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Giant effective electron-magnon coupling in a nonmagnetic metal–ferromagnetic
insulator heterostructure

Gaoyang Li,1 Hao Jin,1,* Yadong Wei ,1 and Jian Wang 1,2,†

1College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China

(Received 10 February 2021; revised 18 March 2022; accepted 27 October 2022; published 10 November 2022)

Magnon-mediated spin transport across a nonmagnetic metal (NM) and ferromagnetic insulator (FI) interface
depends critically on electron-magnon coupling. We propose a route to enhance electron-magnon coupling from
a transport viewpoint. A theoretical formalism for magnon-mediated spin current is developed based on the
nonequilibrium Green’s function. In the language of transport, the effective electron-magnon coupling at the
NM/FI interface is determined by the self-energy of the FI lead, which is proportional to the density of states
(DOS) at the interface due to the nonlinear process of electron-magnon conversion. By tuning the interfacial
DOS, the spin conductance of two-dimensional (2D) and 3D NM/FI systems can be significantly enhanced by
almost three orders of magnitude, setting up a new platform of manipulating electron-magnon coupling.
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I. INTRODUCTION

In conventional spin-current studies, pure spin current
without an accompanying charge is generated in nonmagnetic
metals (NMs). Since this spin current is carried by electrons,
waste heat is inevitable. In 2010, it was found that a ferro-
magnetic insulator (FI) can conduct spin current in the form
of magnons without Joule heating, and magnons can travel a
long distance in yttrium iron garnet (YIG) [1], which survives
even in the presence of disorders [2]. Since then, spin transport
in FIs has become a topic of interest in spintronics.

In the presence of a temperature gradient across the NM/FI
interface, the magnon-mediated spin Seebeck effect (SSE)
[3,4] and the magnon-mediated spin Peltier effect (SPE) ap-
pear. The magnon-mediated SSE was understood in terms
of spin pumping and was found to be proportional to spin-
mixing conductance [5], while it was studied in the Pt/YIG
bilayer using a linear-response theory [6]. Driven by the
temperature gradient, rectification and a negative differential
SSE were predicted, and rectification of the SPE was also
discussed [7]. For a bilayer structure consisting of a para-
magnetic metal and an FI, the magnon-mediated SPE was
studied using nonequilibrium Green’s function theory [8].
Other studies included the noise of spin current [9] injected by
ferromagnetic resonance[1,10], the rectification effect of the
SSE of a spin Seebeck engine [11], the proposal of optimal
heat to a spin-polarized charge-current converter [12], the
conversion of magnon current to charge and spin current in a
Coulomb blockade regime [13], controlling spin Seebeck cur-
rent using the Coulomb effect in a spin Seebeck device [14],
and magnon-mediated electric current drag in a NM/FI/NM
system [15,16]. The spin Peltier effect in a bilayer structure
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(paramagnetic metal/FI) and the SSE in antiferromagnets and
compensated ferrimagnets have also been studied theoreti-
cally [8,17].

The manifestation of all magnon-mediated spin-transport
properties studied above depends critically on the magnitude
of electron-magnon coupling at the NM/FI interface, which
is very small due to the nonlinear process of electron-magnon
conversion. In conventional wisdom, electron-magnon cou-
pling is a static property and the optimal value can be obtained
by searching for different materials or interfaces. However,
in achieving multifunctionalities, one has to balance among
different targeted properties in choosing the suitable material,
which makes it difficult to optimize a single property. Efforts
have been made to control the quality of the interface by
avoiding the oxidization layer [18], changing surface rough-
ness [19], and surface polishing [20]. Another strategy is to
reduce the conductivity mismatch at the interface by insert-
ing another layer of material [21,22], which has proven to
be very successful. Large enhancement of the SSE through
the NM/FI interface was demonstrated experimentally by
inserting atomically thin magnetic or nonmagnetic metals,
semiconductors, as well as layers of antiferromagnetic in-
sulator (AFI) [19,20,23–28]. While reduction of interfacial
conductivity mismatch is a general strategy, a new possi-
bility in optimizing effective magnon-electron coupling on
top of the bare electron-magnon coupling exists. This can
be achieved from the transport viewpoint by increasing the
interfacial density of states (DOS) at the NM/FI interface.

