number
of local charge maxima is not equal to N [Figs. 4(c) and
4(d)]. The single-electron charge maxima can appear in the
real space when the symmetry of the confinement potential is
lowered [24] by, e.g., an off-center impurity. We use a weak
Gaussian perturbation introduced to the confinement potential
used in H0,

Vp(x, y) = D exp(−(x2 + (y − y0)2)/R2
p) , (9)

with parameters D = 0.125 meV, Rp = 5 nm, and y0 = 20
nm.

We considered the spin-polarized states at the magnetic
field, near the ground-state symmetry transition from even to
odd parity, below 4 T for N = 3 [Fig. 3(c)]. The blue lines
in Fig. 6 present the energy levels of a clean system adopted
from Fig. 3(c). The red lines show the energy levels for the
perturbed system. The off-center Gaussian impurity opens
avoided crossings between the energy levels (Fig. 6), which
for the clean potential correspond to opposite parity.

The charge density for the ground (excited) state of N = 3
is given in Figs. 7(a)–7(c) for the magnetic field that is swept
across the avoided crossing. The charge density outside the
avoided crossing [Figs. 7(a), 7(c), 7(d), and 7(f)] produces
four maxima along the ringlike charge distribution, which de-
viates from the point symmetry due to the Vp potential. At the
avoided crossing the wave functions from otherwise crossing
levels mix. In the ground state [Fig. 7(b)], three well-separated
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FIG. 6. The energy spectra with (red lines) and without (blue
lines) a Gaussian impurity [Eq. (9)] that perturbs the circular sym-
metry of the confinement potential. The energy levels for the clean
system (blue lines) are taken from Fig. 3(c). In Eq. (9), we apply
D = 0.125 meV, y0 = 20 nm, and Rp = 5 nm.

single-electron islands appear and the charge density is low at
the center of the perturbation [(x, y) = (0, y0)]. The excited
state [Fig. 7(e)] at the avoided crossing produces a Wigner
molecule that is rotated by the π angle. In this sense, the
even and odd-parity N = 3 states for a clean potential can
be understood as superposition of states producing Wigner
crystallization in real space with two equivalent but rotated
charge distribution. This result for three electrons in circular
potential but anisotropic effective mass is similar to the ones
found previously for isotropic mass but anisotropic confine-
ment potential [74,75].

2. Five-electron system in the circular quantum dot

The five-electron systems has a more complex structure
than systems with two to four electrons due to two charge
distributions that appear in the low-energy spectrum [see
Fig. 3(e)]. In the ground state at B = 0, we find six nearly de-

FIG. 7. The charge density for N = 3 [(a)–(f)] levels marked in
red in Fig. 6 for the circular quantum dot with an off-center Gaussian
impurity. The first row [(a)–(c)] shows the data for N = 3 ground
state. The excited state for 3 electrons is shown in the second row
[(d)–(f)]. The central column [(b) and (e)] shows the results at the
center of the avoided crossing displayed in Fig. 6.

FIG. 8. The ground-state charge density for N = 5 electrons in
B = 0.01 (a), 1 (b), and 1.75 T (c)—see the spectrum in Fig. 3(e). In
(d), we plot the pair correlation function for the state of (b) one of
the electrons fixed at the position marked by the cross.

generate energy levels: a Sz = ±1 odd-parity doublet slightly
below Sz = −3, −1, 1, 3 even parity quartet. The charge
density in all these energy levels is organized in the Wigner
molecule form that is plotted in Fig. 8(a) with one central
electron island and four others shifted off the center of the
QD forming a crosslike structure that we will denote as (1,4).
The near degeneracy of the ground state is a counterpart of
the four-electron ground state for N = 4, where the Wigner
molecule is also found. For five electrons the first excited
energy level at B = 0 is a even parity Sz = ±1 doublet also
with (1,4) charge distribution. In several higher excited energy
levels the states at the energy of � 708.45 meV the charge
density is organized in a ringlike structure with four charge
density maxima without the single-electron islands. We will
denote this structure as (0,4). In higher excited levels, the
states with (1,4) and (0,4) structure interlace on the energy
scale. For B > 0.9 T, the ground state becomes fully spin-
polarized [Fig. 3(e)] and the (0,4) structure [Fig. 8(b)] appear
in the ground state. Above 1.7 T the spatial parity of the
ground state change from odd to even and the (1,4) struc-
ture [Fig. 8(c)] reappears in the ground state. In presence of
both types of states near the ground state—with and without
single-electron islands in the laboratory frame—the spectrum
contains the features of both N = 2, 4 (ground state near de-
generacy at B = 0) and symmetry transformations at higher
field as for N = 3.

The (0,4) state for five electrons has a similar character as
the three-electron ground state. For three electrons, the charge
density is a superposition of two equivalent configurations
one being an inversion of the other. The five-electron charge
configurations with the (0,4) state correspond to the superpo-
sition one or two electrons at the right/left ends of the charge
density near y = 0 line. One of the two equivalent structures
for five electrons can be observed in the pair correlation func-
tion plot of Fig. 8(d) for one of the electrons fixed at point
(−29.4 nm,0).
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B. A linear confinement

We discuss two perpendicular orientations of the elongated
quantum dot to study the interplay of the potential and effec-
tive mass anisotropies.

1. Confinement along the zigzag direction

The spectra for the potential of Fig. 1(d) with the confine-
ment potential elongated along the y axis, i.e. in the direction
where the effective mass is larger, are given in Fig. 9. The
numbers (nx, ny) given in Fig. 9(a) near the energy levels
at B = 0 (for B = 0 and N = 1 the parity with respect to
inversion along the x and y axes of the H0 eigenstates are
definite). The first excitation within x, the direction of thinner
confinement, occurs 3 meV above the ground state [see the
energy level marked by (1,0) in Fig. 9(a)] above five states
excited in the y direction. For N = 2 [Fig. 9(b)], the singlet-
triplet ground state the degeneracy is nearly perfect at B = 0.
For B > 0, the Sz = 0 state remains twofold degenerate with
spin-singlet and spin-triplet energy levels that coincide in
energy. The separation of the electron charges [Fig. 10(a)] is
complete, and the system is effectively equivalent to a pair
of electrons in a double quantum dot with vanishing tunnel-
ing between the dots, which produces a vanishing exchange
energy [19,76,77]. The ground-state degeneracy at B = 0 is
also obtained for N = 3 [Fig. 9(c)]. The Wigner crystallized
charge density of the three-electron system at B = 0 is shown
in Fig. 10(b). Parity has no significant impact on energy once
the electron charges are separated and the Sz = ±1 energy lev-
els are twofold degenerate with respect to parity. Low-energy
spin-polarized states Sz = ±3 occur only in the odd parity.

For N = 4, the ground state at B = 0 is only close to the
degeneracy [Fig. 9(d)] with the even parity ground state at B =
0. The spin polarization Sz = ±4 occurs only in even parity
states. The structure of the low-energy spectrum is similar to
the one found for the circular quantum dot [Fig. 3(e)] with
even-odd parity splitting of energy levels reduced almost to
zero.

The results of Figs. 9(c) and 9(d) for B > 0 indicate that for
N = 3 (N = 4) the low-energy spin-polarized energy levels
occur only with the odd (even) parity symmetry. This is in
agreement with Ref. [16] that indicated that in 1D Wigner
molecules for N = 2M or N = 2M + 1 with integer M the
low-energy spin-polarized state has the spatial parity that
agrees with the number M. Note that for N = 3 in the circular
potential [Fig. 3(c)], for which the Wigner molecules were not
formed in the real-space charge density, both odd and even
parity spin-polarized states appear in the ground state for a
range of magnetic field.

2. Confinement along the armchair direction

For the rectangular gate of Fig. 1(a) with the longer side
oriented along the x direction, the electron mass along the dot
is light and in the transverse direction the mass is heavy. For
the preceding subsection with confinement along the zigzag
direction [Fig. 9(a)], several lowest energy single-electron
states correspond to the same—ground state—energy level of
the quantization in the direction perpendicular to the quantum
dot axis. For the confinement along the armchair direction,
the large my mass allow the states with excitations in the

FIG. 9. Spectra for the potential of Fig. 1(d) elongated along the
zigzag crystal direction (y) for N = 1 (a), 2 (b), 3 (c), and 4 (d). In
(a), even and odd parity levels are plotted with blue and green lines,
respectively. Notation (nx, ny ) close to B = 0 shows the number of
excitations (sign changes) in the wave function at 0T. In (b)–(e), the
even parity levels are plotted with the solid lines and the odd parity
levels with the dotted lines. The color of the lines stands for Sz. The
color of the lines in (b)–(d) shows the Sz value.