It is instructive to recall the electrochemical capacitance
where quantum corrections to the classical capacitance can
be important in nanoscale systems giving rise to quantum
behavior [29–31]. For a parallel plate capacitor, these correc-
tions are determined by the local DOS at the surfaces of two
conductors due to the field penetration into the conductors. In
contrast to the static DOS, this DOS is for the open system and
hence it is dynamical [32]. As a result, the electrochemical
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FIG. 1. (a) A tunneling structure where � describes the coupling
between the scattering region and the lead. (b) The NM/FI interface
is represented schematically by a barrier with an effective coupling
constant denoted symbolically by �̄0

R = D0�R. (c) Putting a potential
well adjacent to the interfacial barrier gives rise to a large interfacial
DOS D1 > D0 and yields a larger effective coupling �̄1

R = D1�R.
Note that a larger �̄R corresponds to a larger electron-magnon cou-
pling, and the effective barrier height is reduced (denoted by the red
line). (d) Placing an additional barrier next to the well generates an
even larger DOS D2 and effective coupling, which corresponds to an
even smaller barrier height.

capacitance is no longer purely a geometrical quantity, but
it can be influenced dynamically by the transport density of
states.

As depicted in Fig. 1(a), scattering in a finite potential well
(V0 < 0) can be modeled in the Breit-Wigner form [33,34].
For energy E < 0, bound states Eb may exist inside the poten-
tial well, while for energy E > 0, there are quasibound states
Er above the potential well [35–39]. Near the quasibound-
state energy E = Er , the transmission coefficient is given by

T = �L�R

(E − Er )2 + (�L + �R)2/4
, (1)

where �α (α = L, R) is the linewidth function characteriz-
ing the coupling between the quasibound states and the α

lead with small �α corresponding to weak coupling. For a
symmetric system with �L = �R = �, the transmission coef-
ficient can reach 1 at resonance with the large DOS inside
the potential well. Thus, in the language of transport, increas-
ing the electron-magnon coupling amounts to increasing the
linewidth function at the NM/FI interface. Due to the non-
linear process of electron-magnon conversion, the linewidth
function of the FI lead (the right lead as shown in Fig. 2), �̄R,
is the energy convolution of the DOS matrix at the NM/FI
interface and the spectral function of the FI lead, denoted
symbolically as �̄0

R = D0�R, where D0 is the interfacial DOS
and �R is the spectral function of the FI lead. Therefore,
the effective electron-magnon coupling is no longer a static
(geometrical) quantity but is dressed by the transport DOS,
and it can be changed by an incoming electron. By manipulat-
ing the interfacial DOS at the NM/FI interface, the effective
electron-magnon coupling can be changed drastically. Since
the electron-magnon coupling is very small, we model the

FIG. 2. Schematic illustration of the NM/NM/FI heterostructure
and the magnon-mediated SSE. The central NM region is connected
to a left NM lead and a right FI lead, whose temperatures are TL and
TR, respectively. We define TL > TR with the temperature gradient
∇T . The three layers in the central NM region adjacent to the NM/FI
interface (labeled as layers 1, 2, and 3) are subjected to different
on-site potentials (v1, v2, and v3, respectively). Electrons injected
from the left lead travel through the three on-site potentials and
are scattered back by magnons at the NM/FI interface. A magnon-
mediated pure spin current IsR is thus generated, which is illustrated
by the red arrow.

interface by a barrier with a large barrier height [see Fig. 1(b)].
Placing a potential well next to the barrier, electrons are
trapped in the well for a longer time, giving rise to a large in-
terfacial DOS, D1 > D0 [Fig. 1(c)]. This in turn increases the
effective electron-magnon coupling, i.e., �̄1

R = D1�R, making
the effective barrier height smaller and thereby increasing the
magnon-mediated spin conductance. By putting an additional
barrier next to the well [Fig. 1(d)], electrons can resonantly
tunnel through the barrier and dwell in the well for an even
longer time with a huge DOS. This yields a further increase
of effective electron-magnon coupling and reduces the bar-
rier height, which results in a significant enhancement of the
spin conductance. Indeed, in calculating magnon-mediated
spin conductance driven by temperature for an ideal two-
dimensional (2D) and 3D NM/FI nanoribbon (nanowire), a
giant enhancement of spin conductance with almost three
orders of magnitude is achieved by modifying the interfacial
DOS. This opens up a new window of engineering the ef-
fective electron-magnon coupling at the NM/FI interface by
changing the system parameters.