direction perpendicular to the confinement axis to appear low
in the energy spectrum [Fig. 11(a)]. The first single-electron
state excited in the transverse direction is the second excited
energy level in Fig. 11(a) [see the energy level described by
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FIG. 10. Charge density for the B = 0.01 T ground state of the
quantum dot elongated along the y axis (zigzag direction, spectra
given in Fig. 9) for N = 2 (a), 3(b), and 4 electrons (c). The second
row of the plots indicates the results for the dot elongated along the
x direction (armchair direction, the spectra given in Fig. 11) for N =
2 (d), 3 (e), and 4 electrons (f). (i) corresponds to N = 4 and B =
5 T. (g) and (h) show the pair correlation function for N = 4 and
the dot elongated along the x direction. The fixed position of one of
the electrons is marked by the cross. (g) shows the pair correlation
function for the other electrons with the same spin as the fixed one.
In (h), the spin of the other electrons is opposite to the one of the
fixed one.

(0,1)]. From this point of view, the system deviates from the
quasi 1D confinement, which should be characterized by a
large number of excitations along the quantum dot below the
energy when the first transverse excitation occurs. However,
the charge density of the N-electron states is elongated along
the x direction [see Figs. 10(d)–10(f)]. The lifting of the even-
odd degeneracy is observed in the spectrum for N = 2 and
3 [Figs. 11(b) and 11(c)]. A lower value of mx allows for a
non-negligible electron tunneling between the single-electron
islands [cf. the charge density in between the single-electron
maxima for N = 2 and 3 in Figs. 10(a), 10(d) and 10(b),
10(e)], thus lifting the degeneracy at B = 0. Near B = 0, the
spectrum for N = 4 [Fig. 11(d))] has a distinctly different
character than for the zigzag confinement [Fig. 9(d)] and for
the circular confinement [Fig. 3(e)]. In both preceding cases
the electrons were separated in the single-electron islands
[Figs. 4(e), 4(f) and 10(c)]. The ground-state charge density
for the armchair confinement possesses two single-electron
islands at the ends of the dot and a lower but more extended
central maximum [Fig. 10(f) for B = 0.01 T and Fig. 10(i) for
B = 5 T]. The charge densities of the two central electrons
do not separate into single-electron islands. The effect can be
attributed to both a large value of my that allows the states
excited in the y direction to contribute to the interacting states
and a small value of mx which makes the formation of the
single-electron islands along the x direction more expensive
in terms of the kinetic energy.

FIG. 11. Spectra for the potential of Fig. 1(d) elongated along
the armchair crystal direction (x) for N = 1 (a), 2 (b), 3 (c),and 4
(d). In (a), even and odd parity energy levels are plotted with blue
and green lines, respectively. The notation (nx, ny ) close to B = 0
axis shows the number of excitations (sign changes) observed in the
wave function at zero magnetic field. The spin degeneracy is lifted
for B > 0 with the spin-down energy levels promoted by the Zeeman
interaction. In (b)–(d), the even parity energy levels are plotted with
the solid lines and the odd parity energy levels with the dotted lines.
The color of the lines stands for the spin. The color of the lines in (b)–
(d) shows the Sz value. The color scale is separate for each figure and
given to the right of the plot.
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Fig. 10(g,h) shows the spin-resolved pair correlation func-
tion for one of the electron positions fixed in the point marked
by the cross for B = 0.01T. Fig. 10(g) (Fig. 10(h)) corre-
sponds to the electron distribution with the same (opposite)
spin as the fixed electron spin. The electrons at the central
maximum of the charge distribution [Fig. 10(f)] possess op-
posite spin. Note that, with the electrons of the extreme ends
of the dots, separated from the central density island, the
system at B = 0 acquires a singlet/triplet spectral structure
(Fig. 11(d)) similar to the one for the two-electron system in
the circular quantum dot (Fig. 3(b))—the central two-electron
system governs the form of the low-energy part of the spec-
trum.

IV. DISCUSSION

The systems confined in quantum dots weakly coupled to
electron reservoirs are studied with the transport spectroscopy
using the Coulomb blockade phenomenon [51,78]. In the
Coulomb blockade regime, the flow of the current across the
dot is stopped when the chemical potential of the confined N-
electron is outside the transport window defined by the Fermi
levels of the source and drain. For a small voltage drop be-
tween the reservoirs, the position of the chemical potential can
be very precisely determined. The chemical potential μN =
EN − EN−1 is defined by the ground-state energies of systems
with N and N − 1 electrons [51,78]. The ground-state energy
crossing in the N electron system produces �-shaped cusps
in the charging line as a function of the external magnetic
field for the N-th electron added to the confined system, while
the ground-state transitions for the N − 1 system produces
V -shaped cusps. Transport spectroscopy allows reconstruc-
tion of the energy spectra with a precision of the order of a
few μeV [79]. The results presented above indicate that the
formation of the Wigner molecule in the laboratory frame
leads to a near degeneracy of the ground state near B = 0.
The larger the electron separation in the single-electron charge
islands, the closer the degeneracy at B = 0. The ground state
becomes spin-polarized at low magnetic field and no further
ground-state transitions are observed. The systems without
the Wigner molecular charge density undergo a number of
ground-state transitions that also appear at higher magnetic
field. The transport spectroscopy technique can also be used
for detection of the excited part of the spectra when the cor-
responding energy level enters the transport window [78,79].
Detection of a dense set of levels near the ground state can be
used as a signature of Wigner molecule formation [10,11].

V. SUMMARY AND CONCLUSIONS

We have studied the system of a few electrons in an
electrostatic quantum dot confinement induced within a phos-
phorene layer. A version of the configuration interaction
approach dealing with the strong electron-electron interac-
tion effects has been developed. We indicated formation of
Wigner molecules with single-electron islands separated in
the real space in a system of realistic yet small size. In cir-
cular quantum dots, Wigner crystallization in the laboratory
frame occurs due to the lowered Hamiltonian symmetry with
the anisotropy of the electron effective mass. The Wigner

molecules appear in the laboratory frame when the distri-
bution of the single-electron islands is consistent with the
Hamiltonian symmetry. For circular quantum dots we found
Wigner molecules for two and four electrons but not for three
electrons, for which two-semiclassical configurations form
a resonance due to the conservation of the parity. For five
electrons in the circular confinement, two forms of the charge
density with or without single-electron islands appear in the
ground state depending on the value of the external mag-
netic field. Formation of the Wigner molecules in a quasi-1D
confinement calls for orientation of the confinement potential
with longer axis along the zigzag direction since larger effec-
tive mass promotes the single-electron islands localization and
the smaller armchair mass supports the quasi 1D confinement.
We studied the spectra for both circular and elongated quan-
tum dots to find the signatures of the Wigner crystallization in
real space. The systems with single-electron islands forming
Wigner molecules in the laboratory frame are characterized
by near degeneracy of the ground state at B = 0 followed
by spin polarization in low magnetic field and an energy gap
between the nearly degenerate ground state and excited states.
These features are missing for systems that do not form single-
electron islands. Resolution of these signatures is within the
reach of transport spectroscopy techniques.
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APPENDIX

1. Single-electron eigen-states with H0, H ′
0, and H ′′

0

Figure 2 presents the convergence of the CI method the
single-electron Hamiltonians H0, H ′

0 and H ′′
0 using the bare

QD potential W , the potential with the central repulsive
Gaussian (W ′) and the reduced potential W ′′, respectively.
The low-energy single-electron wave functions are plotted in
Fig. 12 for the three Hamiltonians starting from the ground
state in the first row, and the subsequent excited states pre-
sented in the lower panels of Fig. 12. The seven lowest-energy
states have the same character for all Hamiltonians only with
states for H ′

0 (central column of plots) and H ′′
0 (right column)

covering a larger area than the ones for H0, which turns out to
speed-up the convergence of the CI method for the system of
size increased by the strong electron-electron interaction.

2. Choice of the computational box

The CI method uses the single-electron wave functions that
are obtained with the finite difference approach in a finite
computational box with the boundary conditions of vanishing
wave function at the edges of the box. The edges of the box
form effectively an infinite quantum well that has to be chosen
large enough to contain the few-electron system without per-
turbation to the low-energy states. The influence of the size
of the box on the results is given in Fig. 13 for the circular
quantum dot. For the circular quantum dot, we use the square
grid of points of the spacing of �x = R/nx where R is the
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FIG. 12. Probability density of spin-down single-electron states
ordered from the ground state (ν = 1 – the first row) to eightth
excited spin-down energy level (ν = 9 – the last row). The left
column corresponds to the states of the bare circular confinement
with potential W (Hamiltonian H0). The central column to the po-
tential W ′ – with an added central Gaussian with 8 meV, 35 meV