II. THEORETICAL FORMALISM

Figure 2 shows a schematic of the heterostructure. We con-
sider a system consisting of a central NM scattering region,
a left NM lead, and a right FI lead. The Hamiltonian of the
system (h̄ = e = 1) is given by

H = HL + HR + Hd + HT + Hsd , (2)

where

HL =
∑
kσ

εkσ,Lc†
kσ

ckσ (3)

is the Hamiltonian of the left lead. Operator c†
kσ

(ckσ ) creates
(annihilates) an electron with momentum k and spin σ in the
left lead. The right lead can be described by a Heisenberg
lattice. In the large spin limit or at low temperature, it can
be mapped into magnon gas by using the Holstein-Primakoff
transformation [40]. Therefore, the right lead Hamiltonian is
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approximated expressed as

HR =
∑

q

ωqa†
qaq. (4)

Operator a†
q (aq) creates (annihilates) a magnon with momen-

tum q in the right FI lead, and ωq is magnon dispersion of the
FI lead. The Hamiltonian of the central NM region is

Hd =
∑
nσ

(εnσ + V )d†
nσ dnσ , (5)

where d†
nσ (dnσ ) creates (annihilates) an electron in level n

of the central region with spin σ . V is an on-site potential
applied to manipulate the system spin transport. The coupling
between the left NM lead and the central NM scattering
region is

HT =
∑
kσn

tkσnc†
kσ

dnσ + H.c. (6)

Finally, the electron-magnon interaction between the right FI
lead and the central scattering region is described by the s−d
exchange coupling [41,42]:

Hsd = −
∑
qnn′

[Jqnn′d†
n↑dn′↓a†

q + H.c.]. (7)

Jqnn′ is the coupling strength of the scattering, in which a
magnon in a FI is emitted with a spin-down electron at level
n′ scattered to a spin-up electron at level n in the central NM
region, or vice versa. Although charge current cannot flow
through the FI lead, the term Jqnn′d†

n↑dn′↓a†
q allows a pure spin

current mediated by magnons. As discussed in detail in Ref.
[43], the momentum during the electron-magnon conversion
is generally not conserved. However, the spin-nonconserving
part of the Hamiltonian does not contribute to the spin trans-
port and therefore can be neglected.

Note that all the Hamiltonians (3)–(7) are written in mo-
mentum space. To carry out tight-binding calculations, we
need to discretize them in real space. For the convenience
of presenting the potential landscape, we show here the
discretization of Hamiltonian (5). Following procedures illus-
trated in Ref. [44], we get the matrix presentation of Hd as

[Hd ]i j =
⎧⎨
⎩

Vi + 4t if i = j,
−t if i and j are nearest neighbors,
0 otherwise.

(8)

The matrix index i or j labels sites in the central region. t is
the hopping parameter, and Vi is the on-site potential added
to the central scattering region. In this work, we modify the
potential landscape of three layers next to the interface in the
central scattering region. Namely, in Eq. (8),

Vi =

⎧⎪⎨
⎪⎩

v1 for sites in layer 1,
v2 for sites in layer 2,
v3 for sites in layer 3,
0 otherwise.

(9)

Considering the continuity condition for spin current in
the system, the electronic spin current from the left NM lead
should be equal to the magnonic spin current from the right FI
lead, i.e., IsL = −IsR, in which the subscript s denotes the spin

current while L(R) means the spin current is generated in the
L(R) lead.

A. dc spin current from the right lead

The spin current IsR is calculated based on the Heisenberg
equation IsR = i[Hsd ,

∑
q a†

qaq]. Here, we find [45]

IsR(t ) =
∫

dt ′Tr[Gr
↑(t, t ′)�̄<

R↑(t ′, t )

+ G<
↑ (t, t ′)�̄a

R↑(t ′, t ) + H.c.], (10)

where �̄r
Rσ = iGr

σ̄ · �̃<
Rσ + iG<

σ̄ · �̃a
Rσ , �̄<

Rσ = iG<
σ̄ · �̃>

Rσ . We
note that the electron-magnon self-energy �̄Rσ is very similar
to the electron-phonon [46] or electron-photon [47] self-
energy, which contains the nonequilibrium Green’s function
of the system. The above equation is structurally the same as
the current in normal systems except that the self-energy is
replaced by the electron-magnon self-energy.