FIG. 13. The ground-state energy for a circular quantum dot
holding two (red line, left energy axis) and five electrons (blue line,
right energy axis) as a function of the radius of the computational
box for 60 single-electron eigenstates of Hamiltonian H ′

0 used in
construction of the basis for configuration interaction.

radius of the computational box and we take nx = 111. The
red (black) line in Fig. 13 shows the ground-state energy for
N = 2 (N = 5). The growth of the energy for small R is due
to the finite-size effect with the quantum well ground state
changing as 1/R2. For calculations for N = 2 the radius of
R = 50 nm is large enough while for N = 5 is has to be taken
as large as R = 80 nm.

3. Spectra without the spin Zeeman interaction

A striking difference in the energy spectra states with or
without the Wigner molecule in the ground state is revealed
for the circular potential once the spin Zeeman interaction is
removed. This is illustrated in Fig. 14 which reproduces the
data from Fig. 3 for g = 0. The systems with Wigner form
of the charge density, i.e., the single-electron islands in the
charge density, N = 2 [Fig. 14(a)] and N = 4 [Fig. 14(c)]
contain a nearly degenerate ground state with energy lev-
els of different parity that interlace in increasing B. The
separation of the electron charges in the separate, weakly
coupled, maxima produces a small energy difference due to
the parity, which is similar to the nearly degenerate ground
state for identical, weakly coupled quantum dots. The single
electron islands are formed by a relatively strong electron-
electron interaction and the weakness of the electron tunneling
between the islands can be deduced from the charge den-
sity plots of Figs. 4(a), 4(b) and 4(e), 4(f) for N = 2 and
4. In both cases, the bunch of energy levels of the ground
state is separated by a distinct energy gap from the excited
states.

For N = 3 [Fig. 8(b)], the parity of the ground state
changes in growing B as for even N but the spacing between

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(Hamiltonian H ′

0). The right column correspond to states obtained
with potential W ′′ = 0.455 × W (Hamiltonian H ′′

0 ). The parameters
of the central and the right column are optimized for diagonalization
of the four-electron system.
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FIG. 14. Spectra of N = 2, 3, and 4 electron systems in circular potential (as in Fig. 3) but without the spin Zeeman interaction. The blue
(red) lines show the energy levels of even (odd) parity.

the even and odd parity energy levels near the ground state is
much larger than for even N and no energy gap is observed

between the nearly degenerate ground state and the rest of the
spectrum.

[1] E. Wigner, Phys. Rev. 46, 1002 (1934).
[2] D. S. Fisher, B. I. Halperin, and P. M. Platzman, Phys. Rev. Lett.

42, 798 (1979).
[3] T. Smolenski et al., Nature (London) 595, 53 (2021).
[4] H. Li et al., Nature (London) 597, 650 (2021).
[5] G. W. Bryant, Phys. Rev. Lett. 59, 1140 (1987).
[6] K. Jauregui, W. Häusler, and B. Kramer, Europhys. Lett. 24,

581 (1993).
[7] R. Egger, W. Häusler, C. H. Mak, and H. Grabert, Phys. Rev.

Lett. 82, 3320 (1999).
[8] I. Shapir, A. Hamo, S. Pecker, C. P. Moca, O. Legeza, G.

Zarand, and S. Ilani, Science 364, 870 (2019).
[9] A. Diaz-Marquez, S. Battaglia, G. L. Bendazzoli, S.

Evangelisti, T. Leininger, and J. A. Berger, J. Chem. Phys. 148,
124103 (2018).

[10] S. Pecker, F. Kuemmeth, A. Secchi, M. Rontani, D. C. Ralph,
P. L. McEuen, and S. Ilani, Nat. Phys. 9, 576 (2013).

[11] J. Corrigan, J. P. Dodson, H. Ekmel Ercan, J. C. Abadillo-Uriel,
B. Thorgrimsson, T. J. Knapp, N. Holman, T. McJunkin, S. F.
Neyens, E. R. MacQuarrie, R. H. Foote, L. F. Edge, M. Friesen,
S. N. Coppersmith, and M. A. Eriksson, Phys. Rev. Lett. 127,
127701 (2021).

[12] M. Modarresi and A. D. Güçlü, Phys. Rev. B 95, 235103 (2017).
[13] C. Yannouleas and U. Landman, Phys. Rev. Lett. 82, 5325

(1999).
[14] S. M. Reimann, M. Koskinen, and M. Manninen, Phys. Rev. B

62, 8108 (2000).
[15] A. V. Filinov, M. Bonitz, and Y. E. Lozovik, Phys. Rev. Lett.

86, 3851 (2001).
[16] B. Szafran, F. M. Peeters, S. Bednarek, T. Chwiej, and J.

Adamowski, Phys. Rev. B 70, 035401 (2004).
[17] C. Ellenberger, T. Ihn, C. Yannouleas, U. Landman, K. Ensslin,

D. Driscoll, and A. C. Gossard, Phys. Rev. Lett. 96, 126806
(2006).

[18] S. Kalliakos, M. Rontani, V. Pellegrini, C. P. García, A. Pinczuk,
G. Goldoni, E. Molinari, L. N. Pfeiffer, and K. W. West,
Nat. Phys. 4, 467 (2008).

[19] J. C. Abadillo-Uriel, B. Martinez, M. Filippone, and Y.-M.
Niquet, Phys. Rev. B 104, 195305 (2021).

[20] E. Cuestas, P. A. Bouvrie, and A. P. Majtey, Phys. Rev. A 101,
033620 (2020).

[21] D. D. Vu and S. Das Sarma, Phys. Rev. B 101, 125113 (2020).

[22] M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283
(2002).

[23] J. Zhao, Yuhe Zhang, and J. K. Jain, Phys. Rev. Lett. 121,
116802 (2018).

[24] C. Yannouleas and U. Landman, Rep. Prog. Phys. 70, 2067
(2007).

[25] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and
P. D. Ye, ACS Nano 8, 4033 (2014).

[26] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H.
Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).

[27] S. Fukuoka, T. Taen, and T. Osada, J. Phys. Soc. Jpn. 84, 121004
(2015).

[28] M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J. E.
Mroczkowska, G. Sumanasekera, and J. B. Jasinski, npj 2D
Mater. Appl. 1, 5 (2017).

[29] R. Schuster, J. Trinckauf, C. Habenicht, M. Knupfer, and B.
Büchner, Phys. Rev. Lett. 115, 026404 (2015).

[30] J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Nat. Commun.
5, 4475 (2014).

[31] A. N. Rudenko and M. I. Katsnelson, Phys. Rev. B 89,
201408(R) (2014).

[32] A. N. Rudenko, S. Yuan, and M. I. Katsnelson, Phys. Rev. B 92,
085419(R) (2015).

[33] P. E. Faria Junior, M. Kurpas, M. Gmitra, and J. Fabian,
Phys. Rev. B 100, 115203 (2019).

[34] X. Zhou, W.-K. Lou, D. Zhang, F. Cheng, G. Zhou, and K.
Chang, Phys. Rev. B 95, 045408 (2017).

[35] B. Szafran, Phys. Rev. B 101, 235313 (2020).
[36] M. Lee, Y. H. Park, E. B. Kang, A. Chae, Y. Choi, S. Jo, Y. J.

Kim, S. J. Park, B. Min, T. K. An, J. Lee, S. I. In, S. Y. Kim,
S. Y. Park, and I. In, ACS Omega 2, 7096 (2017).

[37] Z. Sun, H. Xie, S. Tang, Y. Xue-Fang, G. Zhinan, J. Shao, H.
Zhang, H. Huang, H. Wang, and P. K. Chu, Angew. Chem. 127,
11688 (2015).

[38] M. Wang, Y. Liang, Y. Liu, G. Ren, Z. Zhang, S. Wu, and J.
Shen, Analyst 143, 5822 (2018).

[39] R. Gui, H. Jin. Z. Wang, and J. Li, Chem. Soc. Rev. 47, 6795
(2018).

[40] V. A. Saroka, I. Lukyanchuk, M. E. Portnoi, and H. Abdelsalam,
Phys. Rev. B 96, 085436 (2017).

[41] H. Abdelsalam, V. A. Saroka, I. Lukyanchuk, and M. E. Portnoi,
J. Appl. Phys. 124, 124303 (2018).