In the dc case, we find

IsR =
∫

dE

2π
Tr[Gr

↑(E )�̄<
R↑(E ) + G<

↑ (E )�̄a
R↑(E ) + H.c.],

(11)

where Gr
↑(E ) = 1 / [g−1

d↑ (E ) − �r
L↑ (E ) − �̄r

R↑(E )] = 1/

[G−1
L↑ (E ) − �̄r

R↑(E )]. After some algebra, Eq. (11) becomes
[48]

IsR = −
∫

dE Tr
{
Gr

↑(E )�L↑(E )Ga
↑(E )

[
i�̄<

R↑(E )

+2 fL↑(E )Im�̄a
R↑(E )

]}
. (12)

The self-energy �̄R↑ has to be calculated self-consistently
within the self-consistent Born approximation (SCBA).
We first consider the Born approximation (BA) so that
�̄<

R↑(t, t ′) = iG<
L↓(t, t ′)�>

R (t ′, t ). It is straightforward to show
the following relation [49]:

�̄<
R↑(E ) = i

∫
dω

[
1 + f B

R (ω)
]

fL↓(Ē )D0
L↓(Ē )�R(ω), (13)

where Ē = E + ω. f B
R is the Bose-Einstein distri-

bution for magnon gas in the right lead. D0
L↓(E ) =

Gr
L↓(E )�L↓(E )Ga

L↓(E ) is the injectivity of the left lead,
and an effective local DOS matrix for electrons coming from
the left lead [50]. Here �L↓ = �L↑ = �L = i(�r

L − �a
L ) is

the linewidth function of the left lead, and �R = −2 Im�r
R.

Similarly, we find that the effective linewidth function of the
right lead is given by [51]

�̄R(E ) =
∫

dω
[

f B
R (ω) + fL↓(Ē )

]
D0

L↓(Ē )�R(ω). (14)

We emphasize that the self-energy �̄r,<
R and hence

D0
L↓(Ē )�R(ω) are nonzero only at the NM/FI interface. From

Eqs. (13) and (14), we arrive at the final result,

IsR = −
∫

dω
[

f B
R (ω) − f B

L (ω)
] ∫

dE [ fL↑(E )

− fL↓(E + ω)]Tr[AR(E , ω)], (15)

205303-3



LI, JIN, WEI, AND WANG PHYSICAL REVIEW B 106, 205303 (2022)

with

AR(E , ω) = Gr
↑(E )�L↑(E )Ga

↑(E )D0
L↓(Ē )�R(ω) (16)

and

�̄r
R↑(E ) =

∫
dω

[
fR(ω)Gr

L↓(Ē ) + i fL↓(Ē )ImGr
L↓(Ē )

]
�R.

(17)
Note that we have used the identity

[ fL↑(E ) − 1] fL↓(Ē ) = −[ fL↑(E ) − fL↓(Ē )] f B
L (ω),

where fLσ (ε) = 1/[exp (βL(ε − μσ )) + 1]. f B
L (ω) =

1/[exp (βL(ω + μs)) − 1] is the effective Bose distribution of
the left lead with the spin bias μs = μ↑ − μ↓. βL = 1/kBTL

is the inverse temperature of the left lead. μ↑ and μ↓ are
chemical potentials for electrons in the left NM lead with
spin up and down, which are set to μ↑ = μ↓ = μL in our
numerical calculations.

It is worth noting that when spin bias μs and TL − TR are
all zero, there is no spin current. In addition, if we keep only
quadratic terms in coupling Jqnn′ and treat Green’s functions
as scalars, Eq. (15) recovers the spin current found in a zero-
dimensional system, which is consistent with previous results
obtained from the equation of motion [7], the full counting
statistics formalism [11], and nonequilibrium Green’s func-
tion theory [14], respectively. For the spin current within the
SCBA, Eq. (13) remains valid but one needs to iterate self-
consistently to get a convergent �̄R↑ [45].

B. Electron-magnon conversion

As shown in Eq. (12), if the right lead is replaced by a
normal lead, i.e., �<

R = fR(�a
R − �r

R) and �a
R − �r

R = i�R,
Eq. (12) would formally resemble the usual Landauer-Büttiker
formula. In realistic systems, the electron-magnon coupling is
usually very weak [41]. Nevertheless, it can be modified in a
transport process. From Eq. (14), the effective self-energy of
the FI lead is given by D0

L↓(Ē )�R(ω), which is proportional
to the effective DOS at the NM/FI interface. Therefore, the
effective electron-magnon coupling strength and the spin con-
ductance can be enhanced by increasing the local DOS at the
interface.

III. NUMERICAL RESULTS

In numerical calculations, the spin bias μs is set to zero. In
the linear-response regime, we define the spin current driven
by the temperature gradient 
T = TL − TR as IsR = GT 
T ,
in which GT is the so-called spin conductance. We fix 
T =
0.001 K to calculate the spin current using Eq. (15), and we
present spin conductance in figures for discussion.

To perform numerical calculation for the spin current, we
have to determine the self-energy �̄r,<

R defined in Eqs. (13)
and (17). We assume that Jqnn′ = Jqδnn′δni, which corresponds
to destroying a magnon and creating two electrons with op-
posite spins at the same lattice site at the interface. Index i
denotes the level of interfacial site. We have

�̄R↑n1n(τ, τ ′) = i�0Gn1n↑(τ, τ ′)�0�R(τ ′, τ ), (18)

FIG. 3. (a) 2D spin conductance vs α for the clean system in
BA and SCBA. The parameter α is the dimensionless coupling in an
Ohmic spectral function. The temperature is fixed at T = 5 K and the
Fermi energy of the left NM lead is μL = 0.8 meV. In the following
calculations, α is fixed to 100, which is labeled by the gray dashed
line. The spin conductance GT is in units of meV/K. (b) Schematic of
on-site potential (v3, v2, v1) for a clean system and four typical con-
figurations. c1 – c4: (0, 0, −v); (0, v, −v); (−v, 0, −v); (v, 0, −v).

where �0 is a diagonal matrix with nonzero matrix ele-
ments at the interface of the right lead and �R(τ, τ ′) =∑

q J2
q gRq(τ, τ ′).

Since the FI lead is always in equilibrium, we follow other
theoretical investigations in the FI [7,11,14,52] and assume
that the spectral function of the magnonic reservoir is Ohmic
so that

�R(ω) = αωe−ω/ωc t�0, (19)

where α ∼ J2
q is the dimensionless effective coupling energy

between NM and FI. ωc is the cutoff frequency used to trun-
cate the Ohmic spectrum in high frequency. As discussed in
Ref. [41], α is related to the spin-mixing conductance [10,53].
Another choice of �R will not change the results qualitatively.

In the numerical calculation, we use a tight-binding ap-
proach to discretize the 2D and 3D systems [44]. The
self-energy of the left lead is calculated using the transfer-
matrix method [54], from which the Green’s function Gr

L↓ can
be calculated. Once Gr

L↓ is obtained, �̄r
R↑ and Gr

↑ can also
be calculated. Finally, one has to perform a double integration
over energy and frequency for spin conductance, which is very
time-consuming.

A. Enhancement of spin conductance

We consider a 2D system using a 20 × 20 mesh with
lattice spacing a = 5 nm so that the hopping parameter t =
21.8 meV. We consider the ballistic regime and set the poten-
tial of the NM regime to be a constant. We fix the temperature
T = 5 K, ωc = 0.24 meV, and μL = 0.8 meV, which corre-
sponds to the first subband transport. As will be seen below,
the enhancement effect mainly comes from the first subband
transport.

Since we consider the ballistic regime, the material ingredi-
ents are manifested in the electron-magnon coupling constant.
In Fig. 3(a), the 2D spin conductance versus α is depicted for
the clean system (v = 0) using BA and SCBA, which shows a
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FIG. 4. 2D spin conductance (solid line) and the corresponding
effective interfacial DOS (dashed line) vs v for different configura-
tions c1–c4 [in panels (a)–(d)] in SCBA at α = 100. The pink star
is the reference with no interfacial modification, while the green
star shows the largest enhancement. Insets: potential profiles for the
corresponding configurations. GT is in units of meV/K. Parameters:
α = 100, μL = 0.8 meV, T = 5 K, and t = 21.8 meV.

nonmonotonic dependence. The maximum spin conductance
is about 7 × 10−3 at α > 2500 in SCBA, setting up an upper
bound for the chosen system parameters. We choose here
the most popular (optimal) NM/FI interface, Pt/YIG, as an
example with a suitable parameter α (α = [100, 1000]) that is
within the estimated range of electron-magnon coupling for
that interface. We choose α = 100 such that the self-energy
�̄r

R is in the order of magnon energy (less than kBT ), which is
equivalent to η = 1. η is the effective coupling constant at the
Pt-YIG interface defined in Ref. [41].