205304-12

https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRevLett.42.798
https://doi.org/10.1038/s41586-021-03590-4
https://doi.org/10.1038/s41586-021-03874-9
https://doi.org/10.1103/PhysRevLett.59.1140
https://doi.org/10.1209/0295-5075/24/7/013
https://doi.org/10.1103/PhysRevLett.82.3320
https://doi.org/10.1126/science.aat0905
https://doi.org/10.1063/1.5017118
https://doi.org/10.1038/nphys2692
https://doi.org/10.1103/PhysRevLett.127.127701
https://doi.org/10.1103/PhysRevB.95.235103
https://doi.org/10.1103/PhysRevLett.82.5325
https://doi.org/10.1103/PhysRevB.62.8108
https://doi.org/10.1103/PhysRevLett.86.3851
https://doi.org/10.1103/PhysRevB.70.035401
https://doi.org/10.1103/PhysRevLett.96.126806
https://doi.org/10.1038/nphys944
https://doi.org/10.1103/PhysRevB.104.195305
https://doi.org/10.1103/PhysRevA.101.033620
https://doi.org/10.1103/PhysRevB.101.125113
https://doi.org/10.1103/RevModPhys.74.1283
https://doi.org/10.1103/PhysRevLett.121.116802
https://doi.org/10.1088/0034-4885/70/12/R02
https://doi.org/10.1021/nn501226z
https://doi.org/10.1038/nnano.2014.35
https://doi.org/10.7566/JPSJ.84.121004
https://doi.org/10.1038/s41699-017-0007-5
https://doi.org/10.1103/PhysRevLett.115.026404
https://doi.org/10.1038/ncomms5475
https://doi.org/10.1103/PhysRevB.89.201408
https://doi.org/10.1103/PhysRevB.92.085419
https://doi.org/10.1103/PhysRevB.100.115203
https://doi.org/10.1103/PhysRevB.95.045408
https://doi.org/10.1103/PhysRevB.101.235313
https://doi.org/10.1021/acsomega.7b01058
https://doi.org/10.1002/ange.201506154
https://doi.org/10.1039/C8AN01612G
https://doi.org/10.1039/C8CS00387D
https://doi.org/10.1103/PhysRevB.96.085436
https://doi.org/10.1063/1.5048697


WIGNER MOLECULES IN PHOSPHORENE QUANTUM DOTS PHYSICAL REVIEW B 106, 205304 (2022)

[42] F. X. Liang, Y. H. Ren, X. D. Zhang, and Z. T. Jiang, J. Appl.
Phys. 123, 125109 (2018).

[43] L. L. Li, D. Moldovan, W. Xu, and F. M. Peeters, Phys. Rev. B
96, 155425 (2017).

[44] D. He, Y. Wang, Y. Huang, Y. Shi, X. Wang, and X. Duan,
Nano Lett. 19, 331 (2019).

[45] X. Li, Z. Yu, X. Xiong, T. Li, T. Gao, R. Wang, R. Huang, and
Y. Wu, Sci. Adv. 5, eaau3194 (2019).

[46] N. Gillgren, D. Wickramaratne, Y. Shi, T. Espiritu, J. Yang, J.
Hu, J. Wei, X. Liu, Z. Mao, K. Watanabe, and T. Taniguchi,
2D Mater. 2, 011001 (2014).

[47] L. Li, F. Yang, G. J. Ye, Z. Zhang, Z. Zhu, W. Lou, X. Zhou,
L. Li, K. Watanabe, T. Taniguchi, and K. Chang, Nat. Nano. 11,
593 (2016).

[48] G. Long, D. Maryenko, S. Pezzini, S. Xu, Z. Wu, T. Han, J. Lin,
C. Cheng, Y. Cai, U. Zeitler, and N. Wang, Phys. Rev. B 96,
155448 (2017).

[49] G. Long, D. Maryenko, J. Shen, S. Xu, J. Hou, Z. Wu, W. K.
Wong, T. Han, J. Lin, Y. Cai, R. Lortz, and N. Wang, Nano Lett.
16, 7768 (2016).

[50] J. Yang, S. Tran, J. Wu, S. Che, P. Stepanov, T. Taniguchi,
K. Watanabe, H. Baek, D. Smirnov, R. Chen, and C. N. Lau,
Nano Lett. 18, 229 (2018).

[51] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and
L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

[52] Y. Sajeev and N. Moiseyev, Phys. Rev. B 78, 075316 (2008).
[53] N. A. Bruce and P. A. Maksym, Phys. Rev. B 61, 4718 (2000).
[54] H. Saarikoski and A. Harju, Phys. Rev. Lett. 94, 246803 (2005).
[55] A. Secchi and M. Rontani, Phys. Rev. B 82, 035417 (2010).
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