To change the interfacial DOS, We consider four typi-
cal configurations (from c1 to c4): (v3, v2, v1) = (0, 0,−v);
(0, v,−v); (−v, 0,−v); (v, 0,−v). Here, v denotes the po-
tential strength, which is in units of hopping parameter t .
Figure 3(b) shows the configuration potentials for v > 0.
Taking the work function of the left NM lead (or the cen-
tral region) as zero potential, an applied positive potential
on the three interfacial layers corresponds to the insertion
of a material with higher work function, while a negative
potential corresponds to the insertion of a material with
lower work function. They can be classified into three cate-
gories: one-layer configuration (c1), two-layer configuration
(c2), and three-layer configurations (c3 and c4). For each
configuration, we calculate the spin conductance GT as a
function of v in SCBA and compare it to the spin conduc-
tance of a clean system. For the clean system, SCBA gives
GT = 1.7 × 10−5 meV/K (pink star in Fig. 4), which is the
reference for the enhancement of spin conductance. We note
that in principle, the same effect may be obtained by applying
a gate voltage if one can control the applied gate voltage
precisely. However, this could be very difficult in practice,
especially for complex configurations such as c3 and c4.

B. One-layer strategy

A one-layer configuration corresponds to the insertion of
one “layer” of intermediate material at the Pt-YIG interface.
For the c1 configuration, we set (v3, v2, v1) = (0, 0,−v). The
spin conductance and corresponding effective interfacial DOS
versus v within the SCBA are shown in Fig. 4(a). In this work,
the effective interfacial DOS is defined as

ρ̄ =
∫

dE
∫

dω
(

f B
R (ω) + fL↓(Ē )

)
D0

L↓(Ē )�R(ω). (20)

We see that the spin conductance and the corresponding effec-
tive interfacial DOS are well correlated. This indicates that the
increase of the interfacial DOS is the microscopic mechanism
of the enhancement in spin conductance. When the potential
v is tuned to an appropriate value, electrons near the interface
can be transported due to the quasibound states above the
potential well. This leads to a significant increase in the in-
terfacial DOS, which further enhances the effective coupling
between the central NM region and the FI lead. The spin
conductance is thus enhanced significantly. In addition, spin
conductance enhancement occurs when the intermediate layer
has a lower work function than that of Pt (corresponding to
positive v). For configuration c1, the largest enhancement can
reach 647 times [compare the green star and the pink star in
Fig. 4(a)]. On the other hand, inserting an intermediate mate-
rial with a higher work function (corresponding to negative v)
suppresses the spin conductance. Our result is consistent with
experimental results showing that an enhancement between
300% and 600% was achieved when intermediate materials
such as Ru [18], monolayer WSe2 [23], multilayer MoS2

[25,26], and C60 [24] were inserted at the Pt-YIG interface
[55]. The enhancement has previously been attributed to the
reduction of conductivity mismatch at the Pt/YIG interface,
i.e., the spin-mixing conductance gPt/YIG is smaller than the
total conductance of Pt/X/YIG trilayer [56]. Since interfacial
conductance has been considered implicitly in the potential
profile of the TB model, we interpret it as being due to the
enhancement of the effective interfacial DOS [57]. Moreover,
when a nanoscale amorphous layer is formed at the interface
[19] or the interface is oxidized [18], the spin conductance is
suppressed [58], which is also consistent with our result.

C. Two-layer strategy

Figure 4(b) shows the spin conductance and effective inter-
facial DOS as a function of v for a ”two-layer” configuration,
i.e., (v3, v2, v1) = (0, v,−v), where two different materials
are required to insert into the interface. When v is negative, a
factor of 44 enhancement can be obtained. When v is positive,
a potential barrier is created followed by a potential well near
the interface [see the inset of Fig. 4(b)]. As a result, an incident
electron can dwell inside the well for a long time, giving rise
to a very large DOS at the interface. The enhancement of the
spin conductance is calculated to be 582 times. It is clear
that adding a potential barrier increases the interfacial con-
ductivity mismatch. Since the conductance mismatch at the
NM/FI interface can be viewed as a “potential barrier” at the
interface, introducing a second barrier in the configuration c2

demonstrates the importance of the “double-barrier” structure,
which has not yet been explored experimentally.
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FIG. 5. Contributions of the first subband to the (a) 2D spin
conductance and (b) effective interfacial DOS as a function of
Fermi energy μL (in units of meV). The potential strengths v for
c1 − c4 are fixed at values labeled by green stars in Fig. 4, i.e.,
v/t = {1, 1.58, 1.64, 1.3}, respectively. (c) 2D spin conductance vs
v for configuration c4 when the incident electron is in the second
subband, yielding a maximum of 242 enhancement. (d) 3D spin
conductance vs v for configurations c2–c4 when the incident electron
is in the first subband. The enhancement is about 708, 708, and 416
times, respectively, for c2–c4. Here the system is a nanowire with a
cross-section 20 × 20 and α = 100. GT is in units of meV/K.

D. Three-layer strategy

Figures 4(c) and 4(d) depict the spin conductance and
effective interfacial DOS versus v for configurations c3 and
c4. The configuration c3 is a double-well structure, and an
enhancement of 588 times can be achieved. The configuration
c4 corresponds to a “double-barrier” structure similar to c2.
As expected from the result of c2, a large enhancement of 371
times is obtained.

Note that the largest enhancement occurring at a particu-
lar potential parameter in c1–c4 is a direct consequence of
enhancement in the effective interfacial DOS. We show in
Figs. 5(a) and 5(b) the spin conductance and effective in-
terfacial DOS as a function of Fermi energy. The potential
strengths v for c1–c4 are fixed at the resonance points labeled
by green stars in Fig. 4, respectively. The spin conductance
and effective interfacial DOS of c1–c4 show clearly peaks
near the Fermi energy μL = 0.8 meV compared to a clean
system. If an incident electron has two transmission channels,
the longitudinal energies of each channel are different [59].
Therefore, only one of the transmission channels can reach
resonance. As a result, the largest enhancement is expected
to reduce by a factor of 2, which is confirmed numerically
[reduced from 371 times to 242 times; see Fig. 5(c) compared
to Fig. 4(d)]. This shows that the giant enhancement of spin
conductance is prominent only in the first subband transport.
A giant enhancement of spin conductance 708 times in a
3D nanowire NM/NM/FI system is also achieved when an
incoming electron is in the first subband [see Fig. 5(d)].

FIG. 6. 2D spin conductance vs v for configuration c4 at differ-
ent temperatures and Fermi energies (a) μL = 0.7 meV, (b) μL =
0.8 meV, and (c) μL = 1.0 meV. The configuration for c4 is
(v, 0, −v), α = 100. GT is in units of meV/K.

We point out that our model calculation is carried out in
a 2D nanoribbon and 3D nanowire within the TB approach,
and it may not be applicable directly to realistic systems.
In addition, the enhancement effect is prominent only in the
first subband. Nevertheless, our theory provides a physical
understanding of the enhancement of magnon-mediated spin
conductance, and general theoretical guidance for interface
engineering of effective electron-magnon coupling. Although
a large enhancement of spin conductance is obtained the-
oretically in this work, it is still a challenging task for
experiments.

In this work, in addition to the Born approximation we also
make an approximation on static electron-magnon coupling,
neglecting the dipole-dipole interaction in the FI and a pos-
sible dephasing mechanism. We note that the enhancement
of effective electron-magnon coupling is on top of the static
electron-magnon coupling, so the approximation made on
static electron-magnon coupling does not matter. In addition,
the enhancement is due to the increase of the local DOS in
the neighborhood of the NM/FI interface where dephasing
can be neglected. Furthermore, as shown in Fig. 6, an en-
hancement of 760–1000 times is achieved for configuration
c4 by varying different Fermi energies and temperatures. The
large enhancement of 2D spin conductance does not depend
on Fermi energies and temperatures, suggesting that it is a
generic feature.

IV. CONCLUSION

We have developed a theoretical formalism based on
the nonequilibrium Green’s function method for magnon-
mediated spin current in an NM/NM/FI heterostructure.
Because the electron-magnon conversion across the NM/FI
interface is a nonlinear process, the effective electron-magnon
coupling of the NM/FI interface is an energy convolution
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of the local DOS of the system with the spectral function
of the FI lead, in distinct contrast to normal systems. Given
that the electron-magnon coupling is very weak, this provides
a new possibility to manipulate the coupling by modifying
the potential landscape near the interface. As demonstrated
in this work, simple modification of the interfacial DOS can
drastically increase the spin conductance in both 2D and 3D

systems as a result of enhancement of effective electron-
magnon coupling.
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